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Abstract: Convolutional Neural Networks combined with autonomous drones are increasingly seen
as enablers of partially automating the aircraft maintenance visual inspection process. Such an
innovative concept can have a significant impact on aircraft operations. Though supporting aircraft
maintenance engineers detect and classify a wide range of defects, the time spent on inspection can
significantly be reduced. Examples of defects that can be automatically detected include aircraft
dents, paint defects, cracks and holes, and lightning strike damage. Additionally, this concept could
also increase the accuracy of damage detection and reduce the number of aircraft inspection incidents
related to human factors like fatigue and time pressure. In our previous work, we have applied a
recent Convolutional Neural Network architecture known by MASK R-CNN to detect aircraft dents.
MASK-RCNN was chosen because it enables the detection of multiple objects in an image while
simultaneously generating a segmentation mask for each instance. The previously obtained F1 and
F2 scores were 62.67% and 59.35%, respectively. This paper extends the previous work by applying
different techniques to improve and evaluate prediction performance experimentally. The approach
uses include (1) Balancing the original dataset by adding images without dents; (2) Increasing data
homogeneity by focusing on wing images only; (3) Exploring the potential of three augmentation
techniques in improving model performance namely flipping, rotating, and blurring; and (4) using a
pre-classifier in combination with MASK R-CNN. The results show that a hybrid approach combining
MASK R-CNN and augmentation techniques leads to an improved performance with an F1 score of
(67.50%) and F2 score of (66.37%).

Keywords: aircraft maintenance inspection; anomaly detection; defect inspection; convolutional neural
networks; Mask R-CNN; generative adversarial networks; image augmentation

1. Introduction

1.1. Automated Aircraft Maintenance Inspection

Automated aircraft inspection basically aims at automating the visual inspection process normally
carried out by aircraft engineers. It aims at detecting defects that are visible on the aircraft skin
which are usually structural defects [1]. These defects can include dents, lightning strike damage,
paint defects, fasteners defects, corrosion, and cracks, just to name a few. Automatic defect detection
can be enabled by using a drone-based system that can scan the aircraft and detect/classify a wide
range of defects in a very short time. Other alternatives would be using sensors in a smart hangar or at
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the airport apron area. Automating the visual aircraft inspection process can have a significant impact
on today’s flight operations with numerous benefits including but not limited to:

• Reduction of inspection time and AOG time: The sensors either on-board a drone or in a smart
hangar can quickly reach difficult places such as the flight control surfaces in both wings and the
empennage. This in turn can reduce the man hours and preparation time as engineers would
need heavy equipment such as cherry pickers to have more scrutiny. The inspection time can
be even further reduced if the automated inspection system is able to assess the severity of the
damage and the affected aircraft structure with reference to both aircraft manuals (AMM and
SRM), and recommend the course of action to the engineers. Time savings on inspection time
would consequently lead to reductions of up to 90% in Aircraft-On-Ground times [2].

• Reduction of safety incidents and PPE related costs: Engineers would no longer need to work at
heights or expose themselves to hazardous areas e.g., in case of dangerous aircraft conditions
or the presence of toxic chemicals. This would also lead to important cost savings on Personal
Protective Equipment.

• Reduction of decision time: Defect detection will be much more accurate and faster compared
to the current visual inspection process. For instance, it takes operators between 8 and 12 h to
locate lightning strike damage using heavy equipment such as gangways and cherry-pickers.
This can be reduced by 75% if an automated drone-based system is used [3]. Such time savings
can free up aircraft engineers from dull tasks and make them focus on more important tasks.
This is especially desired given the projected need of aircraft engineers in various regions of the
world which is 769,000 for the period 2019–2038 according to a recent Boeing study [4].

• Objective damage assessment and reduction of human error: If the dataset used by the neural
network is annotated by a team of experts who had to reach consensus on what is damage and
what is not, then detection of defects will be much more objective. Consequently, the variability
of performance assessments by different inspectors will be significantly reduced. Furthermore,
human errors such as failing to detect critical damage (for instance due to fatigue or time pressure)
will be prevented. This is particularly important given the recurring nature of such incidents.
For instance, the Australian Transport Safety Bureau (ATSB) recently reported a serious incident
in which significant damage to the horizontal stabilizer went undetected during an inspection,
and was only identified 13 flights later [5]. In [1], it was also shown that the model is able to
detect dents which were missed the by experts during the annotations process.

• Augmentation of Novices Skills: It takes a novice 10,000 h to become an experienced inspector.
Using a decision-support system that has been trained to classify defects on a large database can
significantly augment the skills of novices.

1.2. Applications/Breakthroughs of Computer Vision

Computer vision is changing the field of visual assessment in nearly every domain. This is not
surprising given the rapid advances and growing popularity of the field. For instance, the error in
object detection by a machine decreased from 26% in 2011 to only 3% in 2016 which is less than human
error reported to be 5% [6]. The main driver behind these improvements is deep learning which had a
profound impact on robotic perception following the design of AlexNet in 2012. Image classification
has therefore become a relatively easy problem to solve given that enough data are available to training
the deep learning model.

Computer vision has been successfully applied in combination with drones in the civil
infrastructure domain. This approach allows operators to assess the condition of critical infrastructure
such as bridges and dams without the need for physically being there. The main aim is to automatically
convert image or video data into actionable information. Spencer et al. [7] provides a good
overview of recent applications that address the problem of civil infrastructure condition assessment.
The applications can be divided into two main categories. The first category is inspection and deals with
identifying damage in structural components such as cracks and corrosion [8] , and detecting deviations
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from reference images. The second category is monitoring what focuses on static measurement
of strain and displacement, as well as dynamic measurement of displacement for model analysis.
Shihavuddin et al. [9] developed a deep learning-based automated system which detects wind turbine
blade surface damage. The researchers used faster R-CNN and achieved a mean average precision
of 81.10% on four types of damage. Similarly, Reddy et al. [10] used convolutional neural networks
to classify and detect various types of damage on the wind turbine blade. The accuracy achieved
was 94.49% for binary classification and 90.6% for multi class classification. Makantasis et al. [11]
propose an automated approach to inspect defects in tunnels using convolutional neural networks.
Similarly, Protopapadakis et al. [12] present a crack detection mechanism for concrete tunnel surfaces.
The robotic inspector used convolutional neutral networks and was validated in a real-world tunnel
with promising results.

