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Abstract: Safety is of paramount concern in aerospace and aviation. Safety has evolved over the
years, from the technical era to the human-factors era and organizational era, and finally to the
present era of systems-thinking. Building upon three foundational concepts of systems-thinking,
a new safety concept called “integration-in-totality principle” is propounded in this article as
part of a “seven-principles-framework of system safety”, to act as an integrated framework to
visualize and model system safety. The integration-in-totality principle concept addresses the need
to have a holistic ‘vertical and horizontal integration’, which is a key tenet of systems thinking.
The integration-in-totality principle is illustrated and elucidated with the help of a simple “Rubik’s
cube model of integration-in-totality principle” with three orthogonal axes, the ‘axis of perspective’
of vertical integration, and the two ‘axes of perception and performance’ of horizontal integration.
Safety analysis along the three axes with a ‘bidirectional synthesis’ and ‘continuum approach’ is
further elaborated with relevant case studies, one among them related to the Boeing 737 MAX aircraft
twin disasters. Safety is directly linked to quality, reliability and risk, through a self-reinforcing
reflexive paradigm, and airworthiness assurance is the process through which safety concepts are
embedded in a multidisciplinary aviation environment where the system of systems is seamlessly
operating. The article explains how the system safety principle of integration-in-totality is related
to reliability and airworthiness of an aerospace system with the help of the ‘V-model of systems
engineering’. The article also establishes the linkage between integration-in-totality principle and
strategic quality management, thus bridging the gap between two parallel fields of knowledge.

Keywords: integration-in-totality principle; seven-principles-framework of system safety; systems
thinking; systems engineering; system safety principles; strategic quality management; risk
management; reliability; airworthiness

1. Introduction

Accidents and serious incidents continue to occur in the field of aviation and no further emphasis
is required on the requirement to abate potential hazards in aviation systems. Though the probability
of accidents has come down over the years, the severity of the consequences of an aviation accident
can be catastrophic, as seen in the case of the two Boeing 737 MAX aircraft disasters at Indonesia and
Ethiopia in October 2018 and March 2019, respectively, that resulted in the tragic deaths of 346 people.
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This has brought about a renewed focus on safety as the paramount cause of concern in both civil and
military aviation, and an important knowledge field for study and action.

The concept of safety has evolved over the years, from the technical era to the human-factors
era and the organizational era, and finally to the present era of systems-thinking [1–9]. In order
to account for the nuances of safety concepts in the context of the modern complex aerospace
systems, a “seven-principles-framework of system safety principles” has been developed by the
authors. This proposed framework is built upon the five system safety principles (comprising of
fail-safe, safety-margin, ungraduated-response, defence-in-depth and observability-in-depth principles)
conceptualized by Saleh et al. [6], with the addition of the ‘human-factors principle’ as the 6th system
safety principle, and a newly developed concept called “integration-in-totality principle” as the 7th
system safety principle. Thus, in the remaining sections of this article, the authors will discuss the new
safety concepts of the ‘integration-in-totality principle’, as well as the ‘seven-principles-framework of system
safety principles’ to which it belongs. These new concepts are meant to enhance the understanding on
safety-critical socio-technical systems in their entirety, incorporating the key tenets of systems thinking.

Before getting into the details of the ‘integration-in-totality principle’, it is worthwhile to present a
brief background, and the need to have a fresh outlook and an augmentation of the existing concepts.
It is a well-established fact that there exist multiple root causes and failure modes in real life complex
systems that could complement each other. According to Latino [4], the three basic types of causes are:
(i) Technical/physical: the actual physical mechanism of the failure; (ii) Human: the human practices
that allowed the physical root causes to exist; and (iii) Latent: the way a facility is managed and/or
designed that creates the human root causes. Often the physical roots lead to the multiple human and
latent roots, and hence it is important to truly understand the physical roots of a failure to find the larger
causes. This has been pointed out by the authors [1,2] among other researchers [3,4]. According to
Hulme et al. [5], “there is a need to update our understanding of the different viewpoints of the
systems-thinking approach, upgrade the accident analysis methodologies to a unified one, and further
explore the opportunities towards development of a novel comprehensive accident analysis approach”.
The development of the ‘integration-in-totality principle’ is a forward step in that direction.

