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Abstract: Nowadays, technologies have a massive impact on the design of avionic systems, even
for the conservative space industry. In this paper, the single event effect (SEE) characterization
of a highly integrated and radio frequency (RF) agile transceiver is being presented which is an
outstanding candidate for future radio systems in NewSpace applications and space avionics. The
device being investigated allows programmable re-configuration of RF specifications, where classical
software-defined radios (SDR) only define an on-demand re-configuration of the signal processing.
RF related configurations are untouched for common SDR and developed discretely by the specific
application requirements. Due to the high integrity and complexity of the device under test (DUT),
state-of-the-art radiation test procedures are not applicable and customized testing procedures need
to be developed. The DUT shows a very robust response to linear energy transfer (LET) values up to
62.5 MeV.cm2/mg, without any destructives events and a moderate soft error rate.
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1. Introduction

The Institute of Space System of the German Aerospace Center (DLR) is recently developing
a highly integrated multi-band software-defined radio (SDR) platform for space applications with
a radiation-tolerant approach [1,2]. State-of-the-art SDR systems in space avionics are typically
limited to the re-configuration of the signal processing algorithms in the digital domain. Radio
frequency (RF) relevant parameters, such as the RF bandwidth, mixing frequency, or the sample rate
for analog to digital conversion (and vice versa) are specified by the operated application of these
SDRs. New radio frequency integrated circuit (RFIC) technology designed for terrestrial applications
(e.g., mobile services—5G) allows a software-based re-configuration of RF front-end related properties,
but investigations about their behavior in a radiation environment are required for their utilization
in space avionics. In previous works, the selected RFIC device has already been tested for total
ionizing dose (TID) effects [2,3] and a characterization of proton-induced single event effects (SEE) has
been performed [4]. In this paper, the heavy ion-induced SEE characterization of this RFIC device is
presented. In Section 2, the device under test (DUT), the highly integrated and RF agile transceiver is
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presented. The test conditions and requirements are presented in Section 3 and the test procedures
and test setup are given in Section 4. The test results of this SEE characterization under heavy ion are
described in Section 5 and are later discussed in Section 6. The conclusion is made in Section 7.

2. The Highly Integrated Radio Frequency (RF)-Agile Transceiver

The selected RFIC is the AD9361, a RF-agile transceiver from Analog Devices that has been
evaluated as an excellent candidate for future space avionic radio systems. The AD9361 device is a 2 ×
2 RF transmitter and receiver including up to six individual RF front-ends, a mixed-signal baseband
(BB) unit with an integrated frequency synthesizer, using a selectable low voltage differential signaling
(LVDS) high speed digital interface. All functionalities of this device can be re-configured by software
over a serial peripheral interface (SPI). A functional block diagram of the AD9361 is presented in
Figure 1.
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Figure 1. AD9361 functional block diagram [5].

The different functions of the DUT are described in more detail in the following sections. Further
information about the specification and performance of the selected DUT can be taken from the data
sheet in [6].

2.1. Device Packaging and Chip Technology

The AD9361 is encapsulated in a 10 × 10 × 1.7 mm3, 144-pin chip scale package ball grid array
housing. The semiconductor die is based on a 65 nm complementary metal-oxide-semiconductor
(CMOS) process. A side-view X-ray picture of the device in Figure 2 shows that the die is located
faced-up on a printed circuit board (PCB) stack interfaced with bond-wires.
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The FIB cross section in Figure 4 shows that a 7-metal-layer is used by the manufacturer. The 
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Figure 4. Focused ion beam (FIB) cross section of the die with the measured thickness. 

Figure 2. Side view X-ray image of the AD9361 [4].

The molding compound is based on silica (86.20%), epoxy resin (6.00%), phenol resin (6.00%),
metal hydroxide (1.50%), and carbon black (0.30%) [7]. Due to the plastic encapsulation, the devices
need to be opened to test under heavy ion irradiation. Figure 3 shows the etched DUT with the exposed
die surface and its measured dimensions. The die itself has a size of approximately 4410 × 4800 µm2.
The die has several metallization layers above the active regions (sensitive volume) which can be
illustrated in a cross section view with a focused ion beam (FIB).
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Figure 3. Picture of the acid-etched device under test (DUT) with exposed die and dimensions.

