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Abstract: Selective laser melting (SLM) is a near-net-shape time- and cost-effective manufacturing
technique, which can create strong and efficient components with potential applications in the
aerospace industry. To meet the requirements of the growing aerospace industrial demands, lighter
materials with enhanced mechanical properties are of the utmost need. Metal matrix composites
(MMCs) are extraordinary engineering materials with tailorable properties, bilaterally benefiting
from the desired properties of reinforcement and matrix constituents. Among a wide range of MMCs
currently available, aluminum matrix composites (AMCs) and titanium matrix composites (TMCs) are
highly potential candidates for aerospace applications owing to their outstanding strength-to-weight
ratio. However, the feasibility of SLM-fabricated composites utilization in aerospace applications is
still challenging. This review addresses the SLM of AMCs/TMCs by considering the processability
(densification level) and microstructural evolutions as the most significant factors determining the
mechanical properties of the final part. The mechanical properties of fabricated MMCs are assessed in
terms of hardness, tensile/compressive strength, ductility, and wear resistance, and are compared to
their monolithic states. The knowledge gained from process–microstructure–mechanical properties
relationship investigations can pave the way to make the existing materials better and invent new
materials compatible with growing aerospace industrial demands.

Keywords: aerospace; additive manufacturing (AM); selective laser melting (SLM); aluminum
matrix composites (AMCs); titanium matrix composites (TMCs); in-situ/ex-situ reinforced composites;
mechanical properties

1. Introduction

1.1. Basic Concepts

By increasing the technological requirements for lightweight materials with superior physical and
mechanical properties, metal matrix composites (MMCs) are considered as novel engineering materials
with tailorable properties, meeting a part of the growing industrial demands. Owing to their desired
structural and functional properties, they have found their way into a wide variety of technological
fields, specifically aerospace applications. MMCs are composed of at least two different constituents
known as “matrix” and “reinforcement” whose properties complement each other. The combination of
appropriate fracture toughness and ductility of the matrix, as well as the higher strength and modulus
of the reinforcement in composites, leads to superior properties compared to those of individual
constituents [1,2]. A wide variety of matrices including Al, Ti, Fe, Mg, Co, Zn, Cu, and Ni as well
as a broad range of ex-situ embedded or in-situ synthesized reinforcements including carbides (e.g.,
WC, SiC, B4C, and TiC), oxides (e.g., Fe3O4, ZrO2, and Al2O3), nitrides (e.g., ZrN, Si3N4, TiN), borides
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(e.g., TiB, ZrB2, TiB2, WB) and different forms of carbon (e.g., graphite, carbon nanotubes (CNTs),
graphene) [3–8] have been employed in the literature to fabricate MMCs. Given the higher specific
strength (strength-to-weight ratio) and desired intrinsic properties, aluminum matrix composites
(AMCs) and titanium matrix composites (TMCs) are considered as superseded candidates for the
automotive and aerospace industries to fill the present technological gaps [9].

1.2. Why Additive Manufacturing (AM) for Aerospace Applications?

Since the components used in the aerospace industry are complex in geometry, their manufacturing
through conventional processes is rather challenging or even impossible. To address this concern,
advanced manufacturing routes are required to produce these components. In light of this scenario,
additive manufacturing (AM) is the best choice for near-net-shape fabrication of parts with complex
geometries. AM refers to a group of fabrication processes in which an object is manufactured through
the deposition of subsequent layers of powder, wire, ribbon or liquid resin in a layer-by-layer or
point-by-point manner [10]. AM machines use slicing algorithms to transform the three-dimensional
(3D) computer-aided-design (CAD) model of a component into 2D sections, providing layer-by-layer
fabrication of the desired component through bonding of subsequent layers. Currently, several AM
techniques are commercially available for processing different types of materials, including metals,
ceramics, and polymers. Depending on the material feedstock, source of energy, build volume, and
physical state of material systems before or during the process, a wide variety of classifications have
been proposed for AM processes [11]. ASTM F2792 is the most widely accepted standard which
classifies AM processes into seven categories; namely, (i) binder jetting, (ii) material extrusion, (iii)
material jetting, (iv) sheet lamination, (v) vat polymerization, (vi) powder bed fusion (PBF) and (vii)
directed energy deposition (DED) [12]. Figure 1 shows a variety of additively manufactured parts
applicable in the aerospace industry.
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Figure 1. (a) Antenna support for Sentinel-1 fabricated by selective laser sintering of an
aluminum-silicate-magnesium alloy [13,14], (b) high-value aerospace bracket made of Ti-6Al-4V using
selective laser melting [15], (c) flange fabricated by laser additive manufacturing of Inconel 718 [16],
and (d) aircraft bracket manufactured by selective laser melting (SLM) processing of Ti-6Al-4V [17].

By having great potential in integrating various fields such as engineering design, laser technology,
materials science, and mechanical engineering, AM technology has been accepted as a significant
revolution in the manufacturing industry. This issue mainly lies in the ability of AM to fabricate
near-net-shape components with complex geometries, leading to reduced lead-time, waste, and cost.
This outstanding manufacturing technology has numerous potential benefits over other manufacturing
methods, as outlined in the following:
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1. Production of complex geometries: The design freedom combined with the control over the
movement of heat source, spot size, material feeding rate, and even the direction of deposition all
associated with the AM technology are among the factors providing fabrication of parts with
complex geometries (e.g., lattice structures). Moreover, since most of the components utilized in
the aerospace industry are intricate in geometry, the AM technology can provide an exceptional
opportunity to decrease the assembly cost [18,19].

2. Minimized tooling requirements/operations: The single-stage and near-net-shape nature of the AM
technology eliminates the need for multi-stage tooling [18]. However, the relatively poor surface
quality of the AM-fabricated components may require post processing operations to reduce the
surface roughness, especially in applications which are highly sensitive to the surface quality
(e.g., aerospace industry). Machining, surface remelting, shot peening, sand blasting, laser sock
peening and electrochemical polishing are the most frequently used post-processing methods.

3. Reduced time and cost: Due to the absence of expensive and dedicated tools such as molds and
dies, AM technology provides exceptional technological opportunities for rapid and cost-effective
fabrication of components in small volume production. Moreover, the lower buy-to-fly ratio
of parts fabricated by AM compared to the conventional manufacturing processes significantly
reduces the material waste and, consequently, the manufacturing cost [20,21].

4. Controlled atmosphere: The protected atmosphere involved in PBF–AM processes (especially the
vacuum environment in electron beam melting (EBM)) makes it possible to process highly reactive
and expensive high-temperature metals, which are usually difficult to process using conventional
manufacturing routes. Moreover, the control over the atmosphere enables fabricating components
with minimized defect levels (i.e., gas porosities and inclusions), which are of crucial importance
in aerospace applications [22,23].

5. Flexibility in alloy design: AM technology can be rapidly utilized to explore the feasibility of using
new materials for specific applications [24].

6. Superior mechanical properties: The significantly high cooling rates associated with AM processes
lead to substantially refined microstructures with improved hardness and strength compared to
those fabricated through conventional manufacturing routes [25].