The applications of computer vision and deep learning in aircraft maintenance inspection remain
very limited despite the impact this field is already making in other domains. Based on the literature
and technology review performed by the authors, it was found that only a few researchers and
organizations are working on automating aircraft visual inspection.

One of the earliest works that uses neural networks to detect aircraft defects dates back to 2017.
In this work [13], the authors used dataset images of the airplane fuselage. For each image, a binary
mask was created by an experienced aircraft engineer to represent defects. The authors have used a
convolutional neural network that was pre-trained on ImageNet as a feature extractor. The proposed
algorithm achieves about 96.37% accuracy. A key challenge faced by the authors was an imbalanced
dataset which had very few defect photos. To tackle this problem, the authors used data balancing
techniques to oversample the rare defect data and undersample the no-defect data.

Miranda et al. [14] use object detection to inspect airplane exterior screws with a UAV.
Convolutional Neural Networks are used to characterize zones of interest and extract screws from
the images. Then, computer vision algorithms are used to assess the status of each screw and detect
missing and loose ones. In this work, the authors made use of GANs to generate screw patterns using
a bipartite approach.

Miranda et al. [15] point out the challenge of detecting rare classes of defects given the extreme
imbalance of defect datasets. For instance, there is an unequal distribution between different classes of
defects. Thus, the rarest and most valuable defect samples represent few elements among thousands
of annotated objects. To address this problem, the authors propose a hybrid approach which combines
classic deep learning models and few-shot learning approaches such as matching network and
prototypical network which can learn from a few samples. In [16], the authors extend this work by
questioning the interface between models in such a hybrid architecture. It was shown that, by carefully
selecting the data from the well-represented class when using few-shot learning techniques, it is
possible to enhance the previously proposed solution.

1.3. Research Objective

In Bouarfa et al. [1], we have applied MASK R-CNN to detect aircraft dents. MASK-RCNN was
chosen because it enables the detection of multiple objects in an image while simultaneously generating
a segmentation mask for each instance. The previously obtained F1 and F2 scores were 62.67% and
59.35%, respectively. This paper extends the previous work by applying different techniques to improve
and evaluate prediction performance experimentally. The approaches used include (1) Balancing the
original dataset by adding images without dents; (2) Increasing data homogeneity by focusing on
wing images only; (3) Exploring the potential of three augmentation techniques in improving model
performance namely flipping, rotating, and blurring; and (4) Using a pre-classifier in combination with
MASK R-CNN.

This paper is organized as follows: Section 1 provides the introduction. Section 2 describes the
methodology. Section 3 describes the experimental set-up and presents the key results. The conclusions
are provided in Section 4.
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2. Methodology

This study uses Mask Region Convolutional Neural Networks (MASK R-CNN) to automatically
detect aircraft dents. MASK R-CNN is a deep learning algorithm for computer vision that can identify
multiple objects classes in one image. The approach goes beyond a plain vanilla CNN such that it
allows the exact location and identification of objects (car, plane, human, animal, etc.) of interest and
their boundings. This functionality is relevant for detecting aircraft dents which don’t have a clear
defined shape. Although MASK R-CNN is quite a sophisticated approach, the building blocks and
concepts are not new and have been proven successful. The most relevant predecessors in chronological
order are R-CNN [17], Fast R-CNN [18], and Faster R-CNN [19], and are basically improvements of
each other tested on practical applications. Even though MASK R-CNN is an improvement of the
latter methods, it comes at a computational cost. For example, YOLO [20], a popular object detection
algorithm, is much faster if all that is needed are bounding boxes. Another drawback of MASK R-CNN
is labeling the masks: Annotating data for the masks is a cumbersome and tedious process as the data
labeler needs to draw a polygon for each of the object in an image.

In the following sections, we first explain how we use Mask R-CNN with the aim of detecting
dents in given aircraft images (Section 2.1). Afterwards, we introduce some techniques to improve the
quality of the predictions (Section 2.2).

2.1. Dent Detection within MASK R-CNN

As mentioned earlier, detecting dents is not more different than an object detection task and is
basically finding an ‘object’ (or region) within an object. Object detection from the simplest perspective
has several sub-tasks. The following list moves step-by-step through the process depicted in Figure 1
of the MASK R-CNN approach:

Figure 1. MASK R-CNN architecture and its underlying functionality blocks [21].
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• FPN: The input image is fed into a a so-called FPN [22] that forms the backbone structure of the
MASK R-CNN. An FPN or Feature Pyramid Network is a basic component needed in detecting
objects at different scales. As shown in Figure 1, the FPN applied in the MASK R-CNN method
consists of several convolution blocks (C2 up-to C5) and Pooling blocks (P2 up-to P5). There are
in literature several candidates, like ResNet [23] or VGG [24], to represent the FPN. For this study,
a ResNet101 network has been used as FPN.

• RPN: The image when passed through the FPN returns the feature maps. These are basically a
relatively good initial estimate of regions within the image where one can look for the objects of
interest. These feature maps are fed into an RPN, or Region Proposed Network, which are fully
convolutional networks that simultaneously predict multiple Anchor boxes and object scores at
each position.

• Binary Classification: The former mentioned Anchor boxes are assigned a probability arising
from the object scores mentioned earlier, if the object found within the anchor belongs to an object
class of interest YES or NO. For example, in our case study, the outcome would be a selection
between ‘Dent’ or ‘aircraft skin / background without Dent’.

• BBox Delta: The RPN also returns a bounding box regressor for adjusting the anchors to better fit
the object.

• ROI: Combining the information obtained from the Binary Classification and BBox Delta and
passing it on to the ROI pooling layer, it is likely that, after the RPN step, there are proposals
with no classes assigned to them. One can take each proposal and crop it such that each proposal
contains an object. This is exactly what the ROI pooling layer does: It extracts fixed sized feature
maps for each anchor.

• MRCNN: The results from the ROI pooling layer is directed toward the MRCNN layer and
generates three output streams, i.e.,

• Classification: The object is classified as being a ‘Dent’ or ‘No Dent’ with a certain
probability assigned.

• Bounding Box: Around the object, a Bounding Box is generated with an optimal fit.
• Mask: Since aircraft dents don’t have a clearly defined shape, arriving at square/rectangular

shaped Bounding Box is not sufficient. As a final step, a semantic segmentation is applied,
i.e., pixel-wise shading of the class of interest.