The FIB cross section in Figure 4 shows that a 7-metal-layer is used by the manufacturer. The
layers are made of copper and have a thickness from approximately 300 to 900 nm. The dielectric
material separating the metallization layers is silicon dioxide and has a thickness ranging from 550 nm
to 6.68 µm.
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The total thickness of those materials depends on the number of layers being used which varies
by the local position of the die. The layer thickness and its material information become important to
estimate the effective linear energy transfer (LET) on the active region when exposing the DUT with the
heavy ions. The influence of the metallization layers to the LET in the active region will be discussed
in more detail in Section 6.6.

2.2. Test Setup Preparation and Sample Information

For the heavy ion irradiation test, a specific test board has been developed to support accurate data
processing of the DUT. The test board presented in Figure 5 consists of a Xilinx field programmable
gate array (FPGA), a set of non-volatile and volatile memories, digital interfaces, power regulation
devices, and the AD9361 (red frame). The data is processed by the FPGA in combination with two
double data rate synchronous dynamic random access memory and is then streamed via Ethernet to
the external test setup. Dedicated test points are provided to monitor the voltage and current behavior
of the DUT.
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The test board has been designed and tested for continuous operation under vacuum since the
chosen test facility does not support heavy ion irradiation in air, mainly due to the limited heavy ion
energy and range. To retrieve more accurate statistics, two boards have been manufactured to irradiate
two samples individually. Table 1 shows the board and DUT sample information.

Table 1. Part and test information table.

Sample
Number

Test Board
ID

Full Part
Number

Lot Date Code
(LDC)

Part Serial
Number

Fabrication
Site

1 01 AD9364BBCZ #1350 2769606.1 Singapore
2 02 AD9364BBCZ #1350 2769606.1 Singapore

The device is being manufactured only on a single fabrication site and Analog Devices provides a
product notification service that informs about changes in the process. Based on the lot date code and
the product notification service of analog devices, it can be ensured that both samples are from of the
same lot and similar test results can be expected.
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3. Test Conditions and Requirements

3.1. Test Site

The selected test site for the heavy ion irradiation test campaign is the heavy ion facility (HIF)
of the Cyclotron Resource Centre of the Catholic University of Louvain (UCL). The ion beams are
produced with the UCL cyclotron Cyclone-110. A coupling of the cyclotron with an electron cyclotron
resonance ion source working at 17.3 GHz produces a heavy ion cocktail with ~9.3 MeV/nucleon
(M/Q = 3.33). The 25 mm diameter beam is provided with homogeneity better than 10%. In Table 2,
the provided and used types of ions in the cocktail with their energy on device range in silicon and
LET is presented.

Table 2. Ion, linear energy transfer (LET), range and flux based on the Catholic University of Louvain
(UCL) heavy ion facility (HIF) specification.

Ion Type Ion Element

Energy on
Device

Range on
Device (Si) LET on Device Adjustable Flux

(MeV) (um) (MeV.cm2/mg) (#/cm2/s)

Neon 22Ne7+ 238 202 3.3 <1 × 101 to 1.5 × 104

Chrom 53Cr16+ 505 105.5 16.1 <1 × 101 to 1.5 × 104

Krypton 84Kr25+ 769 94.2 32.4 <1 × 101 to 1.5 × 104

Rhodium 103Rh31+ 957 87.3 46.1 <1 × 101 to 1.5 × 104

Xenon 124Xe35+ 995 73.1 62.5 <1 × 101 to 1.5 × 104

The HIF is operated in vacuum and supports an XY-table that can be moved remotely. The area
that could be centered in the beam is about 230 × 230 mm2. The vacuum chamber supports numerous
types of flanges to interface the DUT and test board.