7. Feasibility of fabricating functionally graded materials: The control over the process parameters as
well as the material composition associated with some of the AM processes provides an outstanding
opportunity to invent bimetals, multi-materials as well as functionally graded materials (FGMs)
benefitting from the gradient change in composition and microstructure along the building
direction [26].

8. Customized design: The ability to use customized mixtures of powders in AM facilitates fabricating
MMCs and functionally graded metal matrix composites with improved mechanical properties
compared to the conventionally processed counterparts [27].

9. Environmentally friendly: AM technology is associated with relatively lower energy consumption
and CO2 emission than conventional manufacturing processes [28,29].

1.3. Requirements of Parts for Aerospace Applications

Densification level: Porosities and cracks as the most common defects in additively manufactured
parts adversely affect the densification level and, consequently, the mechanical properties. Due to the
extremely localized and rapid heating/cooling nature in most of the AM processes, the defects formed
by this manufacturing route have origins different from those observed in conventionally manufactured
parts. Lack of fusion, incomplete penetration, balling phenomenon, spattering, keyhole effect, material
evaporation, thermal stresses, and gas entrapment are the main reasons behind the formation of the
defects [30–32]. The presence of even negligible amounts of defects in components applicable in the
aerospace industry can lead to catastrophic failures since they act as crack nucleation sites during static
and dynamic loadings, which deteriorates the fatigue and creep resistance significantly. To address this
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concern, several studies have been conducted to improve the density of additively manufactured parts
by alleviating the formation of defects through optimizing the process variables, developing suitable
post-processing techniques (i.e., hot isostatic pressing (HIP)) and applying powder/wire feedstocks
with minimum residual gas (e.g., powders manufactured through plasma rotating electrode process
(PREP)) [26–29].

Surface quality: Surface roughness is believed to be one of the major drawbacks of AM technology,
especially in parts with intricate geometries which are difficult to be machined. Unmelted/partially
melted powder particles [33], balling phenomenon [1,2], and stair-step effect [34] are the most common
factors dictating the surface quality of the printed component. By serving as the crack nucleation
site during cyclic loading (i.e., fatigue), surface roughness seems to be detrimental for aerospace
applications [35]. In most cases, achieving a final part with surface roughness less than 1 µm is
impossible during AM processes. Therefore, the additively manufactured parts should experience
surface treatments such as machining, grinding, chemical polishing, hot isostatic pressing, or shot
peening to be suitable for the aerospace industry [18].

Strength-to-weight ratio: Increasing the strength of the material along with the weight reduction is
the best strategy to enhance the fuel consumption efficiency and move towards the green aerospace
vehicles with less detrimental impacts on the environment. That is why low-density structural materials,
including Al- and Ti-based alloys are potential candidates for many aerospace applications [36].

Isotropic Properties: Although the AM technology provides fabrication of metallic parts with
numerous benefits, the microstructural anisotropy, which is characterized by the grains elongated
along the building direction, is a major limitation of the AM-fabricated components. The anisotropy in
the microstructure and mechanical properties has been reported in the literature for a wide variety
of AM-fabricated materials [37–40]. The main reason for this directional growth is the higher heat
conduction in the building direction than other directions. While the AM-fabricated components may
meet the requirements proposed by standards in their as-built condition, in some specific applications,
post-processing heat treatments may be required to remove the anisotropy.

Wear resistance: Since several components, namely, shafts, valves, piston rods, and bearings,
are subjected to wear in the service conditions, wear resistance needs to be taken into consideration [36].
Despite the noticeable progress in surface engineering, aiming at creating films on the surface of the
parts to improve their wear resistance, most of the coating processes suffer from the inability to produce
a thick film on the surface of the desired part. By providing the opportunity to create bi-materials, it is
possible to fabricate structural components with tough bulk and modified hard surfaces (thick) with
exceptional wear resistance [26].

Concerning the aircraft components such as engine (discs, blades and cooler parts), airframe,
skin, landing gear wheel, flap and slat tracks of the wing [29], Ti and Al alloys are believed to be
appropriate materials, as they allow substantial strength-to-weight saving and volume reduction.
When being considered as the matrix for fabricating composites, the obtained TMCs and AMCs are
expected to show even higher hardness, wear resistance, and strength-to-weight ratio, especially at
elevated temperatures, meeting the above mentioned requirements [41,42]. Although fabrication of
TMCs/AMCs by AM processes has been successfully reported in some research studies, the feasibility
of utilizing these composite materials for aerospace applications is still an unanswered question.
This review aims to address the selective laser melting (SLM) of TMCs and AMCs with potential
applications in the aerospace industry. For this purpose, the production methods of the composite
powders are introduced, and the requirements of an ideal composite powder for the SLM process is
thoroughly discussed. The considerations existing in the selection of the starting reinforcing agent are
explored. The primary processing and microstructural parameters influencing the final properties are
thoroughly examined. The level of improvement in mechanical properties such as hardness, wear
resistance, tensile/compressive strength, and ductility in composites compared to their monolithic
system is assessed. The knowledge gained from process–structure–property relationship investigations
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can pave the way to make the existing materials better and invent new materials compatible with
growing aerospace industrial demands.

2. Selective Laser Melting for Fabricating MMCs

2.1. Background

SLM is a PBF–AM process in which an object is manufactured layer-by-layer from a batch of loose
powder using a mobile laser beam. In the SLM process, a 3D CAD model of an object is first designed
and turned into 2D slices in the computer. Then, a thin layer of powder is deposited on the building
platform, and a laser beam is used as the heat source to fuse selected regions of the powder layer and
construct the first layer as the shape defined in the 2D slice. Afterward, the platform is lowered, and a
new thin layer of powder is deposited. Again, the powders are fused by the laser beam and bonded to
the bottom layer in pre-defined points. By repeating this process, complex-shaped objects could be
constructed as defined by the model [43–46]. A schematic view of the SLM process setup is illustrated
in Figure 2.
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Due to the layer-by-layer nature of the SLM process, it is capable of producing objects with complex
shapes and geometries in bulk, porous, or cellular forms with potential applications in aerospace,
biomedical, and automotive industries [47,48]. Moreover, the SLM process does not require special
tools, making it an outstanding candidate for small volume production [48]. While a wide range of
materials can be produced by the SLM process, there exist some difficulties with the processing of
some intermetallic compounds and alloys with high melting temperatures. Among different materials,
aluminum, titanium, and their alloys are interesting choices for the SLM process. Remarkably high
heating and cooling rates of ~103 to 106 K/s associated with the SLM process provide the conditions
for producing non-equilibrium phases with fine-grained microstructures in these alloys, leading to
superior mechanical properties [49]. Moreover, incorporation of reinforcements into the aluminum
and titanium alloy matrices to produce AMCs and TMCs can further enhance the mechanical and
functional properties [48,50].