In the following part, we discuss the data preparation and the implementation of the concept
on real-life aircraft images using MASK R-CNN. The authors have adopted the code taken from [25]
such that it can be used to identify dents on aircraft structures. In order to reduce the computational
time to train the MASK R-CNN, we have applied transfer learning [26] with a warm restart (shown in
Figure 2) and taken the initial weights from [27]. By pre-training the neural network on the COCO
data set, we then re-use it on our target data set as the lower layers are already trained on recognizing
shapes and sizes from different object classes. In this way, we refine the upper layers for our target
data set (aircraft structures with dents).

The most crucial element before training the model is setting up a proper environment, where
the core computations are performed. Here, we resort to Google Colab in combination with Python,
Jupyter notebook. Google Colab is a free, in-the-browser, collaborative programming environment that
provides an interactive and easy to use platform for deep learning researchers and engineers to work
on their datascience projects. There is no need for the user to follow complex and tedious procedures
to install software, associated packages, worry about data management, and computational resources
(CPU/GPU/TPU). All is pre-configured and the user can focus directly on the research questions.
Google Colab is a perfect environment for testing Deep Learning based projects before going into
production settings and also provides loads of extras, like documenting your work in Markdown,
Version control, and Cloning.
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Figure 2. Transfer learning applied in the MASK R-CNN framework.

2.2. Data Processing for Prediction Improvement

In this paper, we aim to improve the prediction performance of the proposed approach explained
above by using some data processing techniques such as augmentations (Section 2.2.1) and by adopting
some hierarchical detection system, which adds another classifier before applying the masked RCNN
(Section 2.2.2).

2.2.1. Augmentation Methods

Image augmentation is a technique which aims at generating new images from already existing
ones through a wide range of operations including resizing, flipping, cropping, etc. The purpose
of this approach is to create diversity, avoid overfitting, and improve generalizability [28]. In order
to improve the prediction performance, we suggest applying augmentation methods particularly
flipping, rotating, and blurring before training the dataset so that we could increase variety in the
training dataset.

By augmentation methods, we produce modifications of the existing images while keeping the
dents’ annotations unaffected. Hence, the approach generates new samples with the same label and
annotations from already existing ones by visually changing them. In order to prevent damaging the
dents’ images and preserve the image quality, it was decided to use soft augmentation techniques.
The techniques were randomly applied to the same image together using a Python library known by
imgaug [29]. An example is provided in Figure 3 to illustrate the effects of these techniques.

2.2.2. Hierarchical Modeling Approach

When the given dataset includes images that do not have any dents, the Mask R-CNN model
may predict some dents on. This would lead to false positives that would decrease precision. To avoid
mispredictions on images without dents, we propose to use another classifier, which is trained to detect
whether a given image has dents or not. It is called a ‘pre-classifier approach’ in the rest of the paper.
As it is demonstrated in Figure 4, this classifier works as a filter. That is, if the pre-classifier labels the
given image as having no dents, then the system will output ‘No dents’. Otherwise, the image will be
given to the Mark-RCNN model to predict the dents in the given image.
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(a) Original (b) Annotation (c) Blurring

(d) Flipping (e) Rotating (f) Mixed

Figure 3. Example illustrating how the selected augmentation techniques preserve the dents in
the image.

Figure 4. Visualization of the pre-classification approach.

This approach will significantly increase the precision value. However, it may slightly decrease
the recall value when an image with dents is predicted as without dents. For classification, we use
Bag of Visual Words (BoVW) [30] to generate a vector which can be processed by the classifier namely
Support Vector Machine (SVM) [31]. The prediction performance of this classifier is measured and
reported in Table 1. This classifier correctly predicts whether or not there is a dent on the nearly 88% of
the images. It is worth noting that the SVM predicts only whether there is a dent or not in the given
images while the Mask-RCNN detects the area of the dents.

Table 1. The performance results of the classification model.

Accuracy Precision Recall F1

Training 97.04% 97.0% 97.0% 97.0%
Test 88.82% 89.9% 88.8% 88.7%

For each fold, a pre-classifier was trained on corresponding train set and the metrics are calculated on
corresponding test set. In this table, the metrics are the mean of the metrics of all folds.
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3. Experimental Results

This section provides an overview of the performance metrics, experimental set-up, and a
summary of the key results.

3.1. Model Performance Evaluation

This section presents the evaluation criteria used to assess model performance. As explained
above, Mask R-CNN is used to detect the dents on the given aircraft images (i.e., aircraft defects).
From the point of view of the decision makers utilizing such a decision-support system, detecting the
dent area is more important than calculating the exact area of the dents accurately. Therefore, this work
focuses on accurately detecting the dents and measuring the performance by considering how well the
dent predictions are made. For this purpose, the well known prediction performance metrics such
as precision, recall, and F1 scores are used. In this study, precision measures the percentage of truly
detected dents among the dent predictions by the given model (i.e, the percentage of detected dents
that were correctly classified), while recall measures what percentage of the dents predictions that are
correctly detected.

Formally, Equations (1) and (2) show how to calculate the precision and recall respectively where:

• TP: denotes the true positives and is equal to the number of truly detected dents (i.e., the number
of dent predictions, which is correct according to the labeled data).

• FP: denotes the false positives and is equal to the number of falsely detected dents (i.e., the number
of dent predictions, which are not correct accordingly to the labeled data).

• FN: denotes the false negatives and is equal to the number of dents, which are not detected by
the model (i.e., the number of dents labeled in the original data, but the model could not detect
them):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

In addition to the above metrics, we also consider an extra performance metric, called Fβ-score
(Fβ measure). This metric is basically a weighted combination of the Precision and Recall. In addition,
the range of the Fβ-score is between zero and one where higher values are more desired. In this study,
we took two different beta values into consideration which are 1 and 2. F1 conveys the balance between
precision and recall while F2 weighs recall higher than precision:

Fβ = (1 + β2) ∗ Precision ∗ Recall
β2 ∗ Precision + Recall

(3)

3.2. Experimental Setup

This section describes the experimental setup and characteristics of datasets used to train and test
the convolutional neural network.

3.2.1. Data Collection and Annotation

The first step in this research involves collecting images of aircraft dents from different sources.
To the best of the authors’ knowledge, this is the first study which focuses on automating aircraft dents’
detection. Therefore, there was no image database for aircraft dents publicly available. Thus, a key
first step was to develop an aircraft dents database from scratch. This was achieved by taking photos
of aircraft dents at Abu Dhabi Polytechnic Hangar (Figure 5) and combining it with online images that
had one or multiple aircraft dents.
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Figure 5. Abu Dhabi Polytechnic Aircraft Hangar.