Even though the five system safety principles suggested by Saleh et al. [6,7] are effective in
illuminating the technical/technological/physical aspects of accident causation and understanding the
preventive measures thereof, they are not addressing the human-factors and organizational aspects
of system safety to capture the human and latent root causes. Hence the authors have included the
‘human-factors principle’ popularized by International Civil Aviation Organization (ICAO) [8,9] as the
6th system safety principle, in addition to the five basic/technical system safety principles of Saleh et al.
The importance of the human factors principle as one of the cardinal principles of system safety needs
no further emphasis, and especially in aviation activities one should adopt and train their personnel
in the human factors principle. Furthermore, the authors felt the need to include one more system
safety principle to suitably address the latent root causes based on systems thinking and systems
engineering, in order to make the principles more comprehensive. Hence the new system safety
principle of ‘integration-in-totality principle’ has been propounded as the 7th system safety principle,
to take care of the systems-theoretic aspects of accident analysis and prevention. Before proceeding to
the details of the new concepts, an overview of the organization of this paper is presented below to
give a broader perspective of the discussions.

At the outset, in Section 2, an elaborate discussion on the proposed framework called the
‘Seven-Principles-Framework of System Safety Principles’ is provided. Having discussed the broad
framework, the ‘Integration-in-Totality Principle’, the 7th system safety principle newly introduced by
the authors, is explained in detail in Section 3. The ‘integration-in-totality principle’ is illustrated
and elucidated in this Section with the help of the simile of a “Rubik’s cube model” having three
orthogonal axes, viz. “axis of perspective”, “axis of perception”, and “axis of performance”. The two
properties of this model called the “continuum approach” and the “bidirectional synthesis” along the
three axes are also discussed in Section 3. Now it is required to discuss the connection and linkage of
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the integration-in-totality principle with the system thinking domain, and the same has been taken up
in Section 4. The authors identified “five key tenets of systems-thinking” and mapped them against
the present set of system safety principles, which revealed and amplified the need to add not only
the ‘human-factors principle’ to take care of the human aspects, but also the ‘integration-in-totality
principle’ to take care of the key systems thinking tenet of “vertical and horizontal integration”.

The ‘theoretical foundation’ of the ‘integration-in-totality principle’ is presented in Section 5.
It is comprised of three foundational concepts of systems thinking, viz. the ‘abstraction hierarchy’
proposed by Rasmussen [10–14], the ‘design-control-practice (DCP) diagram’ of Stoop [15–18], and the
‘mental models in systems-theoretic framework’ described by Leveson [19–21], which are related to the
‘axis of perspective’, ‘axis of performance’ and ‘axis of perception’, respectively.

Having elaborated the integration-in-totality principle from a theoretical angle, it is pertinent to
present a few case studies chosen to demonstrate how it could be implemented, and the same has
been taken up in subsequent sections. Section 6 further elaborates on the “macro-meso-micro levels of
vertical integration” along the ‘axis of perspective’ and provides a case study on the application of the
concept in defect investigation and failure analysis of an aero-engine component. Section 7 is devoted
to elucidating the significance of perception and mental models in aviation safety, which has not been
explored in the safety literature to the fullest extent. Analysis and understanding of an accident or
a safety event along the ‘axis of perception’ of the ‘integration-in-totality principle’ can remove the
distortions in perceptions, and thus help find the truth in any given situation. The recent aviation twin
disasters of Boeing 737 MAX aircraft have been analyzed as a case study to illustrate the application of
the understanding along the path of “intent-execution-manifestation” in the ‘axis of perception’.

Section 8 is meant for explaining the usefulness of ‘bi-directional synthesis’ along the
“design-manufacture-operation” life-cycle continuum. A case study based on the analysis of the
test data of 200 aero-engines along the reverse path of test-assembly-manufacture helped improving
the engine performance and safety, by working back on the assembly procedures of the compressor
modules and manufacturing practices of the compressor blades.

A model on ‘quality-reliability-risk-safety paradigm’ is presented in Section 9 to highlight the
relationship between these four aspects so fundamental to the aerospace and aviation field. Section 10
presents a very interesting analysis of the ‘V-model of systems engineering’ mapped with respect
to the axes of perspective, perception and performance of the ‘integration-in-totality principle’,
thus establishing the applicability of the ‘integration-in-totality principle’ in the field of reliability
analysis and airworthiness certification. Section 11 narrates the suitability of the ‘integration-in-totality
principle’ in risk management.

Finally, Section 12 establishes the linkage between two emerging and parallel fields of knowledge,
viz. ‘systems thinking and system safety principles’, and ‘strategic quality management’. It is
diagrammatically shown how the ‘integration-in-totality principle’, developed by the authors as the
7th system safety principle based on ‘systems thinking in safety’, can be used as a pivotal concept in
‘strategic quality management’. The technical discussion is concluded in Section 13.