Among various reinforcements, discontinuous ceramic particles are the most frequently used
materials incorporated into the Al/Ti matrix to form AMCs/TMCs. However, carbonaceous materials
(e.g., graphene and carbon nanotube (CNT)), metallic agents and ceramic precursors (e.g., B4C) have
been also used as the starting reinforcing particles. A literature review reveals that a wide variety of
reinforcements have been employed to produce such composites using the SLM process. TiC, TiB2, SiC,
Al2O3, CNT and graphene in the case of AMCs, and TiC, TiB2, and B4C in TMCs are the materials most
frequently used as the starting reinforcing agent for fabricating composites through an SLM process.
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2.2. Powders for SLM of MMCs

2.2.1. Methods

Due to the absence of different nozzles for feeding composite constituents, fabrication of MMCs by
the SLM process requires a composite powder feedstock as the starting material [1,2,51,52] (Figure 2).
The characteristics and behaviors of the developed composite powder are of crucial importance and
significantly affect the quality of processed parts. When ceramic reinforcing particles are mixed with a
metallic powder, the type, size, morphology, and volume fraction of these powder particles are among
the crucial factors determining the laser absorptivity, processability, microstructural homogeneity, and,
consequently, the mechanical properties of SLM-processed MMCs [53–55]. With a few exceptions,
no commercial composite powder feedstock is currently available to manufacture MMCs using the
SLM process. Accordingly, several routes have been utilized in recent years to pre-process powders
and develop the desired composite powder feedstocks enabling fabrication of MMCs. The composite
powder production routes can be classified into two main categories of mechanical and non-mechanical.
The methods belonging to each category are summarized in Table 1 along with their advantages and
disadvantages as well as typical micrographs of composite powders produced by them. Preserving the
desired spherical shape of the metallic powder particles and their decoration by the second constituent
are the main features of introducing the non-mechanically produced composite powder feedstocks
suitable for SLM of MMCs. However, due to their higher practicality, time, and cost-efficiency and
applicability to a wide range of materials, mechanical mixing methods have attracted a great deal of
attention in recent years. That is why regular mixing and ball milling are known as the most applicable
processes for pre-processing of composite powders.
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Table 1. The methods used to produce composite powders for selective laser melting (SLM) applications.

Method Advantages Disadvantages Example

Mechanical

Regular
mixing

-Does not affect the characteristics of
starting powders

-Can be utilized to prepare a wide range
of powders

-Easy to use, fast, cost-effective and
noticeably productive

-Limited capability to disperse guest
powder particles, leading to relatively

low poor guest-to-host adherence
-Requires noticeably long mixing times to
provide an acceptable dispersion state of

guest particles
-The produced composite powders are
not ideal in terms of powder packing

density and flowability
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Table 1. Cont.

Method Advantages Disadvantages Example

Non- Mechanical

Flux- assisted
synthesis

-Highly spherical powder particles are
achieved

-The guest particles are homogeneously
distributed in the composite powder

feedstock (also inside the host powder
particles)

-Can provide relatively high productivity
-The produced composite powders
benefit from high apparent packing

density and flowability

-The powder production through this
method is more complicated than the

mechanical methods
-Applicable to limited numbers of

composite powder systems
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Table 1. Cont.

Method Advantages Disadvantages Example

Electroless
plating/

Electrostatic
assembly

-The spherical shape of host particles is
met or preserved.

-Provides acceptable attachment of guest
particles to the host ones

-Low production rate
-Post-processing is required

-Expensive
-Requires a thorough selection of system

constituents and process variables
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The ball milling method (also known as mechanical alloying) is a technique that has been applied
to improve the dispersion state of reinforcing particles in micro/nano-composite powders. This process
is characterized by repeated deformation, cold-welding, and fracture of powder particles as a result of
high energy impacts induced by the particle/particle and ball/particle collisions (Figure 3a) [59]. The
selection of proper process parameters is of utmost importance to achieve the desired features of the
mixed powder system and consequently obtain high-quality MMC parts. These parameters include
rotational speed, mixing time, ball-to-powder weight ratio, and the employed milling time-pause
cycle [52]. The regular mixing has the same concept as the ball milling process, with the only difference
being that it is devoid of balls (Figure 3b). The absence of balls leads to the lack of decoration
experienced by metallic powder particles, which in turn leads to the separation of different constituents
during the powder deposition stage in the SLM process [52].
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Figure 3. Schematic of: (a) ball milling and (b) regular mixing processes as the mechanical methods of
producing composite powder for the SLM process [52].

2.2.2. Requirements of an Ideal Composite Powder

Despite the regular mixing process, which is free of metallic balls, the tremendous energy delivered
to the powder particles by balls in the ball milling process leads to the fragmentation of brittle powder
particles and induction of severe plastic deformation or even fragmentation of ductile materials [59].
Accordingly, ball milling process parameters need to be considered as essential factors governing the
characteristics of the mixed powder system. The size, shape, and dispersion pattern of powder particles
are the major characteristics of composite powder systems that affect the quality of SLM-fabricated
parts [52]. To meet the requirements of SLM, the following items need to be considered in the composite
powder preparation:

Minimizing the free reinforcing particles: The presence of reinforcing agent as free (non-attached to
the metallic constituent) particles in the composite powder feedstock adversely affects the powder bed
packing density and flowability. The adherence of reinforcing particles to the metallic powder is required
to alleviate the chance of separation in the composite powder and, therefore, the microstructural
heterogeneity in the final MMC part. Besides, the free reinforcing particles have a high tendency to form
agglomerates to decrease their surface energy, leading to the poor dispersion state of reinforcements in
the final microstructure.

Preserving the morphology of the metallic powder particles: Due to the high powder flowability,
spherical powder particles are desired for SLM of monolithic materials [60,61]. Based on this
well-accepted fact, the metallic constituent in the composite powder should maintain its spherical
morphology to obtain the desired powder behaviors from the SLM viewpoint. Although the sphericity
of metallic powder particles is almost guaranteed in the non-mechanical route as well as the regular
mixing method, the severe plastic deformation and cold-welding of particles in the ball milling
process lead to different levels of deviation from fully spherical shape depending on the applied
process variables. This adversely affects the flowability of the composite powder [52,62,63]. Therefore,
depending on the hardness, strength, and ductility of the metallic powder, appropriate mixing process
parameters need to be employed to acquire composite powders with the desired morphology.
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Figure 4 provides the SEM micrograph of 5 wt.% B4C/Ti-6Al-4V composite powder system
developed through the ball milling process. Although a slight deviation from fully spherical shapes is
visible in a few particles due to the cold welding and deformation, the produced composite powder
meets the requirements of the ideal powder for the SLM process [51].
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3. Selection of Reinforcing Particles Based on the Potential Applications

The second constituent in the MMCs can be in the form of (i) carbonaceous materials (carbon
fiber, graphene, CNT), or (ii) ceramic particles (SiC, TiC, TiB, etc.)/ceramic precursors (e.g., B4C).
Chemical composition and type of the reinforcing particles incorporated into the metallic matrix are
believed to dictate the functionality of the developed MMC. It should be borne in mind that these
reinforcing particles can either remain unreacted (ex-situ composite) or experience complete (in-situ
composite)/partial (hybrid ex-situ/in-situ composite) reaction with the matrix, which leads to the
formation of in-situ synthesized reinforcements. Therefore, depending on the final reinforcements in
the microstructure, the second constituent should be selected.