The 56 aircraft dents’ images used for training the model were diverse in terms of size, location,
and number of dents as described below:

• Size of Dents: The deep learning model was trained with images of aircraft dents of varying
sizes ranging from small to large. Figure 6 shows the smallest dents used in this study on the
left-hand side, and the largest dents on the right-hand side. These were typically found on the
aircraft radome. It should be noted that the aim of this paper was to detect both allowable and
non-allowable dents (Figure 7). Additional functionalities can be added to the AI system to detect
only critical dents when used in combination with 3D scanning technology.

• Location of Dents: The dents are located on five main areas in the aircraft, namely the Wing
Leading Edge, radome, engine cowling, doors, and leading edge of the horizontal stabilizer. These
are typical areas on the aircraft where dents can be found as a result of bird strike, hail damage,
or ground accidents.

• Number of Dents: As can be seen in Figure 6, while some images only had one dent on them,
other images had dozens of dent.

Figure 6. Various dent sizes used in model training.

Figure 7. Allowable dent.
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Since the total number of images was small (56 images), we have involved highly experienced
aircraft maintenance engineers during the annotation process in order to accurately label the location
of the dents in each image as shown in Figure 8.

Figure 8. Manual dent annotation.

3.2.2. Datasets’ Characteristics

Based on the original dataset in [1], we have prepared six different datasets that are described
below and summarized in Table 2.

Table 2. Data set description.

Image with Dents Images without Dents Scope

Dataset 1 56 49 Aircraft
Dataset 2 26 20 Wing
Dataset 3 56 0 Aircraft
Dataset 4 56 0 Aircraft
Dataset 5 56 49 Aircraft
Dataset 6 56 49 Aircraft

1. Dataset 1: This dataset is a combination of the original dataset which contains 56 images of
aircraft dents [1] and a new dataset of 49 images without dents. The annotation in the original
dataset used in [1] has also been improved through involving more experts to reach consensus
and later verified by another expert. Briefly, Dataset 1 has nearly balanced images with dents
and without dents (105 images in total).

2. Dataset 2: This dataset is a subset of dataset 1 and contains 46 wing images in total—26 that have
dents, and 20 without dents.

3. Dataset 3: This dataset contains half the number of images in the original dataset which contain
images with dents only [1], combined with augmented images of the remaining half. Note that
we applied the mixed augmentation technique as shown in Figure 3.
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4. Dataset 4: This dataset contains all the images with dents in the original dataset (56 images with
dents) in combination with their augmented version.

5. Dataset 5: This dataset contains half the number of images in dataset 1 combined with the
augmented images of the remaining half. This dataset contains both images with dents and
without dents.

6. Dataset 6: This dataset contains all the images with dents in dataset 1 (56 images with dents and
49 images without dents) in combination with their augmented version.

3.2.3. Training and Test Split

The main challenge in this study faced was data scarcity. In addition to using clean and clearly
labeled data, we used a 10-fold cross-validation [32] in order to have a diverse pool of training and
test data for a robust evaluation. In this approach, the original dataset was split into 10 equally sized
parts. By combining these parts in a systematic way (i.e., one for test, the rest for training), we create
10 different combinations of training and test dataset as shown in Figure 9.

Figure 9. Visualization of 10 Fold Cross Validation. Firstly, the dataset is shuffled and then divided
into 10 equal pieces. For each fold, one piece is reserved for testing while the remaining ones are used
for training. In this figure, the green pieces indicate those reserved for testing while the white ones
belong to those used for training. Thus, each fold has different test data.

After training the network model on the training set of each fold and testing on the associated test
sets separately, an expert checked and compared the predictions with the labeled data for each fold
and calculate the true positives TP, false negatives FN, and false positives FP. It is worth noting that we
have used a Mask R-CNN that has already been trained to detect car dents [33]. Therefore, even with a
small dataset, we could be able to detect the areas of dents on the aircraft dataset. This concept is also
known as transfer learning.

3.2.4. Training Approach

Thanks to transfer learning, the ResNet part of the model can extract some visual features that can
be utilized in this study without any additional training. However, the other parts of the model must
be trained to utilize these visual features. Therefore, the heads of the model (excluding ResNet) must
be trained. Firstly, the ResNet weights are frozen, then the model is trained 15 epochs for a dataset
of approximately 50 images. Note that the number of epochs are tuned according to the size of the
dataset (e.g., 30 for a dataset of 100 images). In addition to this, the ResNet part of the model should
also be trained to get better results because the ResNet may extract more useful visual features after
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training. Therefore, the weights of the model, including ResNet, continued training five more epochs
(also tuned according to the size of the dataset). Briefly, the model is trained for 15 epochs without
ResNet, then 5 more epochs with ResNet, and a total of 20 epochs is trained.

4. Experimental Results and Analysis

This section provides the experimental results showing the prediction performance of the
proposed approach in detail. In particular, we study the effect of certain dataset modifications
such as adding images without dents (Section 4.1), filtering the dataset by focusing only a part of the
airplane (Section 4.2), image augmentation (Section 4.3) as well as the changes in the training such
as increasing the number of epochs (Section 4.4) and incorporating a pre-classifier to the prediction
process (Section 4.5). In the following section, we present the average evaluation values of 10-cross
validation results where experiment evaluations per each fold are also given in Appendix A.

4.1. The Effect of Dataset Balance

The main challenge faced was the small size of the dents dataset. To overcome this obstacle,
we ensured that the dataset is clean and accurately labeled by involving experienced aircraft engineers.
In real life, there are images with and without dents. Therefore, it is important to involve negative
examples (in our case images without dents) to obtain a more balanced dataset. To achieve this,
the initial dataset was extended by adding additional images without dents to improve prediction
performance (see Dataset 1). The model is trained 20 epochs in total on Dataset 1 as it is in the original
dataset [1]. Table 3 shows the performance comparison on Dataset 1 with the original dataset.

Table 3. The results of the effect of Dataset balance.