2. System Safety Principles and the Seven-Principles-Framework

System safety principles are general, high-level, domain-independent and technologically-agnostic
principles, adoptable as detailed safety measures for dealing with various safety hazards.
Once incorporated, the system safety principles are expected to vastly improve the safety of socio-
technical systems. The five basic/technical system safety principles, originally formalized by Saleh et al.,
and built upon the notion of the level of hazard and its escalation along the path of accident
causation [6,7], are described below:

(1) The fail-safe principle [22] mandates that the system design should prevent or mitigate the unsafe
consequences of the failure of a system;
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(2) The safety margin principle [23] requires that features be put in place to maintain the operational
conditions and the associated hazard level at some “distance” away from the estimated critical
hazard threshold or accident-triggering threshold;

(3) The ungraduated response principle [24] posits that the first course of action to explore for
accident prevention and mitigation is the possibility of eliminating a hazard altogether, regardless
of the extent of its belligerence, using creativity and technical ingenuity

(4) The defence-in-depth principle [25–27] calls for safety protection by means of multiple lines of
defences or safety barriers along the potential accident sequences.

(5) The observability-in-depth principle [26,27] requires that various features be put in place to
observe and monitor for the system state and breaches of any safety barrier, and reliably provide
this feedback to the operators, so that all safety-degrading events or states (that the safety barriers
are meant to protect against) are observable.

In order to have a comprehensive set of safety principles, a “seven-principles-framework of system
safety principles” has been developed by the authors, which is shown in Figure 1.
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Figure 1. The Seven-Principles-Framework of System Safety Principles.

Here, two additional system safety principles have been added over and above the aforementioned
“basic/technical five”, covering the human and systemic aspects of system safety. These “additional
two” included in the ‘seven-principles-framework of system safety principles’ are:

(1) The human factors principle [8,9,28] which calls for due consideration of the pivotal resource
of human personnel in a production system, and their interaction with the other resources or
factors of production including the other human beings, for smooth and effective functioning of
the system.

(2) The integration-in-totality principle, which the authors expound in this article, requires that
every aspect in a socio-technical system be integrated vertically and horizontally. Furthermore,
it views, analyzes and understands the system bi-directionally along the continuum of three axes
of perspective, perception, and performance, to have necessary cohesiveness in operations with
convergence of purpose in safety.

There are different ways to comprehend and appreciate integration as a systems requirement.
In general, one can select any one of the three basic approaches or their combinations towards
achieving integration in a system. The first approach is the “interface approach” in accordance
with the ‘SHELL model’ [8], which endeavors perfect interface and smooth interaction between the
‘liveware’ (meaning human-beings) and the remaining workplace elements/components of software,
hardware, environment, and other liveware. The second approach is the “resource approach” as per
the ‘5M model’ [9], based on the interplay between various resources viz. man, machine, medium,
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mission and management. These two approaches form part of the ‘human factors principle’, which is
propounded by the International Civil Aviation Organization (ICAO) as part of the safety management
system, as elaborated in the ICAO Safety Management Manual [8].

However, in the current context, the authors are focusing on a third and perhaps the most
important approach, which can be called the “continuum approach”, which has not been adequately
captured in the safety literature. The details of the ‘integration-in-totality principle’, developed based
on the continuum approach of systems thinking in aerospace Safety, is further elaborated in the
next section.

3. Integration-In-Totality Principle and the Rubik’s Cube Model

The “integration-in-totality principle” proposed by the authors calls for viewing, analyzing
and understanding socio-technical systems bi-directionally along three axes, viz. (i) the axis of
performance, (ii) the axis of perception, and (iii) the axis of perspective. Though conceptually
appealing, the integration of these diverse dimensions needs further illustration and elucidation.

In order to illustrate and illuminate the ‘integration-in-totality principle’ wherein three dimensions
of organizational continuum along three axes have been integrated together, the authors have developed
a “Rubik’s cube model of integration-in-totality principle”, as shown in Figure 2.

The first dimension of continuum, the “axis of perspective”, represent the “macro-meso-micro”
levels of systems thinking in the conventional ‘vertical integration’ approach, which can
have many different interpretations depending upon the context. They could include the
continuum permeating the echelons of regulatory command to management control to operator
compliance (command-control-compliance), the purpose-function-equipment comprehension, or a
system-subsystems-components level understanding. It allows one to migrate from, and bi-directionally
navigate between, a bird’s eye-view of wider and general understanding to a worm’s eye-view of
closer and detailed look.
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The second dimension of continuum, the “axis of perception”, consists of the
“intent-execution-manifestation” pathway which the authors propose here in this article as a novel
concept of “horizontal integration” in systems thinking, in addition to the ‘vertical integration’. The axis
of perception reflects the perceptions and mental models being maintained by different participants in
the system.
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Finally, the third dimension of continuum, the “axis of performance”, comprises of the major stages
in the product life cycle, viz. design, manufacture and operation. This can further be telescopically
expanded, as the need arises, into a design-development-manufacture-assembly-testing-operation-
modification continuum. The ‘axis of performance’ provides an additional orthogonal element of
“horizontal integration” in systems thinking.