Table 2 summarizes the in-situ and hybrid ex-situ/in-situ reinforced AMCs and TMCs fabricated
through the SLM process. The characteristics of the starting powder constituents, the composite
powder fabrication method, as well as the micrograph of the developed composite powder and
microstructure of the obtained MMCs, are also provided. In addition, the main outcomes of these
research studies are highlighted, suggesting the improvement in the mechanical properties compared
to the monolithic alloy systems. In the following, microstructural evolutions experienced by different
families of reinforcing particles during the SLM process are elucidated. The dictated mechanical
properties, which are of utmost importance in aerospace applications, are also provided in comparison
to their non-reinforced systems.
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Table 2. Aluminum matrix composites (AMCs) and titanium matrix composites (TMCs) fabricated in recent years by SLM processing of composite powder feedstocks.

Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

Aluminum Matrix Composites (AMCs)

TiC/AlSi10Mg 4 wt.% 50 nm 30 µm Ball milling
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Table 2. Cont.

Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

TiB2/Al-3.5Cu-1.5Mg-1Si5 vol.% 3 µm 41 µm Regular mixing
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-The developed composite
powders showed noticeably

higher laser absorptivity than
that of pure Al.

-The fabricated composites had
significantly superior strength,
elastic modulus and thermal

stability compared to the
non-reinforced counterparts.
-The improved mechanical

properties were attributed to the
incorporation of well-dispersed

TiC particles, matrix grain
refinement, and strong

reinforcement/matrix interfacial
bonding.

[67]
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Table 2. Cont.

Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

Nano-SiC/AlSi7Mg 2 wt.% Mean of 40
nm

Mean of 35
µm
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-The microstructure contained Si,
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reinforcement to the matrix.
-Compared to the non-reinforced

scenario, the produced
composites showed improved

hardness, strength and ductility.

[68]
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-By adding graphene
nanoplatelets (GNPs) to the Al

alloy matrix, the hardness,
strength and wear resistance of
the developed composites were

improved.
The self-lubricating property of
the GNPs was found to decrease
the coefficient of friction in the

fabricated composites.

[69]
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Table 2. Cont.

Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

Micro-Submicron
TiC/AlSi10Mg 15 wt.%

Micron
scale(30–50
µm)Submicron
scale (200
nm-2 µm)

Mean of 42
µm Ball milling NA
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-~40% increase in the laser
absorptivity and consequently

the improved processability
were achieved by adding TiC

constituent to the Al alloy
powder.

-The composites containing
micron-scale TiC were less

homogeneous and uniform in
terms of the dispersion of
reinforcing particles in the

microstructure.
-Densities as high as 98% were

obtained.
-Improvements in the hardness,

strength and wear resistance
were obtained through
composite fabrication.

-Composites containing
submicron TiC particles showed

superior strength and wear
resistance compared to those

having micron-scale TiC
particles.

[53]
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Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

CNT/AlSi10Mg 1 wt.%

Inner
diameter

(5–10
nm)Outer
diameter

(20–30
nm)Length
(10–30 µm)

NA
Ultrasonication

followed by
drying
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-The loss of Al2O3 during SLM 

processing was observed. 

-The decrease in the scanning 

speed and the hatch spacing led to 

the elevated Al2O3 loss. 

-The main mechanism acting 

behind the Al2O3 loss was its 

reduction reaction by the Al. 
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microstructure, the laser and

thermal shocks subjected to the
carbon nanotubes (CNTs) led to
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-The portion of CNT which

reacted with the molten Al alloy
paved the way for the formation

of Al4C3 phase.
-The fabricated composites were
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increase in the hardness and the
tensile strength compared to the

non-reinforced state.
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-The loss of Al2O3 during SLM
processing was observed.

-The decrease in the scanning
speed and the hatch spacing led

to the elevated Al2O3 loss.
-The main mechanism acting
behind the Al2O3 loss was its
reduction reaction by the Al.

[71]
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Table 2. Cont.

Composite
Powder SYSTEM

Guest
Fraction

Guest
Particle

Size

Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

TiB2/AlSi10Mg 3.4 vol.% <100 nm 15–53 µm Flux-assisted
synthesis
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reduction 
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dry ball 
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-The graphene nano-platelets were 

coated by Al to overcome the 

wetting problems associated with 

the interaction of solid graphene 

platelets with the molten Al during 

SLM. 

-Although the graphene could 

survive during the SLM process, 

aluminum carbide was detected in 

the microstructure. The finer 

microstructure of the composite 

was attributed to the ability of 

graphene-coated particles to act as 

nucleation sites for the 

solidification of the matrix. 

-Tensile strength and elongation at 

break of composites increased by 

11% and 13%, respectively, 

compared to the SLMed AlSi10Mg 

alloy. 

-The wear resistance and hardness 

of the composites showed 70% and 

40% improvement, respectively 

[73] 
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-The fabricated nano-TiB2
reinforced AlSi10Mg matrix

composites showed equiaxed
grains in the matrix with no
preferred crystallographic

texture.
-The composites exhibited

drastically higher strength and
ductility compared to the

non-reinforced AlSi10Mg case.
This was attributed to the

presence of nano-TiB2 reinforcing
particles and their effects on the
grain refinement of the matrix.

[72]

Al
coated-Gr/AlSi10Mg 1 wt.% NA 15–50 µm

Organic Al
reduction
method

followed by dry
ball milling
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[73] 

-The graphene nano-platelets
were coated by Al to overcome
the wetting problems associated

with the interaction of solid
graphene platelets with the

molten Al during SLM.
-Although the graphene could

survive during the SLM process,
aluminum carbide was detected
in the microstructure. The finer
microstructure of the composite
was attributed to the ability of

graphene-coated particles to act
as nucleation sites for the

solidification of the matrix.
-Tensile strength and elongation
at break of composites increased

by 11% and 13%, respectively,
compared to the SLMed

AlSi10Mg alloy.

[73]
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Composite
Powder SYSTEM
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Particle
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Host
Particle

Size

Composite
Powder

Preparation
Route

Composite Powder
Micrograph Microstructure Remarks Ref.

-The wear resistance and
hardness of the composites

showed 70% and 40%
improvement, respectively

compared to the non-reinforced
condition.

SiC/AlSi10Mg 15 wt.% Mean of
46.1 µm

Mean of
33.7 µm Ball milling
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Titanium Matrix Composites (TMCs)

TiB2/CP-Ti 5 wt.% 3.5–6 µm 49 Ball milling

Aerospace 2020, 7, x FOR PEER REVIEW 17 of 38 

 

compared to the non-reinforced 

condition. 

SiC/AlSi10

Mg 
15 wt.% 

Mean 

of 46.1 

µm 

Mean 

of 33.7 

µm 

Ball milling 

 

 

-Densities as high as 97.7% were 

achieved. 

-The SiC particles partially react 

with the surrounding melt at their 

interfaces to form needle-shape 

Al4SiC4 phase. 

-The highest hardness was reported 

for parts with the lowest porosity 

level. 

-The fabricated composites showed 

higher hardness but lower strength 

than the non-reinforced AlSi10Mg. 