Dataset Epoch Train Size Test Size Precision Recall F1 Score F2 Score

Original Dataset [1] 15 + 5 49.5 5.5 69.13% 57.32% 62.67% 59.35%
Dataset 1 15 + 5 94.5 10.5 21.56% 66.29% 32.54% 46.85%

With the extended dataset, a higher recall value (66.29% versus 57.32%) and lower precision value
(21.56% versus 69.13%) have been achieved compared to the baseline experiment conducted in [1].
In this context, recall is more important than precision. Detecting an approximate location of dents
correctly is of paramount importance. Our primary aim is not to miss any dents to help human experts
analyzing thousands of images. In such a case, it may be admissible if the algorithm may sometimes
detect a dent location, which does not exist. In this case, the human expert can give feedback to the
system. The detailed results are shown in Table A1 (Recall: 66.29%; Precision: 21.56%; F1-Score: 32.54%;
F2-Score: 46.85%).

4.2. The Effect of Specialization in the Dataset

A model with a specific dataset may lead to better results than a model with a generic dataset.
Therefore, a subdataset can be prepared by focusing on specific aircraft parts like wing or engine to
train a branched model instead of a generic model. Since aircraft dents are often prevalent in areas
like the wing leading edge, engines, and radome, this study has focused on the wing because of the
data availability. Therefore, we filter the Dataset 1 by focusing on only aircraft wings. The wing
Dataset 2 was therefore used to train a branched model that is able to detect wing dents. According to
the results shown in Table 4, the precision value is much higher than in the Dataset 1 (69.88% versus
21.56%), but the recall value is lower (54.39% versus 66.29%). Furthermore, F1 score (61.17% versus
32.54%) and F2 score (56.91% versus 46.85%) are higher than the Dataset 1 due to higher precision
value. The corresponding results are shown in Table A2 (Recall: 54.39%; Precision: 69.88%; F1-Score:
61.17%; F2-Score: 56.91%).
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Table 4. The results of the effect of specialization in dataset.

Dataset Epoch Train Size Test Size Precision Recall F1 Score F2 Score

Dataset 1 15 + 5 94.5 10.5 21.56% 66.29% 32.54% 46.85%
Dataset 2 15 + 5 41.4 4.6 69.88 % 54.39% 61.17% 56.91%

4.3. The Effect of Augmentation Process

Image augmentation is a technique, which aims at generating new images from already
existing ones through a wide range of operations including resizing, flipping, cropping, and so on.
The purpose of this approach is to create diversity, avoid overfitting, and improve generalizability [28].
To investigate whether the augmentation technique could improve the prediction performance,
we applied augmentation augmentation techniques namely flipping, rotating, and blurring
(Section 2.2.1) on the original dataset in different ways as explained below and compared their
performance with the case of no augmentation as shown in Table 5.

Table 5. The results of the effect of augmentation process.

Dataset Augmentation Epoch Train Size Test Size Precision Recall F1 Score F2 Score

Original Dataset [1] No 15 + 5 49.5 5.5 69.13% 57.32% 62.67% 59.35%
Dataset 3 Yes 15 + 5 50.4 5.6 60.32% 68.08% 63.96% 66.37%
Dataset 4 Yes 15 + 5 100.8 5.6 60.60% 59.52% 60.06% 59.73%
Dataset 5 Yes 15 + 5 94.5 10.5 27.02% 69.30% 38.88% 52.78%
Dataset 6 Yes 15 + 5 189 10.5 36.80% 62.83% 46.41% 55.04%

• Flipping, rotating, and blurring 50% of the dataset: Half of the images were transformed using
three augmentation techniques namely flipping, rotating, and blurring (Section 2.2.1), while the
other half remained the same resulting into a new dataset [Dataset 3]. The recall value and F1

score is higher than the baseline experiment (68.08% versus 57.32% and 63.96% versus 62.67%). In
addition, the highest F2 score among all experiments are obtained in this experiment, although the
precision is lower than the baseline experiment (60.32% versus 69.13%). The detailed results are
shown in Table A3 (Recall: 68.08%; Precision: 60.32%; F1-Score: 63.97%; F2-Score: 66.37%).

• Flipping, rotating, and blurring the complete dataset: Instead of partially augmenting the dataset,
we augment all images and use both original and augmented images for training. Consequently,
the dataset [Dataset 4] becomes twice the size of original dataset [Dataset 4] in the training
phrase. Note that the same image augmentation techniques have been used (flipping, rotating
and blurring). The detailed results are shown in Table A4 (Recall: 59.52%; Precision: 60.60%;
F1-Score: 60.06%; F2-Score: 59.73%).

• Flipping, rotating, and blurring 50% of the dataset containing images with and without dent:
This experiment is a combination of the first augmentation approach and adding the images
without a dent approach. In other words, the first image augmentation approach is applied on
Dataset 1 which contains both 56 images with dents and 49 images without dents. The recall
value is slightly higher than the first augmentation on the original dataset (69.30% versus 68.08%)
while the precision value is much lower than the baseline experiment (27.02% versus 69.13%).
The corresponding results are shown in Table A5 (Recall: 69.30%; Precision: 27.02%; F1-Score:
38.88%; F2-Score: 52.78%).

• Flipping, rotating, and blurring the complete dataset containing images with and without dents:
This experiment is a combination of the second augmentation approach and adding additional
images without a dent approach. In other words, the second image augmentation approach is
applied on Dataset 1, which contains both 56 images with dent and 49 images without dent.
In this case, the recall value is higher than the second augmentation on the original dataset (62.83%
versus 59.52%), but the precision value is lower (36.80% versus 60.60%). Additionally, the recall is
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also higher than the baseline experiment [1] (62.83% versus 57.32%). The corresponding results
are shown in Table A6 (Recall: 62.83%; Precision: 36.80%; F1-Score: 46.41%; F2-Score: 55.04%).

4.4. The Effect of Number of Epochs in Training

When we train a model in ML, there are a number of hyper parameters, which may influence
the performance of the model. One of them is the stopping criterion (i.e., convergence condition and
number of epochs). In this work, the training process is stopped when it reaches a predetermined
number of epochs (e.g., 15 + 5). We use the same number of epochs for aforementioned experiments.
In this section, we show the effect of the number of epochs which corresponds to how many
times we traverse over all training instances and update the parameters accordingly on the
prediction performance.

As it can be seen in Table 6, increasing the value of epoch parameter (i.e., iterating the
training instance more while training) drastically increased the precision value for all experiments.
Although this approach slightly decreased the recall value, the F1 and F2 scores were still better for
the larger epoch values. It is worth noting that the Dataset 4 with a doubled epoch number has the
highest precision value among all experiments (72.48%) while the Dataset 5 has the highest recall value
(69.97%). The detailed results of Dataset 1, Dataset 4, Dataset 5, and Dataset 6 with a doubled epoch
number are shown in Tables A7–A10, respectively. A larger number of epochs can also decrease the
loss of both training and test sets, as it can be seen in Figure 10, but at some point they do not change
the results significantly. According to the given error graph, it can be seen that the low number of
epochs would be sufficient to train the model reasonably well enough.