3.2. Test Requirements

The selected test requirements are primarily referred to the European space components
coordination (ESCC) test method and guidelines No. 25100 [8]. Due to the complexity of the DUT
and its highly integrated functional architecture, a tailoring of the ESCC No. 25100 was considered.
Both DUTs have been tested in two separated test campaigns. During the first campaign, the major
objective was observing critical SEEs, such as single event latch-ups (SEL) and other destructive events.
Therefore, both DUTs have been irradiated to target fluence of 1 × 107 #/cm2 with an LET of up to 62.5
MeV.cm2/mg. Using different incident/tilt angles increases the effective LET of up to 125 MeV.cm2/mg
(Xe, tilt–pitch angle: 60◦).

In a second test campaign, the target fluence and the average flux has been reduced to investigate
the soft error response, such as for single event upsets (SEU) in the device functional registers and
recoverable single event functional interrupts (SEFI).

4. Test Setup and Procedures

4.1. Test Setup

The setup presented in Figure 6 consists of a command and control (C&C) server running Linux
and the DUTs with a corresponding secondary reference device (REF) outside the irradiated area to
send and receive RF data. Both DUTs are physically interconnected via coax cables for RF transmission.
The server connection to both devices is realized via Ethernet and a serial interface for debugging
purposes. The test boards with the DUTs and the beam-shutter are supplied and controlled with a
remote-controlled power supply unit.
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A program runs on the test board to check the DUT functional registers, to detect failures in the
device configuration and receive/transmit RF data. Both programs are started remotely from the C&C
server, which is in control of the whole test procedure.

4.2. Failure Classification

Failures are generally categorized in potential destructive and non-destructive events. For the
DUT, SELs are the most critical event that could destroy the device permanently. Non-destructive
events are more likely and separated into different types.

4.2.1. Upsets in the Device Functional Registers

Upsets in the device functional registers are detected as SEUs and multiple bit upsets (MBU). The
devices consist of an 8-bit register map (0x000 Hex to 0x3F6 Hex) that can be controlled via SPI. Multiple
bits and registers have a relationship to each other to serve a particular function (e.g., registers used to
configure automatic gain control). Thus, it is expected to observe SEFIs due to SEUs. Some registers
have a continuously floating value (e.g., chip temperature) that needs to be masked for the register
scrubbing process.

4.2.2. Single Event Functional Interrupts

SEFIs are separated into re-configurable functional interrupts and those where a device
re-initialization is required. A re-configuration is performed by rewriting the initial functionality back
to the device via SPI. In the case that a simple re-configuration fails, the device can be re-initialized
by triggering a dedicated physical pin of the DUT. This re-initialization process takes a couple of
microseconds and avoids a full reboot process of the test board (~25 s).

4.2.3. Corrupted Transmitted and Received RF Data

The RF data being transferred from and received by the DUT is digitized and evaluated in
real-time. Expected failures in the digital in-phase/quadrature (IQ) data are glitches or single event
transients (SET) that could be generated by SEEs in the integrated analog digital converter (ADC) or
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digital to analog converters (DAC) in the DUT. Moreover, a total corruption of the IQ data is expected,
for example, due to malfunctions in the synthesizer. Transients or glitches are categorized as Soft IQ
SEFI data and a total loss of the expected data is defined as Hard IQ SEFI.

4.3. Test Procedures

The test procedure flow chart for the AD9361 heavy ion SEE characterization is presented in
Figure 7. The first step in this test procedure is the initialization of the DUT, where the correct
configuration for the RF transmission is set. Secondly, the RF data is pulled from the DUT and its
corresponding REF device to generate an IQ data reference data set (curve). This curve is then used
during the test-run to check whether the RF data is still valid or not. If everything is set on the DUT, the
test gets started with the beam-shutter opening. The supply voltages and current values are monitored
with an ADC module that interrupts the test run and closes the beam shutter once an SEL or high
current state is detected. The test board is then power cycled and will reboot to the nominal state.
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Figure 7. AD9361 heavy ion test flow chart.

The recent state of the functional registers and the driver values get pulled from the device every
second and are compared to the initial set of data to evaluate SEUs and SEFIs. The RF data is dumped
via Ethernet onto the C&C server where it is checked and compared with the generated reference curve
for IQ data SEFIs.