This was ascribed to the premature 

failure caused by the crack 

nucleation from the porosities and 

large-sized SiC particles in the 

composite structure. 

[74] 

TiB2/Al12S

i 
2 wt.% 

3.5–6 

µm 

20–60 

µm 
Ball milling NA 

 

- TiB2 particles were 

homogeneously dispersed in the 

matrix. 

-Compared to the hot-pressed 

composite of the same system, the 

SLM-fabricated composites had 

finer matrix grain size as well as 

higher hardness and strength. 

[75] 

Titanium Matrix Composites (TMCs) 

TiB2/CP-Ti 5 wt% 
3.5–6 

µm 
49 Ball milling 

 

 

-Compared to the non-reinforced 

counterparts, improvement in the 

hardness and strength and 

decrease in the flow stress and 

ductility were achieved for 

composites. This was attributed to 

the strengthening effects of the in-

[76, 

77] 

Aerospace 2020, 7, x FOR PEER REVIEW 17 of 38 

 

compared to the non-reinforced 

condition. 

SiC/AlSi10

Mg 
15 wt.% 

Mean 

of 46.1 

µm 

Mean 

of 33.7 

µm 

Ball milling 

 

 

-Densities as high as 97.7% were 

achieved. 

-The SiC particles partially react 

with the surrounding melt at their 

interfaces to form needle-shape 

Al4SiC4 phase. 

-The highest hardness was reported 

for parts with the lowest porosity 

level. 

-The fabricated composites showed 

higher hardness but lower strength 

than the non-reinforced AlSi10Mg. 

This was ascribed to the premature 

failure caused by the crack 

nucleation from the porosities and 

large-sized SiC particles in the 

composite structure. 

[74] 

TiB2/Al12S

i 
2 wt.% 

3.5–6 

µm 

20–60 

µm 
Ball milling NA 

 

- TiB2 particles were 

homogeneously dispersed in the 

matrix. 

-Compared to the hot-pressed 

composite of the same system, the 

SLM-fabricated composites had 

finer matrix grain size as well as 

higher hardness and strength. 

[75] 

Titanium Matrix Composites (TMCs) 

TiB2/CP-Ti 5 wt% 
3.5–6 

µm 
49 Ball milling 

 

 

-Compared to the non-reinforced 

counterparts, improvement in the 

hardness and strength and 

decrease in the flow stress and 

ductility were achieved for 

composites. This was attributed to 

the strengthening effects of the in-

[76, 

77] 

-Compared to the non-reinforced
counterparts, improvement in
the hardness and strength and
decrease in the flow stress and
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TiC/CP-Ti 15 wt.% 50 nm 22.5 Flux-assisted
synthesis
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-The added TiC powder particles
reacted with the Ti melt during
SLM processing and resulted in

the formation of in-situ
synthesized TiC phase as the

reinforcement.
-The morphology of TiC phase
was found to be dependent on

the employed laser energy
density.

-Significant improvements in the
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wear resistance were reported for
the developed composites
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B4C/Ti-6Al-4V 0.5, 1 wt.% 2–3 µm Mean size
of 30 µm Ball milling
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-ZrO2 particles were
homogeneously dispersed in the

matrix.
-Combination of grain refinement

strengthening and dispersion
strengthening mechanisms in the

developed composites led to a
hardness twice that of the

non-reinforced Ti.
-The wear resistance of

composites was significantly
higher than that of pure Ti due to
the dispersion strengthening and
formation of a strain hardened

tribolayer during sliding.

[80]
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CrB2/Ti 2 wt.% −38 + 11
µm

−81 + 25
µm Regular mixing NA
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-The composite powder meeting
the requirements of the SLM

process was introduced.
-Higher laser energy densities led
to the enhanced in-situ reactions
between the reinforcing particles

and the surrounding melt.
-The SLM process led to a

microstructure extremely finer
than the arc-melted one. The
microstructure evolution was

also found to be non-equilibrium.
-Depending on the employed
laser energy density, 30–80%

improvement in hardness was
achieved compared to the
non-reinforced scenario.

[51]
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CNT/Ti-6Al-4V 0.8 vol.% NA 15–53 µm

Chemical
vapour

deposition
(CVD)
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3.1. Carbonaceous Materials

The incorporation of carbonaceous particles into a metallic matrix should not only lead to increased
mechanical properties but also has the potential to improve thermal and electrical conductivity. Since
the density of carbon is considerably lower than most of the metallic materials, the addition of
carbonaceous particles can enhance the strength-to-weight ratio. On the other hand, the presence
of carbonaceous materials can increase the damping capacity, which is essential in the aerospace
and automotive industries. By increasing the hardness and at the same time reducing the coefficient
of friction (COF) (due to the self-lubricating feature), incorporation of carbonaceous materials can
noticeably decrease the wear rate. Besides, it has been reported in the literature that the addition of
graphene nanosheets and CNTs increases not only the strength-to-weight ratio but also the ductility of
the composite. It is believed that these improvements are unique to carbonaceous reinforcing particles
over others. Nevertheless, microstructural investigations of the SLMed graphene/Al and CNT/Al
composite systems have confirmed the formation of aluminum carbide within the matrix, suggesting
that these reinforcing particles are not able to fully survive during the SLM process [73,83,84].

3.1.1. Surface Quality

Figure 5 shows the effect of scanning speed, as one of the most critical SLM process parameters,
on the melt pool dimension and surface quality of SLM-processed CNT/AlSi10Mg composite powder.
By affecting the height and width of the tracks, the scanning speed plays a significant role in the surface
quality of the fabricated parts. The lowest surface roughness (Sa ≈ 7 µm) is achieved at an optimum
scanning speed [70]. The effect of other process variables (i.e., laser power, hatch spacing and powder
layer thickness) on the quality of the fabricated composite should follow the same trend. Therefore,
the overall change in melt pool temperature, cooling rate, and convectional flows within the melt pool
due to the addition of CNTs seems not to encourage the enhancement of surface roughness during the
SLM process.
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Figure 5. The variation in (a) scan line dimension, (b) the roughness of scan layers, and (c) the
morphology of scan layers of SLM-processed 1 wt.% carbon nanotubes (CNT)/AlSi10Mg composite
powder as a function of the scanning speed. The micrographs provided in (c), (d), and (e) refer to the
parts subjected to the scanning speed of 900, 1300, and 1700, respectively [70].

3.1.2. Densification Level

One of the most common defects found in the AM-processed metals and MMCs is porosity.
By acting as stress concentration sites and reducing the effective load-bearing area, these porosities
adversely affect the mechanical properties, including strength, creep performance, and fatigue
life [85–87]. Therefore, they need to be minimized or eliminated to improve the functionality and
mechanical properties of the additively manufactured components. Figure 6 shows the level of
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porosities in non-reinforced and reinforced AlSi10Mg with graphene nanoplatelets (GNPs) fabricated
with the same process parameters.
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Figure 6. Optical micrographs of (a) AlSi10Mg, and (b) 0.5 wt.% graphene nanoplatelets
(GNP)/AlSi10Mg parts in as-built condition [88].