Thus, the ‘integration-in-totality principle’ captures the essence of an integrated “continuum
approach” along the three axes of perspective (macro-meso-micro), perception (intent-execution-
manifestation), and performance (design-manufacture-operation). The integration-in-totality principle
is proposed as a stand-alone principle, along with the five basic/technical system safety principles
proposed by Saleh et al. [6], and the human factors principle popularized by ICAO [8], within the
‘seven-principles-framework of system safety principles’.

The traversal from the highest level to the lowest level and then back to the highest level,
like that from the bird’s eye-view to the worm’s eye-view and vice-versa, can be called “bi-directional
synthesis”, which is in fact applicable along each of the three axes, viz. ‘axes of perspective,
perception, and performance’. This property reinforces the dynamics of the ‘continuum approach’.
The ‘bi-directional synthesis’ is represented by the bi-directional arrows shown along each of the
continuum axes in the ‘Rubik’s cube model of integration-in-totality principle’.

The bidirectional interplay between the three axes of continuum, viz. the ‘axis of perspective’
providing the vertical integration, and the two orthogonal ‘axes of perception and performance’
giving the horizontal integration, is at the core of the dynamics of the ‘integration-in-totality principle’.
‘Integration-in-totality principle’ can be particularly useful in the realm of safety investigations, since the
analysis along the ‘axis of perspective’ of vertical integration can take care of the factors that are
typically found at the higher echelons of a socio-technical system, like the command and policies of the
regulatory agencies, and the control and practices of the company management, which are not fully
captured by the present set of accident analysis models. Furthermore, the analysis along the ‘axis of
perception’ and ‘axis of performance’, the two orthogonal axes of horizontal integration, can provide a
more comprehensive and insightful analysis with a lot of flexibility, for understanding and analyzing a
safety-critical socio-technical system in its entirety and instituting necessary preventive interventions
early on.

4. Vertical and Horizontal Integration—A Key Tenet of Systems-Thinking

4.1. The Five Key Tenets of Systems Thinking

Grant et al. [29] tried to capture the spirit of systems thinking by synthesizing the core features of
contemporary accident causation models, as a basis to develop a formal methodology for anticipating
and preventing accident causation and occurrence. They identified a set of 15 basic systems thinking
tenets across the different accident causation models. It was found that, despite considerable variation
in the different philosophical approaches towards accident causation, these tenets are universally
supported. The authors analyzed the 15 basic systems thinking tenets suggested by Grant et al.
It was found that the 15 tenets can further be consolidated into the “five key tenets of systems
thinking”, in order to have a simplified and focused understanding. This effort in consolidation
helped in correlating the ‘systems thinking tenets’ to the ‘system safety principles’. It also revealed
the inadequacy of the present set of the five basic/technical system safety principles in covering the
complete set of systems thinking tenets. A comparative matrix prepared by the authors showing the
‘five key tenets of systems thinking’ mapped against the relevant ‘system safety principles’ is presented
in Table 1.
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Table 1. The Five Key Tenets of Systems Thinking and the Correlated System Safety Principles.

S/N The Fifteen Basic Systems-Thinking Tenets Identified
by Grant et al. (2018), with their Description

Consolidated Set of
“Five Key Tenets of
Systems-Thinking”

“System Safety Principles”
Corresponding to the Key
Systems Thinking Tenets

Unruly
Technologies

Unforeseen and unpredictable
behaviours of new technologies

that are introduced into the
system1

Constraints

System elements that impose
limits on, or influence,

the behaviour of other system
elements to ensure safe operation

Complex and Unruly
Technologies

Fail-Safe Principle
Margin-of-Safety Principle

Ungraduated-Response
Principle Defence-in-Depth

Principle
Observability-in-Depth

Principle

Non-linear
Interactions

Complex interactions that
produce dynamic unpredictable

sequences and outcomes

Dependence on
Initial conditions

Characteristics of the original state
of the system that are amplified

throughout and alters the way the
system operates at a later point in

time

Emergence

Outcomes that result from the
interactions between elements in
the system that cannot be fully