When an error in the RF data is detected, the beam is shut off and the test is halted. The C&C
control software then performs a re-initialization of the DUT and firstly verifies the correctness of the RF
data before the beam shutter is being released and the run is continued. In case that the re-initialization
failed three times in a row, the test board is power-cycled and one has to manually restart the test
software on the test board. The RF data being transmitted is kept simple with a sinewave tone to
evaluate the SEFI response as easy as possible.
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To create a reference curve from the RF data, first the periodicity and height are measured. Onto
this, a margin of 10% is added to the period and 50% to the maximum of the curve. With this curve,
incoming data can be compared in real time. Multiple zero crossings may be found due to the ADC
quantization noise. Therefore, a margin of three bits has been applied. If the data lay not within the
boundaries, a counter starts up to check if the error is continuous over at least three samples, before it
is officially counted as an IQ SEFI.

A reference curve with the upper (red) and lower (blue) boundary is presented as in Figure 8.
As an example for a Soft IQ SEFI, the corrupted sinewave (black) is presented as well. The evaluated
sinewave glitches shortly below the lower boundary and below zero but goes back to the initial
waveform without any external interaction.
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Soft IQ single event functional interrupts (SEFI).

5. Experimental Results

The experimental results are presented as a cross section vs. LET function for each individual
classified failure. Uncertainties of the cross sections are calculated according to the recommendations
given in the ESCC standard [8] with a confident level of 95%, and are highlighted with error bars in
the corresponding figures. If not specified, the LETs out of Table 2 have been selected with a nominal
incident angle of 0◦. The influence of pitch angles is discussed separately in Section 6.5. For the
cross section illustrations in Figures 9–12, a Weibull fitting curve has been added to evaluate the LET
threshold and cross section saturation. The corresponding fitting curve parameters are given in the
figure captions.
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5.1. Destructive Events

No destructive events have been observed during both test campaigns with a maximum LET of
62.5 MeV.cm2/mg neither at nominal incident angle, nor at an effective LET of 125 MeV.cm2/mg with a
selected pitch angle of 60◦ on Xe. The target fluence for all runs was 1 × 107 #/cm2. In rare cases, high
current states were observed in correlation to SEUs in the configuration registers. Those effects are
discussed in Section 6.

5.2. Functional Register Upsets

SEU and MBU events have been observed for all selected LETs in a range of 3.3 to 62.5 MeV.cm2/mg.
The target fluence varies between 2 × 106 and 1 × 107 #/cm2 and depends on the SEU/MBU response
and the chosen flux. The numbers of observed SEUs varies between 100 and 450 events, increasing
with the LET. For MBUs, 11 to 50 events have been counted. The corresponding cross sections for SEUs
(a) and MBUs (b) are presented in Figure 9. The saturation cross section is ~2 × 10−4 cm2/device for
SEUs, ~1.5 × 10−5 cm2/device for MBUs, respectively. The LET threshold for both events is close to
0 MeV.cm2/mg.

5.3. Single Event Functional Interrupts

Figure 10 shows the cross sections of observed SEFIs for (a) re-configuration and (b) re-initialization
failure recovery processes.

The target fluence depends on the LET and the SEFI response and varies between 3 × 106 and
1 × 107 #/cm2. The saturation cross section SEFIs is ~1 × 10−5 cm2/device for re-configuration and
~1 × 10−6 cm2/device for re-initialization SEFIs, respectively. In general, the SEFI response that requires
a re-initialization of the device was very low and has only been observed 1–3 times per run. Thus, the
LET threshold differs for both DUTs (31 to 45 MeV.cm2/mg). The LET threshold for re-configuration
SEFIS is close to 0 MeV.cm2/mg. Further testing to higher target fluences would have been required
but was not considered during this test campaign.

5.4. Corrupted Transmitted and Received RF Data

5.4.1. Hard IQ SEFI

Hard IQ SEFIs are counted if the expected RF data is permanently lost or corrupted. Both the
receiver (RX) and the transmitter (TX) chains were separately monitored and the cross sections for
hard IQ SEFIs are presented in Figure 11a for RX and Figure 11b for TX.
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The cross sections for both DUTs are similar and having a saturation of roughly 1× 10−5 cm2/device.
The statistical distribution for RX and TX failures is almost equal.