(a) Loss of Training (b) Loss of Test

Figure 10. Loss Graphs of Dataset 6. To demonstrate the decrease in loss of both training and test
sets depending on epochs, we displayed the loss graphs of Dataset 6 which has the largest number
of epochs.

Table 6. The results of the effect of training parameters.

Dataset Augmentation Epoch Train Size Test Size Precision Recall F1 Score F2 Score

Dataset 1 No 15 + 5 94.5 10.5 21.56% 66.29% 32.54% 46.85%
Dataset 1 No 30 + 10 94.5 10.5 38.10% 61.27% 46.98% 54.62%
Dataset 4 Yes 15 + 5 100.8 5.6 60.60% 59.52% 60.06% 59.73%
Dataset 4 Yes 30 + 10 100.8 5.6 72.48% 55.01% 62.55% 57.80%
Dataset 5 Yes 15 + 5 94.5 10.5 27.02% 69.30% 38.88% 52.78%
Dataset 5 Yes 30 + 10 94.5 10.5 38.85% 69.97% 49.96% 60.31%
Dataset 6 Yes 15 + 5 189 10.5 36.80% 62.83% 46.41% 55.04%
Dataset 6 Yes 60 + 20 189 10.5 44.66% 64.56% 52.80% 59.28%

4.5. The Effect of the Pre-Classifier Approach

Lastly, we study the effect of introducing a pre-classifier approach (see Section 2.2.2). Table 7 shows
the results of the previous experiments with their corresponding experiments with the pre-classifier.
According to these results, it can be seen that precision drastically increases and recall slightly decreases
when we adopt the pre-classifer approach. Note that the highest F1 score is gained when we use
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augmented Dataset 6 with an epoch 60 + 20 with pre-classifier (67.50%). For each dataset, we explain
the effect of a pre-classifer in a detailed way below.

Table 7. The results of the effect of the pre-classifier approach.

Dataset Augmentation Classifier Epoch Train Size Test Size Precision Recall F1 Score F2 Score

Dataset 1 No No 30 + 10 94.5 10.5 38.10% 61.27% 46.98% 54.62%
Dataset 1 No Yes 30 + 10 94.5 10.5 61.91% 60.68% 61.29% 60.92%
Dataset 5 Yes No 30 + 10 94.5 10.5 38.85% 69.97% 49.96% 60.31%
Dataset 5 Yes Yes 30 + 10 94.5 10.5 59.17% 68.05 63.30% 66.06%
Dataset 6 Yes No 60 + 20 189 10.5 44.66% 64.56% 52.80% 59.28%
Dataset 6 Yes Yes 60 + 20 189 10.5 71.31% 64.08% 67.50% 65.41%

Balanced Dataset with a pre-classifier: Regarding the experimental results on Dataset 1,
a considerably lower precision value than the baseline experiment’s precision was observed due
to a high False Positive. Most of the False Positive predictions (predicting an area as dent where there
is no dent) are made on some of the images without dents in Dataset 1. Therefore, a classifier which
predicts whether a given image has dents or does not have dents was implemented and used on a test
set to avoid mispredictions on the images without dents. Firstly, the pre-classifier predicts an image if
it has dent, or not. Then, the Mask-RCNN model extracts the dented areas if the image is classified
as an image with dents. Otherwise, it outputs no dents without applying the Mask-RCNN model.
We used the Mask-RCNN model trained in Dataset 1. The precision value dramatically increased from
38.10% to 61.91% by reducing some of False Positive detections. In addition, this approach increased
not only F1 score (46.98% to 61.29%) but also F2 score (54.62% to 60.92%). However, the pre-classifier
predicts some of the images with dents as images without dents, so the recall value slightly decreased
(61.27% to 60.68%). The detailed results are shown in Table A11 (Recall: 60.68%; Precision: 61.91%;
F1-Score: 61.29%; F2-Score: 60.92%).

Flipping, rotating, and blurring 50% of the dataset containing images with and without dents
by testing with the pre-classifier: We used the pre-classifier with the Mask-RCNN model trained in
Dataset 5. This approach significantly increases the precision value, F1 and F2 scores (38.85% to 59.17%,
49.96% to 63.30% and 60.31% to 66.06%). However, the recall value decreases (69.97% to 68.05%) due
to the fact that the pre-classifier predicts some of the images with dents as images without dents.
The corresponding results are shown in Table A12 (Recall: 68.05%; Precision: 59.17%; F1-Score: 63.30%;
F2-Score: 66.06%).

Flipping, rotating, and blurring the complete dataset containing images with and without
dents by testing with the pre-classifier: The pre-classifier approach and the Mask-RCNN model
trained in Dataset 6 are utilized to decrease False Positive detection on the images without dents.
The precision considerably increased (44.66% to 71.31%) and the highest F1 score among all experiments
is achieved. In addition, the F2 score increased (59.28% to 65.41%) although the recall value slightly
decreased (64.56% to 64.08%) due to misprediction made by the pre-classifier. The detailed results are
shown in Table A13 (Recall: 64.08%; Precision: 71.31%; F1-Score: 67.50%; F2-Score: 65.41%).

4.6. Overall Results

Figure 11 shows the overall results of all experiments on four performance metrics (i.e., precision,
recall, F1, and F2 scores). The reader can find a brief explanation of each experiment setting in Table 8.
The highest recall is reached in Experiment 9 (69.97%), which trains the augmented dataset including
with and without dents, namely Dataset 5 in a relatively large number of epochs. We observed that
we obtained the highest precision (72.48%) training the augmented dataset, namely Dataset 4, not
including any image without dents in a relatively large number of epochs (Experiment 8). Furthermore,
the highest F1 score (67.50%) where precision and recall are considered equally is gained when we
apply the pre-classfier approach and adopt a larger epoch on the augmented data with and without any
dents, namely Dataset 6 (Experiment 13). Lastly, the highest F2 score is reached when the augmented
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dataset, namely Dataset 3, is used (Experiment 3). The details of each experiment are presented in
Appendix A and discussed below.

Table 8. Overview of all experiments.