As is evident, the incorporation of GNPs resulted in the significant increase in the size and volume
fraction of porosities which in turn offsets the improvement in mechanical properties. The decreased
densification level is attributed to the entrapped gas and contaminations within the GNPs (spherical
pores), insufficient wetting of GNPs by molten aluminum alloy and incomplete melting of the composite
powder (irregular pores) [83,88]. It is worth noting that applied process parameters in the discussed
research study were not optimized and denser GNP/Al alloy composites are processable through
SLM techniques. Nevertheless, from the densification level point of view, addition of carbonaceous
materials to the metallic matrices seems to be challenging. Optimization of process parameters and
post processing treatments such as HIP may be required to further reduce the porosities and make
them applicable for the aerospace industry.

3.2. Ceramic Particles/Ceramic Precursors

Lightweight MMCs which benefit from extraordinary wear resistance (due to the hardness
enhancement), improved compressive strength, and excellent high-temperature stability (i.e., creep
resistance) can be fabricated by addition of either ceramic particles or ceramic precursors. Relatively
large-size ceramic particles remain undissolved during the thermal cycle of the SLM process.
SiC reinforced AMCs fabricated by the SLM process are among a few systems that could be considered
as ex-situ reinforced MMCs (specifically when SiC particles are noticeably coarse). The bonding
coherence between the reinforcing particles and the Al-based matrix is one of the crucial factors in
such MMCs governing the mechanical and functional properties of manufactured AMCs. While SiC
particles usually tend to form a good bonding with the Al matrix (Figure 7a), the extremely fast cooling
rates associated with the SLM process as well as the difference between the coefficient of thermal
expansions (CTEs) of SiC and the Al matrix may lead to the generation of cracks at reinforcement/matrix
interfaces (Figure 7b). These cracks degrade the interfacial bonding coherence and, consequently, the
mechanical properties [89].

However, fine ceramic particles experience partial/complete dissolution and then re-precipitate
through in-situ reactions. The in-situ synthesized reinforcement(s) may be the same as or different from
the starting reinforcing particle depending on the metallic matrix chemical composition. For instance,
SLM processing of the TiC/Al composite powder system results in the formation of the same TiC
phase as the product of the in-situ reaction through solution precipitation mechanism, meaning
that the primarily added TiC particles dissolved into the Al matrix re-precipitate in the matrix by
heterogeneous nucleation followed by growth (Figure 8a). This can be confirmed by comparing the
size and morphology of the TiC phase in the SLM-processed AMCs with the particulate morphology
of TiC particles in the starting composite powder [67]. However, full reaction of nano-SiC particles
with the surrounding Al during SLM processing leads to the formation of a different phase (Al4C3)
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(Figure 8b) [68]. As an example of TMCs, the dissolution of irregular-shape B4C particles in the Ti melt
during SLM process results in the formation of two new phases of TiB and TiC (Figure 8c).
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Figure 7. SEM images of the interface between SiC reinforcing particles and the Al–4.5Cu–3Mg
matrix in AMCs fabricated through the direct metal laser sintering (DMLS) process showing (a)
matrix/reinforcement bonding interface, and (b) formation of micro-cracks in the interfacial region [89].
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Figure 8. SEM micrographs of SLM-processed: (a) 35 vol.% TiC/Al [67], (b) 2 wt.% nano-SiC/

AlSi7Mg [68] and (c) 5 wt.%B4C/Ti-6Al-4V (own work) composite powder systems. The particulate-
shape phase in (a) is TiC, which is formed through the dissolution–precipitation mechanism. The full
decomposition of SiC nanoparticles and the subsequent reaction of C atoms with the Al matrix results in
the formation of in-situ synthesized short rod-like Al4C3 phase in (b). The reaction between the starting
reinforcing particle and the surrounding Ti alloy melt during SLM processing leads to the in-situ
synthesis of TiB and TiC phases with needle-like and particulate-shape morphologies, respectively,
in (c).

To have multiple in-situ synthesized reinforcements in the final microstructure, fine ceramic
precursors are incorporated into the metallic systems. The reaction of B4C particles with the Ti alloy
melt during SLM processing of B4C/Ti-6Al-4V composite powder has been shown to result in the
formation of two new phases (TiB and TiC) which are different from the starting reinforcing particle
(Figure 8b) [51]. These phases can improve the wear resistance and creep durability of Ti alloy
significantly. For high-temperature applications, the reinforcements need to have CTEs close to that of
the metallic matrix to hinder reinforcement/matrix interfacial separation or cracking. It is worth noting
that the addition of ceramic particles/ceramic precursors is usually accompanied by a considerable
decrease in the ductility of the developed composite material [51,79,80].

3.2.1. Surface Quality

During the SLM process, the laser beam linearly scans the powder bed. As a result, a molten
region with a cylindrical shape is formed behind the laser spot. When it comes to metallic powders,
the melt track may break down to spherical-shape agglomerates to reduce the surface energy. When
the cylinder circumference (πD), in which D is the diameter of the cylinder or agglomerates, is less
than the sinusoidal fluctuations, the molten track tends to break [90]. This phenomenon is known
as the “balling effect” and degrades the surface quality of additively manufactured parts [91]. The
starting reinforcing particles incorporated into the composite powder as the second constituent can
increase both D and the laser absorptivity. These factors act to reduce the probability of balling effect
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occurrence and result in the formation of more continuous surface morphology with a reduced size of
inter-connected porosities, as seen in Figure 9 [92].
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Figure 9. The surface morphology of (a) pure Al-7Si-0.3Mg as well as SiC-reinforced Al-7Si-0.3Mg
matrix composites with (b) 5, (c) 10, and (d) 20 vol.% SiC fabricated by the selective laser sintering
(SLS) process [92].

It is worth noting that the increase in the volume fraction of reinforcing particles is not necessarily
associated with the improved surface quality. The lower temperature and higher viscosity of melt
induced in MMCs with relatively small contents of reinforcing particles limit the materials flow and
lead to the formation of inter-connected porosities and relatively rough surfaces [93].

3.2.2. Densification Level

Several sources and mechanisms have been suggested for the formation of porosities in
SLM-fabricated parts, including lack of fusion, un-melted/partially melted powder particles, keyhole
effect, inter-track/inter-layer delamination as well as the entrapment of gas or alloy vapor inside
the melt pool [30–32,87,94–99]. In addition to these mechanisms which are governed by the process
parameters, the formation of defects in SLM-processed MMCs is affected by the characteristics of the
powder feedstock. The following discusses the effects of powder characteristics on the densification
level of the SLM-processed MMCs reinforced with ceramic particles.