5.4.2. Soft IQ SEFI

Soft IQ SEFIs are counted when the expected signal deviates from the references data set
but recovers to the initial waveform without any external interaction such as re-configuration or
re-initialization of the DUT. Those effects can be indicated as SETs or glitches in digitized data. The
cross section results are presented in Figure 12a for RX and Figure 12b for TX.

Glitches and SETs were observed much more often compared to hard IQ failures but are typically
less critical and do not require a re-initialization process for the devices. Slightly more soft IQ SEFIs
have been observed in the RX domain, resulting into a higher cross section compared to the soft IQ
SEFIs in TX. It is assumed that the failure distribution would trend into an equal result if the numbers
of failures observed would have been increased.

6. Analysis and Discussion

6.1. High Current States

Even if no SELs or other destructive events have been observed for all tested LETs, some high
current states have been monitored, which are mostly based on SEUs in the register configurations. An
example of such high current states is presented in Figure 13a. As can be seen, the measured current
increases from a nominal state of 1.1 Ampere on rail B to 3.2 Ampere. At the same time, several SEUs
have been observed and the abnormal behavior could be reproduced in a post-test routine by changing
the same registers without being affected by heavy ion irradiation.
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In Figure 13b, several failures can be seen in the current consumption of the DUT. SEUs can
also lead to a lower current value which could interrupt the function of the DUT (see Section 6.4).
Furthermore, recovery processes by a re-initialization are shown multiple times.

6.2. SEFIs in the IQ Data

6.2.1. Soft IQ SEFIs

Soft IQ SEFIs have been observed in different ways, from simple SEUs in the ADC/DAC up to
longer glitches in the IQ data.

In Figure 14, an example for an SEU in the ADC data of the receiver channel 1 is presented,
recorded in run 1 with Ne at 0◦ pitch angle. A long-termed failure of the ADC data (glitch) is presented
in Figure 15. It is assumed that this malfunction is coming from the synthesizer or phase locked loop
(PLL) of the DUT since the ADC values do not get stuck continuously. That type of failure would be an
indicator for a failure inside of the ADC. Nevertheless, both types of failures have been observed for
all runs, independently of the LET and selected pitch angle.
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Soft IQ SEFIs are typically not critical since they can only increase the bit error rate (BER) for
certain applications. Including error correction codes (e.g., block codes) in the specific application or
data transmission can be a valid solution to mitigate the effects of soft IQ SEFIs.

6.2.2. Hard IQ SEFIs

Hard IQ SEFIs have been observed for all selected LETs. The total number of detected hard
IQ SEFIs is about 50% of the recorded Soft IQ SEFIs. Two examples of observed hard IQ SEFIs are
presented in Figures 16 and 17.Aerospace 2019, 6, x FOR PEER REVIEW 13 of 19 
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which still contains its initial frequency.

For Figure 16, the transmitted IQ data from the DUT to the REF device has crashed and would
result into a non-operating application. A re-initialization of the DUT recovers the functionality of the
device and its application.

The SEFI presented in Figure 17 shows an increased value/power of the received IQ data. This
type of SEFI correlates with an observed change in the driver state, where the receiver gain has
been increased by about 3 dB (factor of two). The C&C control software recognized both type of
events, the corrupted IQ data and the driver state change and successfully recovered these events by a
re-configuration and also with a re-initialization process.
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6.3. SEU and Functional Register Dependencies

Assuming a static random-access memory (SRAM)-based register structure, an equal distribution
of SEUs would be expected for all registers in an infinite time. In Figure 18, the accumulated SEUs vs.
functional registers are presented for different runs on DUT 1.Aerospace 2019, 6, x FOR PEER REVIEW 14 of 19 
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Figure 18. Accumulated SEUs vs. monitored functional registers for DUT 1 on four runs (Cr 0◦, Rh 0◦,
Rh 43◦, and Xe 0◦).

The accumulated SEU distribution is non-equal and particular registers showing a very high
SEU response. This behavior is explained by the relationship of multiple registers and bits to each
other as already noticed in the error classification section. Thus, single SEUs can cause further
non-radiation related upsets. Hence, the effective numbers of upsets in the functional registers caused
heavy ion-induced SEU is lower than recorded by the register scrubbing process and presented in the
results. Nevertheless, the relationship is fixed by the DUT design and thus, this SEU propagation
is unavoidable.