explained by examining the
elements alone

2

Linear Interactions

Direct and predictable cause and
effect relationships between

system elements and production
sequences

Non-linear Interactions
and Emergence

Fail-Safe Principle
Margin-of-Safety Principle

Ungraduated-Response
Principle Defence-in-Depth

Principle
Observability-in-Depth

Principle Human-Factors
Principle

Performance
Variability

System elements change
performance and behaviour to

meet the conditions in the world
and environment in which the

system works

Contribution of the
Protective
Structure

The formal and organized
structure intended to protect and

optimize system safety, but
instead competes for resources

with negative effects [ETTO
Principle]3

Decrementalism

Minor modifications to system
elements and/or normal

performances that gradually
create a significant change with

safety risks [Normalization of
Deviance]

Performance
Variability and

Functional Resonance

Fail-Safe Principle
Margin-of-Safety Principle

Ungraduated-Response
Principle Defence-in-Depth

Principle
Observability-in-Depth

Principle Human-Factors
Principle

Normal
Performance

The way that activities are actually
performed within a system

[Work-as-Done], regardless of
formal rules and procedures

[Work-as-Imagined]

Functional
Dependencies

Necessary relationships and path
dependence between tightly

coupled system elements (i.e.,
components that serve a

functional purpose)

Coupling

The degree or ‘tightness’ and
interconnectivity of the

interactions that exist between
system elements

Modularity

Sub-systems and elements that
interact but are designed and

operated independently of each
other

4

Feedback loops

Communication structure and
information flow to evaluate

control requirements of hazardous
processes

Functional
Dependencies and
Control-Feedback

Fail-Safe Principle
Margin-of-Safety Principle

Ungraduated-Response
Principle Defence-in-Depth

Principle
Observability-in-Depth

Principle Human-Factors
Principle

5 Vertical Integration
Interaction between elements

across levels of the system
hierarchy

Vertical and Horizontal
Integration

Integration-in-Totality
Principle (Newly

introduced)
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It was found from the analysis that the ‘human factors principle’ should be added as a 6th system
safety principle to the set of five basic/technical system safety principles, since all the key tenets
(except probably for the ‘complex and unruly technologies’ tenet) are directly influenced by human
factors. The analysis also revealed that the ‘integration-in-totality principle’ is required to be introduced
as the 7th system safety principle to completely take care of the need for embracing the conventional
systems thinking tenet of ‘vertical integration’, which in fact requires further integration with the two
dimensions of ‘horizontal integration’ presented in this article.

4.2. Need for Both Vertical and Horizontal Integration—The Case for Integration-In-Totality

“Systems thinking is all about relationships and integration”, said Sydney Dekker in his seminal
works on Systems thinking concepts and tenets [30,31]. ‘Vertical integration’ is only one part of the
totality of integration. Even though Grant et al. listed ‘vertical integration’ as one among the fifteen
basic systems thinking tenets, the authors felt that ‘integration-in-totality’ is achieved only through a
holistic “vertical and horizontal integration”. Hence the authors, in their compilation of the “five key
tenets of systems thinking”, substituted the tenet of ‘vertical integration’ with ‘vertical and horizontal
integration’ to reflect the need of complete integration in the true spirit of systems thinking. The next
section is devoted to narrate how a combination of vertical integration and horizontal integration is
created to generate the “integration-in-totality principle”, with strong theoretical foundation from
three important foundational concepts from the field of “systems thinking”.

5. Integration-In-Totality Principle—Three Concepts Constituting the Theoretical Foundation

5.1. The Axis of Perspective—Abstraction Hierarchy and the Macro-Meso-Micro Levels of Vertical Integration

In his pioneering Systems thinking concept of “abstraction hierarchy”, Rasmussen [10–14]
proposed five top-down hierarchical levels of abstraction, viz. functional purpose, abstract function,
generalized functions, physical functions, and physical form, shown in Figure 3.Aerospace 2020, 7, x FOR PEER REVIEW 9 of 24 
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The concept of abstraction hierarchy can nevertheless be simplified into the three levels of
purpose, function, and physical-form. These levels of abstraction hierarchy are the basis for the
“macro-meso-micro” levels of ‘vertical integration’ in the integration-in-totality principle. In the systems
analogy, these three levels could be related to the system (having a purpose), sub-systems (having their
own functions), and components/equipment (having the physical-form). This understanding calls for
a vertical integration of the system, the sub-systems and the equipment so as to capture the entirety of
the system. However, the macro-meso-micro levels have different connotations in different system
contexts, as explained in subsequent sections. The ‘bidirectional synthesis’ with ‘continuum approach’
along the different levels of vertical integration is ingrained in the abstraction hierarchy, as evidenced
by the bi-directional arrows shown in the diagram.