Research
Hypothesis Experiment ID Dataset

ID
Training
Dataset

Test
Dataset

Number
of

Epochs

Effect of
dataset balance

Experiment 1 1 94.5 10.5 20
Experiment 7 1 94.5 10.5 40

Effect of specialization Experiment 2 2 41.4 4.6 20

Effect
of

augmentation

Experiment 3 3 50.4 5.6 20
Experiment 4 4 100.8 5.6 20
Experiment 5 5 94.5 10.5 20
Experiment 6 6 189 10.5 20
Experiment 8 4 100.8 5.6 40
Experiment 9 5 94.5 10.5 40

Experiment 10 6 189 10.5 80

Effect of a
pre-classifier

Experiment 11 1 94.5 10.5 40
Experiment 12 5 94.5 10.5 40
Experiment 13 6 189 10.5 80

(a) Recall (b) Precision

(c) F1 (d) F2

Figure 11. Summary of All Experiments.

To sum up, we can conclude that augmentation techniques improve the prediction performance of
the proposed approach. Increasing the number of epochs improves the overall performance. Adopting
the pre-classifier approach significantly improves the precision. On the other hand, we gained
the highest precision on Dataset 4 without applying the pre-classifier. It is worth noting that this
dataset includes only images with dents. Therefore, we could not apply the pre-classifier approach
on this dataset. The second highest precision is obtained when we applied the pre-classifier on
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Dataset 6 (71.31% versus 72.48%). Since in practice there will be images without dents, we recommend
using a pre-classifier and to apply augmentation techniques on the available dataset to improve the
prediction performance.

5. Conclusions

Aircraft maintenance programs are focused on preventing defects which makes it difficult to
collect large datasets of anomalies. Aircraft operators may have 100 images or less for a particular
defect. This makes it challenging to develop deep learning aircraft inspection systems based on small
datasets. Most of the popular tools are designed to work with big data as used by web companies
e.g., using millions of datapoints from users. When the dataset size is limited, it becomes difficult
to train the model. To address this problem, we have involved multiple experienced maintenance
engineers in annotating the dataset images and then verified the annotation by a third party. That is,
we ensured that the dataset is clean and accurately labeled and used augmentation techniques to
overcome the small data obstacles.

To train the model, we used Mask R-CNN in combination with augmentation techniques.
The model was trained with different datasets to better understand the effect on performance. In total,
nine experiments were conducted and performance was evaluated using four metrics, namely Precision,
Recall, F1, and F2 scores. The experiment variables included the number of epochs, augmentation
approaches, and the use of an image pre-classifier. Overall, the highest F1 score (67.50%) corresponds
to experiment 13, and the highest F2 score (66.37%) corresponds to experiment 3. Experiment 3 used
augmentation techniques such as flipping, rotating, and blurring but only on half of the dataset,
while, in Experiment 13, all images with and without dents have been augmented. In addition,
a pre-classifier was used to prevent mispredictions on images without dents in Experiment 13 (see
Figure 4). According to our results, it seems that using a pre-classifier improved the prediction
performance especially in terms of F1 score. Moreover, it can be concluded that, for such a small data
problem, a hybrid approach which combines Mask R-CNN and augmentation techniques leads to
improved performance.

Future work should be geared towards exploring the effects of various architectures on the
performance of detecting aircraft dents. Since MASK R-CNN consists of the RESNET and FPN layers,
it would be interesting to investigate other architectures such as U-net with an attention mechanism.
Furthermore, since this study only explored three augmentation techniques, one can investigate
additional techniques such as resizing, shear, elastic distorions, and lighting. Another important line
of research is AI deployment. Developing a deep learning visual inspection system can be completed
by conducting offline experiments under a highly controlled environment; however, there is still a
long way to go to getting a deployable solution in an MRO environment ready and then scaling it [34] .
There needs to be more experiments to overcome a complex set of obstacles including the ability to
detect defects under varying conditions (e.g., diurnal and environmental effects) and deal with various
uncertain variables.

Lastly, combining multiple learners may improve the performance of the predictions as seen
in [35,36]. As future work, we would like to introduce multiple learners for the underlying problem
and combine them to obtain higher precision and recall.
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Appendix A

Table A1. The Results of Experiment 1: Adding images without dents (Dataset 1).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 6 5 4 68 5 42 6 8 3 4 15.1
FP 68 72 21 26 37 34 37 46 32 45 41.8
FN 2 5 4 81 1 37 1 2 2 1 13.6

Recall 75.0% 50.0% 50.0% 45.6% 83.3% 53.7% 85.7% 80.0% 60.0% 80.0% 66.29%
Precision 8.1% 6.5% 16.0% 72.3% 11.9% 55.3% 14.0% 14.8% 8.6% 8.2% 21.56%

Table A2. The Results of Experiment 2: Filtering the dataset by focusing on only aircraft wings
(Dataset 2).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 41 41 41 41 41 41 42 42 42 42 41.4
Test Size 5 5 5 5 5 5 4 4 4 4 4.6

TP 2 3 5 6 15 1 1 1 9 1 4.4
FP 2 0 2 1 5 1 5 0 0 1 1.7
FN 1 2 1 2 12 2 3 1 11 1 3.6

Recall 66.7% 60.0% 83.3% 75.0% 55.6% 33.3% 25.0% 50.0% 45.0% 50.0% 54.39%
Precision 50.0% 100.0% 71.4% 85.7% 75.0% 50.0% 16.7% 100.0% 100.0% 50.0% 69.88%

Table A3. The Results of Experiment 3: Augment 50% of dataset (Dataset 3).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 50 50 50 50 50 50 51 51 51 51 50.4
Test Size 6 6 6 6 6 6 5 5 5 5 5.6

TP 34 8 5 22 5 9 5 4 25 27 14.4
FP 2 12 5 13 5 4 2 16 18 4 8.1
FN 26 2 4 3 1 4 0 1 52 49 14.2

Recall 56.7% 80.0% 55.6% 88.0% 83.3% 69.2% 100.0% 80.0% 32.5% 35.5% 68.08%
Precision 94.4% 40.0% 50.0% 62.9% 50.0% 69.2% 71.4% 20.0% 58.1% 87.1% 60.32%

Table A4. The Results of Experiment 4: Augment the complete dataset (Dataset 4).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 100 100 100 100 100 100 102 102 102 102 100.08
Test Size 6 6 6 6 6 6 5 5 5 5 5.6