In the worst case, the SEU propagation could lead into a snow ball effect, where such high SEU
values are reached as seen in Figure 19 on register 372 dez (>45 SEUs per run). In Figure 19, the
accumulated SEUs for the Xe 0◦ run are compared to the functional register dependencies.
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DUT 1 with Xe 0◦.

As can be seen, there is a match of the spikes of the dependencies and the observed and accumulated
SEUs, which confirms the assumption of SEU propagations in the functional registers.

6.4. Correlation of SEUs to IQ SEFIs

It is assumed that the effect of the SEU propagation in the functional registers also affected the
observed IQ SEFIs. Since the SEUs in the registers are just monitored and not restored to the initial
values, except a driver state has been changed or the IQ data becomes invalid, only hard IQ SEFIs
could be affected by SEUs. Table 3 shows the counted events for SEU and Hard IQ SEFIs and their
ratio for all taken runs on DUT 1. Similar results are observed for DUT 2.

Table 3. SEU vs. Hard IQ SEFIs for DUT 1.

Ion LET
(MeV.cm2/mg) SEUs (#) IQ Hard SEFIs

(TX + RX) (#)
SEFI/SEU Ratio

(%)

Ne 3.30 93 6 + 8 15.1
Cr 16.00 375 6 + 15 5.6
Kr 32.00 395 9 + 14 5.9
Rh 46.00 422 6 + 8 3.3
Xe 62.50 454 10 + 14 5.3

The average SEFI to SEU ratio is about 5%. Post-test analyses have shown that about 10% of all
functional registers (and their propagation) have been responsible for Hard IQ SEFIs. Those registers
could be specifically monitored and if an SEU is detected, a blind re-initialization could be performed
without verifying the IQ data.

6.5. Tilt Angle Dependicies

Due to the fact that particles appear from any direction in space, the SEE responses were evaluated
for different tilt (pitch) angles (0◦, 43 . . . 45◦ and 60◦). It has been shown in several works that the tilt
angles can increase cross section, independent of the effective LET [9–11]. Additionally, NASA Godard
Flight Center has shown in [12] that the SEFI response is increased with the tilt angle for the AD9364,
which is basically the same device here studied, but just limited in 1 × 1 RX/TX configuration.
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The observed SEU cross section for different ions and tilt angles affecting an effective LET of
~62.5 MeV.cm2/mg is presented in Figure 20.
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Compared to [12], no significant increased cross section could be observed, whether for DUT
1 or DUT 2. A slightly increased cross section can be seen for a 43◦ tilt angle on Rh. However, the
cross section is then again lower for Cr at 60◦. Thus, the results of [12] could not be confirmed for the
SEU response.

In Figure 21, the SEFI response for RX and TX IQ total failures (hard and soft IQ SEFIS combined)
are represented for 0◦ and 43◦. A third angle configuration of 60◦ has not been evaluated, since no
higher cross section has been observed for the SEUs in the functional registers. As earlier shown, the
observed SEFI cross sections differs slightly, depending on the selected tilt angle, but decreases with
increased tilt angle. This is an opposite behavior as observed for the SEUs and is explained by the
SEFI to SEU ratio as discussed in Section 6.4. However, like for SEUs, no tilt angle dependency can be
assumed for IQ SEFIs.
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6.6. LET on Active Region

Due to the different (metallization) layers, it could be possible that the LET in the active region
might differ from the LET provided on the DUTs surface (Table 2). For this reason, a model has
been developed in SRIM 2013 [13] to evaluate the effective LET in the active region. Due to the
inhomogeneous use of the metallization layers, two scenarios are summed: (1) with all seven layers
and their insulator material in between and (2) without any metallization above the sensitive volume.
The layer thicknesses are derived from the FIB cross section of Figure 4. Simulations were made for all
tested ion species to verify the LET and range in the die. The narrow metallization layers (3–7) have
been combined to a single layer of copper. The simulation results of the stopping power in the material
are presented in Figure 22 for Xe without metallization layers and in Figure 23 with all layers included.
For each simulation, a long-range view (a) and a detailed view on the active region (b) are presented.Aerospace 2019, 6, x FOR PEER REVIEW 17 of 19 
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As seen for the non-metallization case, the ion range becomes longer compared to the metallization
configuration until it stops. The LET in the active region is about 1500 eV/Angstrom. This equals a LET
of 64.4 MeV.cm2/mg in silicon, which is a similar LET as given at the device surface.