Volume fraction of reinforcing particles: The densification of SLM-processed composites is believed
to obey the first-order kinetic law (Equation (1)) [92,100]:

dε
dt

= kε (1)

In which k, ε, and t are the constant rate for densification, the total porosity, and time, respectively.
Studies have shown that although the increase in the content of reinforcing particles up to a critical
amount enhances the bed porosity, it elevates the densification rate of fabricated MMCs. Further
increase in the reinforcement content beyond a critical value reduces the densification rate. The effect
of reinforcement content on the densification level of SLM-fabricated MMCs could be discussed in
terms of the following consequences: (i) the bed porosity, (ii) the capability of laser energy absorption,
and (iii) the melt viscosity. The increase in reinforcing content enhances both the bed porosity and the
melt viscosity. However, due to the higher laser absorption coefficient of ceramic reinforcing particles
than those of metallic constituents, their addition may elevate the overall laser absorptivity of the
composite powder system and consequently increase the melt pool temperature. While the enhanced
laser absorptivity is the dominant factor at low contents of reinforcing particles, both the increased bed
porosity and elevated melt viscosity are the governing roles when having relatively high amounts of
reinforcing particles. It is also worth noting that high contents of reinforcing particles in the composite
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powder increase their agglomeration probability, which may reduce the overall effective surface area
of particles and consequently decline the laser energy absorption [92]. Figure 10 shows the effect of
SiC volume fraction on the densification rate of the SiC/Al–7Si–0.3Mg system subjected to the direct
metal laser sintering (DMLS) process. The densification level first increased and then decreased by
enhancing the SiC content, leaving a peak at 5 vol.% SiC. Moreover, increasing of the SiC fraction in the
range of 10–20 vol.% slightly improved the densification rate, but led to lower sinterabilities compared
to that of the non-reinforced Al alloy [92].
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Figure 10. Variation of densification rate as a function of SiC volume fraction for DMLS-processed
SiC/Al–7Si–0.3Mg composite powder system [92].

Size of reinforcing particles: In addition to the volume fraction, the size of reinforcing particles also
plays a vital role in the densification level of SLM-processed MMCs. The larger surface area of finer
particles enhances the laser absorptivity of the composite powder system. This consequently elevates
the melt pool temperature, reduces the melt viscosity, improves the reinforcement/matrix wettability
and bonding coherence, and enhances the extent of in-situ reaction between reinforcing particles
and the matrix. Therefore, MMCs with increased densification levels may be achieved, as shown
in Figure 11 for an SLM-processed SiC/AlSi10Mg composite powder system. On the other hand,
the increased possibility of particle clustering associated with finer reinforcing particles may adversely
affect the density by (i) reducing the laser absorptivity, and (ii) increasing the melt pool viscosity. The
overall outcome of two counterpart phenomena (i.e., higher laser absorptivity vs. higher clustering
and increased melt viscosity) governs the effect of reinforcing particle size on the densification level of
composites [89,101].
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Figure 11. Cross-sectional optical micrographs of SLM-processed SiC/AlSi10Mg mixed powder system
containing: (a) coarse and (b) fine starting SiC powder particles. (c) The change in relative density of
parts as a function of SiC average particle size [102].

4. Mechanical Properties-Monolithic Alloys vs. Composites

4.1. Hardness

One of the primary purposes behind composite fabrication is the improvement in mechanical
properties. Among various mechanical properties, the hardness of the SLM-processed MMCs has
been analyzed in many research studies, as plotted in Figure 12. In most cases, the reinforcements are
ceramic particles having noticeably higher hardness compared to the metallic matrix. As shown in
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Figure 12, incorporation of reinforcements into the metallic matrix leads to a higher hardness compared
to the non-reinforced state due to the following reasons:

• When adding reinforcements to the system, a fraction of the metallic matrix is substituted by
a harder constituent(s). Since the ceramic reinforcements typically have higher hardness than
the metallic matrix, such a replacement leads to higher hardness based on the well-known
mixture rule.

• The reinforcements incorporated into the metallic matrix, restrain its local micro-deformation
by hindering the movement of dislocations [103]. Therefore, higher stresses are required for the
deformation of the structure, resulting in higher hardness and strength.

• The solid reinforcing particles dispersed into the melt during laser processing act as heterogeneous
nucleation sites for the matrix during its solidification [1,2]. This results in the grain refinement of
the matrix and, consequently, the enhancement of hardness and strength [68,72]. The extent of
such grain refinement is a major function of the size, volume fraction, and distribution pattern of
reinforcing particles. The increase in volume fraction and decrease in size of reinforcing particles
are regarded as the strategies providing the matrix with finer grains [89]. On the other hand,
non-uniform matrix grain refinement induced by inhomogeneous distribution of reinforcements
may degrade the mechanical properties of manufactured composites [48]. The composition of
reinforcement is another factor that affects the hardness by influencing the formation of in-situ
synthesized reinforcements and intermetallic phases during the process [104].
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Figure 12. A comparison between the hardness of SLM-processed AMCs/TMCs and their monolithic
non-reinforced counterparts in TiC/AlSi10Mg [53], CNT-Al4C3/AlSi10Mg [70], Gr-Al4C3/AlSi10Mg [73],
Al4SiC4-SiC/AlSi10Mg [74], Al2O3/Al [105], TiC/AlSi10Mg [106], TiB/Ti-6Al-4V [79], TiB-TiC/

Ti-6Al-4V [79], ZrO2/Ti [80], TiC/Ti [107] and TiB-TiC/Ti-6Al-4V [51] systems. Microhardness
measurements have been conducted on coupons with the same shape but different sizes.

4.2. Tensile/Compressive Strength

Since its emergence, SLM technology has led to the fabrication of parts with superior strength
and acceptable ductility compared to those processed with conventional manufacturing methods [18].
Figure 13 compares the strength/ductility of SLM-processed AMCs/TMCs and their monolithic
counterparts. While the incorporation of reinforcements into the metallic matrix provides the
enhancement in strength (Figure 13a), it is generally associated with the decrease in ductility (Figure 13b).
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However, research studies have recently shown the enhancement in both strength and ductility in
SLM-processed nano-composites (Figure 13).
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Figure 13. A comparison between (a) the tensile strength and compressive strength (*), and (b) the
ductility of the SLM-fabricated AMCs/TMCs and their monolithic alloys in CNT-Al4C3/AlSi10Mg [70],
TiB2/AlSi10Mg [72], Gr-Al4C3/AlSi10Mg [73], Al4C3/AlSi10Mg [68], Al4SiC4-SiC/AlSi10Mg [74],
Nano-TiB2/AlSi10Mg [56], TiB/Ti-6Al-4V [79] and TiB-TiC/Ti-6Al-4V [79] systems. The orientation of
samples is as YZ in [70], XZ in [73], and XY in [79] and [72], as schematically shown in (a). Note:
samples do not have the same dimensions.

The strengthening of MMCs is determined by the contribution of direct and indirect strengthening
mechanisms. While the direct strengthening is concerned with the load transfer from the matrix
to reinforcements, the indirect one refers to the matrix strengthening caused by the presence of
reinforcements [2]. By acting as barriers to the movement of dislocations, the reinforcements
incorporated into the matrix restrain its local micro-deformation and consequently improve the
strength [103,108–110]. The amount of increment in the strength of discontinuously reinforced MMCs
is influenced by some variables, including the type, size, shape, dispersion state, and volume fraction
of reinforcements. Indirect strengthening mechanisms involved in SLM-processed MMCs could be
described as follows:

• Matrix grain refinement: The rapid cooling rates associated with the SLM process lead to
significant grain refinement [95]. In the case of MMCs, the reinforcements can further refine
the microstructure of the matrix by acting as preferential nucleation sites and grain growth
inhibitors [2]. Due to the significant role of grain boundaries on the movement of dislocations, the
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increased fraction of grain boundaries obtained by grain refinement elevates the plastic deformation
resistivity and consequently improves the strength of the material [111]. The reinforcing particles
can also reduce the anisotropy in microstructure and mechanical properties [112]. As shown
in Figure 15, the TiB2 reinforcing particles have remarkably reduced the anisotropy in the
microstructure and texture of TiB2/AlSi10Mg composites. Compared to the relatively coarse
columnar grain structure, strong <100> fiber orientation texture and the anisotropy in the
mechanical properties for the AlSi10Mg alloy, the nano-TiB2 reinforced AMCs have shown
equiaxed grains, no preferred crystallographic texture and significantly reduced anisotropy in
mechanical properties [72].