TP 12 7 6 20 6 6 5 4 22 7 9.5
FP 3 13 8 9 3 4 1 11 12 2 6.6
FN 48 3 3 5 0 8 0 1 61 69 19.8

Recall 20.0% 70.0% 66.7% 80.0% 100.0% 42.9% 100.0% 80.0% 26.5% 9.2% 59.52%
Precision 80.0% 35.0% 42.9% 69.0% 66.7% 60.0% 83.3% 26.7% 64.7% 77.8% 60.60%

Table A5. The Results of Experiment 5: Augment 50% of dataset containing images with and without
dents (Dataset 5).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 50 50 50 50 50 50 51 51 51 51 50.4
Test Size 6 6 6 6 6 6 5 5 5 5 5.6

TP 5 7 7 50 6 27 6 8 3 4 12.3
FP 41 44 19 29 17 33 14 28 15 22 26.2
FN 3 3 1 99 0 53 1 2 2 1 16.5

Recall 62.50% 70.00% 87.50% 33.56% 100.00% 33.75% 85.71% 80.00% 60.00% 80.00% 69.30%
Precision 10.87% 13.73% 26.92% 63.29% 26.09% 45.00% 30.00% 22.22% 16.67% 15.38% 27.02%
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Table A6. The Results of Experiment 6: Augment the complete dataset containing images with and
without dents (Dataset 6).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 6 3 67 6 12 7 8 3 4 12
FP 14 23 6 9 27 10 17 17 6 7 13.6
FN 4 4 5 80 0 67 0 2 2 1 16.5

Recall 50.00% 60.00% 37.50% 45.58% 100.00% 15.19% 100.00% 80.00% 60.00% 80.00% 62.83%
Precision 22.22% 20.69% 33.33% 88.16% 18.18% 54.55% 29.17% 32.00% 33.33% 36.36% 36.80%

Table A7. The Results of Experiment 7: Adding images without dents (Dataset 1), with a larger number
of epochs.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 3 5 5 59 6 23 5 8 3 4 12.1
FP 14 21 12 6 8 19 13 5 22 12 13.2
FN 5 5 3 81 0 56 2 2 2 1 15.7

Recall 37.50% 50.00% 62.50% 42.14% 100.00% 29.11% 71.43% 80.00% 60.00% 80.00% 61.27%
Precision 17.65% 19.23% 29.41% 90.77% 42.86% 54.76% 27.78% 61.54% 12.00% 25.00% 38.10%

Table A8. The Results of Experiment 8: Augment the complete dataset (Dataset 4), with a larger
number of epochs.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 100 100 100 100 100 100 102 102 102 102 100.08

Test Size 6 6 6 6 6 6 5 5 5 5 5.6
TP 13 6 6 17 5 9 4 2 20 30 11.2
FP 1 3 6 4 2 4 1 3 6 1 3.1
FN 45 4 3 8 1 5 1 3 57 46 17.3

Recall 22.41% 60.00% 66.67% 68.00% 83.33% 64.29% 80.00% 40.00% 25.97% 39.47% 55.01%
Precision 92.86% 66.67% 50.00% 80.95% 71.43% 69.23% 80.00% 40.00% 76.92% 96.77% 72.48%

Table A9. The Results of Experiment 9: Augment 50% of dataset containing images with and without
dent (Dataset 5), with a larger number of epochs.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 8 6 72 6 23 7 8 3 4 14.1
FP 17 18 11 13 13 13 17 8 9 17 13.6
FN 4 2 2 86 0 56 0 2 2 1 15.5

Recall 50.00% 80.00% 75.00% 45.57% 100.00% 29.11% 100.00% 80.00% 60.00% 80.00% 69.97%
Precision 19.05% 30.77% 35.29% 84.71% 31.58% 63.89% 29.17% 50.00% 25.00% 19.05% 38.85%

Table A10. The Results of Experiment 10: Augment the complete dataset containing images with and
without dents (Dataset 6), with a larger number of epochs.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 188 188 188 188 188 190 190 190 190 190 189
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 7 6 47 5 26 6 8 3 3 11.5
FP 11 14 10 7 17 8 14 12 3 4 10
FN 4 3 2 100 0 53 1 2 2 2 16.9

Recall 50.00% 70.00% 75.00% 31.97% 100.00% 32.91% 85.71% 80.00% 60.00% 60.00% 64.56%
Precision 26.67% 33.33% 37.50% 87.04% 22.73% 76.47% 30.00% 40.00% 50.00% 42.86% 44.66%
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Table A11. The Results of Experiment 11: Adding images without dents (Dataset 1), by testing with a
pre-classifier.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 3 5 5 54 6 23 5 8 3 4 11.6
FP 8 2 6 4 3 3 5 4 7 1 4.3
FN 5 5 3 95 0 56 2 2 2 1 17.1

Recall 37.50% 50.00% 62.50% 36.24% 100.00% 29.11% 71.43% 80.00% 60.00% 80.00% 60.68%
Precision 27.27% 71.43% 45.45% 93.10% 66.67% 88.46% 50.00% 66.67% 30.00% 80.00% 61.91%

Table A12. The Results of Experiment 12: Augment 50% of dataset containing images with and without
dents (Dataset 5), by testing with the pre-classifier.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 94 94 94 94 94 95 95 95 95 95 94.5
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 8 6 39 6 23 7 8 3 4 10.8
FP 11 7 7 6 6 3 9 2 3 2 5.6
FN 4 2 2 109 0 56 0 2 2 1 17.8

Recall 50.00% 80.00% 75.00% 26.35% 100.00% 29.11% 100.00% 80.00% 60.00% 80.00% 68.05%
Precision 26.67% 53.33% 46.15% 86.67% 50.00% 88.46% 43.75% 80.00% 50.00% 66.67% 59.17%

Table A13. The Results of Experiment 13: Augment the complete dataset containing images with and
without dents (Dataset 6), by testing with the pre-classifier.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 188 188 188 188 188 190 190 190 190 190 189
Test Size 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 7 6 40 5 26 6 8 3 3 10.8
FP 7 5 3 3 3 0 5 4 0 1 3.1
FN 4 3 2 107 0 53 1 2 2 2 17.6

Recall 50.00% 70.00% 75.00% 27.21% 100.00% 32.91% 85.71% 80.00% 60.00% 60.00% 64.08%
Precision 36.36% 58.33% 66.67% 93.02% 62.50% 100.00% 54.55% 66.67% 100.00% 75.00% 71.31%
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