5.2. The Axis of Performance—The Design-Control-Practice (DCP) Diagram

The “design-control-practice (DCP) diagram”, shown in Figure 4, was proposed by Stoop [15–18].
The DCP diagram is constructed of three sets of bi-directional arrows representing three axes.
The macro-meso-micro levels of the vertical axis here represent the control levels of governance-
oversight, management-control and operator-compliance respectively. The diagonal axis indicates
the engineering design cycle of goal-function-form. It can be seen that both the vertical and diagonal
axes of the DCP diagram have a one-to-one correspondence with the macro-meso-micro levels of
‘vertical integration’ derived from the concept of abstraction hierarchy (which in fact have different
connotations in different system contexts), and represented by the ‘axis of perspective’ in the ‘Rubik’s
cube model of integration-in-totality Principle’.

The horizontal axis of the DCP diagram represents a ‘design-develop-construct-operate-adapt’
bi-directional continuum which additionally provides ‘horizontal integration’, which has been taken as
the basis for the ‘axis of performance’ of ‘design-manufacture-operation’ continuum in the ‘Rubik’s cube
model of integration-in-totality principle’. The need for adopting the concepts of ‘continuum approach’
and the ‘bidirectional synthesis’ in safety-related analyses is evident from the three bi-directional
arrows used in the construction of the DCP diagram.Aerospace 2020, 7, x FOR PEER REVIEW 10 of 24 
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5.3. The Axis of Perception—The Role of Mental Models in Systems-Theoretic

The ‘horizontal integration’ cannot be limited to the life-cycle continuum of design-manufacture-
operation. Perception and mental models play an important role in understanding a socio-technical
system in its entirety. That is the reason why one more horizontal axis orthogonal to the other two
axes is provided in the form of ‘axis of perception’ in the ‘Rubik’s cube model of integration-in-totality
principle’, having an ‘intent-execution-manifestation’ pathway along its length. The ‘axis of perception’
is meant to capture the possible variances in the realms of design-manufacture-operation in the
life-cycle continuum, and also between the macro-meso-micro levels.
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The ‘axis of perception’ has been conceived in accordance with the ‘role of mental models in
systems-theoretic framework’, suggested by Leveson [19–21] who opined that the human behavior
within a system-theoretic framework is based on the three elements of (i) the designer’s model, (ii) the
actual system model, and (iii) the operator’s mental model, as shown in Figure 5. The bi-hexagonal
arrows in the figure have been added by the authors to indicate the need and scope for the ‘bi-hexagonal
synthesis’ with the ‘continuum approach’ along the path.

The designer deals with idealized description which is generally known as the “intent”. The actual
system is a result of the “execution” as per the specifications. The operators continually test
their mental model of the process against the reality, which results in the “manifestation”. Thus,
the authors have defined the “axis of perception” of the integration-in-totality principle as an
‘intent-execution-manifestation’ continuum, deriving from the aforementioned concept of ‘mental
models of system-theoretic framework’ from Leveson [19–21].
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The ‘axis of perception’ of the integration-in-totality principle, with its horizontal integration along
the orthogonal axis of ‘intent-execution-manifestation’, takes care of the perceptive mental models
involved in understanding and analyzing a socio-technical system. This is adding up to the horizontal
integration provided by the ‘axis of performance’ along the ‘design-manufacture-operation’ continuum.
Hence it can be seen that the systems safety principle of ‘integration-in-totality’ is perfectly in alignment
with the key systems thinking tenet of ‘vertical and horizontal integration’, with the three axes of
performance, perception and perspective providing the pathways for analyzing any socio-technical
system by applying the concepts of the ‘continuum approach’ to ensure the necessary system integration,
and the ‘bidirectional synthesis’ for comprehensive analysis along the integrated pathways.

Thus we can see that three important concepts of “systems thinking” by three prominent thinkers
in the field of safety have been combined by the authors in this article to conceptualize the ‘Rubik’s
cube model’ having the ‘continuum approach’ and the ‘bi-directional synthesis’, in order to develop
the ‘integration-in-totality principle’ as the “7th system safety principle”.