Figure 23 shows the ion track and stopping power for the full layer configuration. In the copper
metallization, the simulated LET increases to about 5000 eV/Angstrom.

The ion track for Xe becomes shorter compared to the non-metallization case and stops at about
8.2 µm. The initial ion range for Xe in silicon is usually about 73 µm (refer Table 2). In this case, the
track is long enough to reach the active region of the die and induces a stopping power of about
1500 eV/Angstrom which is similar to the non-metallization case and results, also into a LET of
64.4 MeV.cm2/mg. Based on these analyses, it can be assumed that the metallization structure has no
effect to the LET in the active region of the die.

6.7. Error Rate Prediction for Reference Missions

Based on the observed SEE response, an error rate prediction analysis is performed for two
reference missions: (1) low earth orbit (LEO), 850 km sun-synchronous orbit with a life-time of 2 years
and (2) geostationary orbit (GEO) for 15 years life-time. A 1 g/cm2 solid aluminum sphere (shielding)
is assumed for both reference missions. For the error rate prediction, the OMERE software (version
5.2.4) has been used [14]. The results for nominal conditions are presented in Table 4.

Table 4. Error rates for two references missions and the observed SEEs (launch date: 1st December
2019) under nominal conditions.

Orbit SEE Type Heavy Ion SEE Rate
(failure/device/day) Years for Failure

LEO SEU 3.98 × 10−4 6.88
GEO SEU 1.17 × 10−3 2.34
LEO SEFI re-config. 2.22 × 10−5 123
GEO SEFI re-config. 6.43 × 10−5 43
LEO Hard RX IQ SEFI 1.26 × 10−5 217
GEO Hard RX IQ SEFI 3.77 × 10−5 73
LEO Hard TX IQ SEFI 1.55 × 10−5 176
GEO Hard TX IQ SEFI 4.64 × 10−5 61

Error rates for worst case conditions (CREME96 model, one day solar flare) are presented in
Table 5.

Table 5. Error rates for two references missions and the observed SEEs (launch date: 1st December
2019) for worst case conditions (one day solar flare).

Orbit SEE Type Heavy Ion SEE Rate
(failure/device/day) Hours for Failure

LEO SEU 3.06 × 100 7.78
GEO SEU 1.33 × 101 1.8
LEO SEFI re-config. 2.02 × 10−1 120
GEO SEFI re-config. 8.79 × 10−1 27.4
LEO Hard RX IQ SEFI 6.50 × 10−2 370
GEO Hard RX IQ SEFI 2.84 × 10−1 85
LEO Hard TX IQ SEFI 6.19 × 10−2 387
GEO Hard TX IQ SEFI 3.11 × 10−1 77

7. Conclusions

In this paper, the AD9361, a highly integrated RF-agile transceiver device has been tested under
heavy ion irradiation. The DUT is an excellent candidate for future radio systems in NewSpace



Aerospace 2020, 7, 14 19 of 20

missions since it allows the integration of multiple RF applications into a single radio platform which
reduces the overall mass and power consumption. Due to the DUTs complexity, a straight forward
heavy ion radiation test procedure is not applicable and a specific test methodology has been designed
successfully. The proposed test methodology could be applicable to other devices with such complex
integrity, specifically related to the RF and digital processing domain. However, it still needs to be
considered to adapt or optimize these test procedures for each individual DUT or even system under
test. The DUT has been characterized in a high level of detail to its behavior under irradiation and
shows a very robust response. Error rate prediction analysis shows that the device will have to recover
from a fault only every 30 h, even for the worst case conditions in a solar flare. On nominal conditions,
it takes years until a failure can be expected. Thus, even under radiation conditions, the DUT is
definitely a candidate for long-term earth observation and also deep space missions.
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