• Solid solution strengthening: Due to the non-equilibrium nature of the process, the solution limit
of alloying elements into the matrix can be extended, which favors a solid solution strengthening
mechanism [113]. Compared to the substitutional alloying elements, the larger size misfit provided
by interstitial alloying elements can generate significantly stronger obstacles for the movement
of dislocations, leading to higher levels of solid solution strengthening [114]. Solid solution
strengthening mechanisms have been reported in several research studies related to AM of
MMCs [115–120].

• Enhanced dislocation density: The dislocations generated in the SLM-processed parts have
various resources, including multiple reheating thermal cycles caused by the layer-wise nature
of this process as well as the difference between the CTE and elastic modulus of reinforcements
and the matrix. Although the dislocations generated by repeated reheating cycles are evident
in all AM processes, those induced by the mismatches in CTE and elastic modulus are features
of composites [2]. To accommodate these mismatches, geometrically necessary dislocations are
generated in the vicinity of the reinforcement/matrix interface (Figure 14a). The increase in the
density of dislocations during the deformation of MMCs leads to higher work hardening rates
and consequently results in improved strength (Figure 14b) [73].
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Figure 15. Electron backscattered diffraction (EBSD) inverse pole figure (IPF) maps of SLM-processed:
(a), (b) non-reinforced AlSi10Mg, and (c), (d) 3.4 vol.% TiB2/AlSi10Mg composite. (a) and (c) are the
side-view while (b) and (d) are the top-view. The black arrows in (d) and (e) point to the TiB2 reinforcing
particles [72].

Despite the beneficial effects of nano-sized reinforcing particles on hardness, strength, and ductility,
the addition of relatively high amounts of large-sized reinforcing particles can deteriorate the mechanical
properties. Figure 16 shows the fracture surface of SLM-processed 15 wt.% SiC/AlSi10Mg composite
powder in which the starting SiC particles had an average size of ~46 µm. Although the developed
AMCs were 47% harder than the non-reinforced counterpart, both the ultimate tensile strength and
elongation to fracture were found to be significantly lower due to the premature failure initiated from
the internal porosities and large-sized un-reacted SiC particles existing in the microstructure [74].
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Figure 16. (a) and (b) Fracture surface of the SLM-processed 15 wt.% SiC/AlSi10Mg composite system
subjected to tensile testing showing un-reacted SiC particles and porosities [74].

4.3. Wear Properties

MMCs typically benefit from better wear resistance compared to non-reinforced counterparts [121].
The wear resistance of AM-fabricated components can be evaluated in both macro and nano scale. The
pin-on-disk method and macro-scratching are the most frequently used techniques for macro-scale
characterization of wear while nano-scratching performed by nano-indentation and atomic force
microscopy (AFM) equipment are also employed for nano-scale analysis of wear. The wear properties
of SLM-fabricated composites are affected by the type, size, and volume fraction of reinforcements.
As shown in Figure 17, the SLM-processed TiC/AlSi10Mg composites are associated with the lower
wear rate and coefficient of friction (COF) than the non-reinforced AlSi10Mg part. Additionally,
the composites containing TiC particles with two different sizes show wear properties close to each
other. However, some research studies are reporting the significant dependence of wear resistance on
the size of reinforcing particles [102]. Owing to the low densification level and the microstructural
inhomogeneity, MMCs containing relatively coarse reinforcing particles are associated with the higher
wear rate and COF [102]. In cases where the MMC microstructure contains un-melted particles
with a poor interfacial bonding with the matrix, separation of these particles during sliding can
plow the surface and further decrease the wear resistance. The higher densification level, improved
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microstructural homogeneity, and enhanced hardness associated with MMCs with fine reinforcing
particles are the factors that improve the wear resistance [102].
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as well as 15 wt.% TiC/AlSi10Mg composite systems with two different TiC particle size [53].

The effect of reinforcement volume fraction on wear properties of SLM-processed MMCs has
been investigated in a few research studies. By increasing the hardness and decreasing the ductility,
the increase in the reinforcement content up to a critical amount can lower the plastic deformation of
the matrix and consequently improve the wear resistance [122]. However, fragmentation of brittle
reinforcements and cracking in MMCs containing relatively high reinforcement content may prohibit
further improvement or even decrease the wear resistance.

When it comes to MMCs with carbonaceous reinforcements (e.g., CNT and graphene), the
reinforcements incorporated into the composite structure can improve the wear resistance due to
their self-lubricating property [123,124]. During wear sliding of such composites, the easy formation
of interlayer sliding and subsequent reduction of friction act to decrease the wear rate and COF
(Figure 18).
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5. Conclusions

In this review, the feasibility of utilizing SLM-fabricated TMCs and AMCs in the aerospace
industry is explored. To meet the requirements of the aerospace industry, the manufactured composites
were characterized in terms of densification level, surface quality, hardness, strength-to-weight ratio,
ductility, and wear resistance. Compared to the non-reinforced state, MMCs generally show an inferior
densification level. These are believed to be the major drawbacks limiting the widespread application
of MMCs, which can be resolved through employing suitable post-processing treatments such as
HIP and machining. On the other hand, improved mechanical properties can be achieved by proper
selection of the reinforcing particles. While the addition of the micro-scale reinforcing particles acts to
enhance the hardness, wear resistance, and compressive strength, it deteriorates the ductility. When it
comes to MMCs benefiting from nano-scale reinforcements, not only the hardness and strength but also
the ductility can be improved. The lessons learned from this study can help to remove the obstacles
facing the manufacturing of high-performance MMCs applicable in the aerospace industry.



Aerospace 2020, 7, 77 33 of 38

Author Contributions: E.F. and A.G. writing—original draft preparation, E.F. and A.G. writing—review and
editing, M.E. supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fereiduni, E.; Yakout, M.; Elbestawi, M. Laser-Based Additive Manufacturing of Lightweight Metal
Matrix Composites. In Additive Manufacturing of Emerging Materials; Springer Science and Business Media:
Berlin/Heidelberg, Germany, 2018; pp. 55–109.

2. Fereiduni, E.; Elbestawi, M. Process-Structure-Property Relationships in Additively Manufactured Metal
Matrix Composites. In Additive Manufacturing of Emerging Materials; Springer Science and Business Media:
Berlin/Heidelberg, Germany, 2018; pp. 111–177.
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