6. The Axis of Perspective in Integration-In-Totality Principle, and the Macro-Meso-Micro Levels

6.1. Skill-Rule-Knowledge Framework and Macro-Meso-Micro Perspective Levels

The “skill-rule-knowledge (SRK) framework” developed by Rasmussen in 1983 has been a
pioneering work on systems thinking, along with the abstraction hierarchy proposed by him the same
year [10–12]. The SRK framework posits that the human behavior is a reflection of complexity of the
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environment; and is basically ‘teleological’, i.e., driven by purposive goals; and is shaped by signals,
signs and symbols in the environment. It gives a description of the abstraction hierarchy, explaining
the operational aspect of the functional properties of a system, relating it to the various levels of the
operator’s cognitive processing at three levels based on skills, rules and knowledge. It provides an
integrated approach to the design of human-machine systems, combining the concepts of control
engineering and psychology [13,14].

The authors further innovated and reframed the ‘SRK framework’ in the form of a
“FRAMED-IN-FRAM® diagram” to bring in better clarity on how it is a reflection of the ‘axis
of perspective’ of ‘vertical integration’ which is fundamental to the ‘integration-in-totality principle’.
The FRAMED-IN-FRAM® diagram is an improved version of the functional resonance analysis method
(FRAM) diagram [32], developed by the authors. Interested readers are referred to Thomas, et al. [1,2]
for further information on the FRAMED-IN-FRAM® diagram. The FRAMED-IN-FRAM® diagram for
the SRK framework, presented in Figure 6, shows how the behaviour and control, based on the three
levels of skill, rule and knowledge, works through signals, signs and symbols of perceptual, conceptual
and explicit nature respectively. It also illuminates how they work at the three organizational levels,
viz. strategic, tactical, and operational levels, which correspond to the ‘macro-meso-macro’ levels
respectively of the ‘Rubik’s cube model of integration-in-totality principle’.Aerospace 2020, 7, x FOR PEER REVIEW 12 of 24 
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6.2. Macro-Meso-Micro Perspectives in Different Contexts

The macro-meso-micro levels of vertical integration in the axis of perspective of the
integration-in-totality principle can be understood/interpreted in many different ways depending
upon the context in which they exist. From a systems-theoretic point of view, it could be the
system-subsystem-component levels of understanding and analyzing the entity being examined.
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The vertical integration achieved along the axis of perspective in integration-in-totality principle at the
macro-meso-micro levels in different contexts is presented in Figure 7.

Aerospace 2020, 7, x FOR PEER REVIEW 12 of 24 

 
Figure 6. Skill-Rule-Knowledge Framework of Rasmussen, Interpreted using the 
FRAMED-IN-FRAM® Diagram. 

6.2. Macro-Meso-Micro Perspectives in Different Contexts 

The macro-meso-micro levels of vertical integration in the axis of perspective of the 
integration-in-totality principle can be understood/interpreted in many different ways depending 
upon the context in which they exist. From a systems-theoretic point of view, it could be the 
system-subsystem-component levels of understanding and analyzing the entity being examined. 
The vertical integration achieved along the axis of perspective in integration-in-totality principle at 
the macro-meso-micro levels in different contexts is presented in Figure 7. 

 
Figure 7. Macro, Meso and Micro Levels of Vertical Integration in Different Contexts. 

In terms of the abstraction hierarchy, the macro-meso-micro levels correspond to the 
purpose-function-equipment levels, as explained in the previous section. In an organizational 
situation, the macro-meso-micro levels could be the echelons of regulatory agency, company 

Figure 7. Macro, Meso and Micro Levels of Vertical Integration in Different Contexts.

In terms of the abstraction hierarchy, the macro-meso-micro levels correspond to the purpose-
function-equipment levels, as explained in the previous section. In an organizational situation,
the macro-meso-micro levels could be the echelons of regulatory agency, company management and
operating personnel, with the corresponding restraint actions of command, control, and compliance &
care, respectively, as envisaged by Stoop in the DCP diagram [15–18].

As per the SRK framework proposed by Rasmussen, explained earlier with the help of a
FRAMED-IN-FRAM® diagram, the macro-meso-micro levels have knowledge, rule and skill as the
basis of behavior, with corresponding actions being strategic, tactical and operational, respectively.

6.3. The Micro-Meso-Macro Levels of the Axis of Perspective in a Typical Case Study

The case study presented in an earlier technical article by the authors [1] can be shown as an
example of the application of the concept of macro-meso-micro levels for detailed analysis. The case
study pertains to the crack developed at the shear neck of the drive shaft of the oil cooling system
(OCS shaft) of a turbo-shaft engine. Three major influencing sources were identified for occurrence of
the crack (which happened because of excitation of ‘backward whirl’ phenomenon in the OCS shaft as
shown alongside). Interestingly, the three influencing sources were at the three macro-meso-micro
levels from the systemic viewpoint, viz. the aircraft (system), aero engine (sub-system) and the OCS
shaft (component), as shown in Figure 8.
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7. Axis of Perception—The Intent-Execution-Manifestation Pathway

7.1. The World of Perspectives and Perceptions

A good starting point for further discussions on the need for integration-in-totality could be the
illustrations by the authors on the different facets of perspective, based on the ideas from a Deloitte
pamphlet [33], given in Figure 9. The illustrations show that perceptions vary depending upon the
perspective or the viewpoint.

The ‘big picture’, shifting from a worm’s eye-view to a man’s eye-view to a bird’s eye-view and vice
versa, is in fact the ‘macro-meso-micro’ level viewpoints along the ‘axis of perspective’ of the ‘vertical
integration’ concept of integration-in-totality principle. As we go higher up in the ladder, things become
smaller, but the field of vision become larger and wider to have a totally different perspective. The ‘flip
side’ calls for looking from the exactly opposite direction to get a totally different understanding
of the same thing, just as the rotation of an object understood to be clockwise when looking from
above is perceived as an anti-clockwise rotation when looked from below, as illustrated. This is in fact
the property of ‘bi-directional synthesis’ ingrained in the integration-in-totality principle. ‘Looking
through others eyes’ and ‘view from the future’ provide entirely new perspectives and perceptions.
The ‘analogous angle’ and the ‘unexpected answer’ provide new options to be considered and selected
from in any given situation. Other than the facet of ‘big picture’ which belong to the ‘axis of perspective’,
all the other facets are captured by the ‘axis of perception’ of integration-in-totality principle.Aerospace 2020, 7, x FOR PEER REVIEW 14 of 24 
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7.2. The Axis of Perception—Perceptions Vary

The role of perception in understanding the truth and reality is best exemplified by the story
of “The Blind Men and the Elephant” from Indian folklore, wherein the same elephant was variedly
interpreted to be a snake, spear, fan, tree, wall, and rope by the six blind men who touched the trunk,
tusk, ear, leg, side and tail respectively. “Our perception of truth depends on our point of view”,
writes Losmilzo [34] as a caption to the illustration shown in Figure 10, wherein “truth” is shown as a
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three-dimensional object which has shadows of square, circular and triangular shapes when projected
in the three orthogonal directions, all of which are perceived as “true”.
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The ‘axis of perception’ in the integration-in-totality principle captures the variance in perception
due to the difference in viewpoint by different stakeholders at different levels depending upon
their own field of endeavour like design, manufacture, or operation. This variance can be clarified
through the ‘bi-directional synthesis’ with ‘continuum approach’ along the ‘axis of perception’ of
‘intent-execution-manifestation’ in the integration-in-totality principle.

7.3. The Intent-Execution-Manifestation Continuum of the Axis of Perception in a Typical Case Study

The inadequacy of the five basic/technical system safety principles [6] in facilitating complete
understanding, analysis and interpretation of aviation accidents and safety events was earlier
highlighted by the authors. The human factors principle, and the human-factor-focused accident
analysis methods like human factors analysis and classification system (HFACS) also fail to fully achieve
this objective, due to a disconnect with the technical aspects of the present-day aerospace systems
which are basically complex, software-driven and automated. In such a situation, integration-in-totality
principle with its ability to provide multi-dimensional interpretations can provide multifarious insights
into the specific problem.

It would be interesting to see how the integration-in-totality principle could be applied to analyze
the twin disasters of Boeing 737 MAX aircraft [35,36] mentioned in the Introduction. During the
upgrade to Boeing 737 MAX aircraft with bigger engines, the engines were moved up the wing to get
sufficient ground clearance, causing the aircraft nose to lift up higher during take-off. This increased
the possibility of aircraft stall due to a higher angle of attack (AoA). The maneuvering characteristics
augmentation system (MCAS) was introduced by the designers as a software solution to overcome the
problem. The ‘design intent’ was to achieve an automatic “aircraft nose down (AND)” by means of a
stabilizer trim input actuated by the MCAS when the ‘critical angle of attack’ is reached or exceeded.

However, in both the disaster cases, one of the two AoA sensors installed on the aircraft became
faulty, indicating an AoA value higher than the actual value. The feedback from the sensor on the
higher angle of attack (~20◦ in the Indonesian aircraft case, and ~57◦ in the Ethiopian aircraft one)
resulted in the stabilizer trim input actuation by the MCAS, making the aircraft automatically and
uncontrollably pitch down. The pilot applied the manual “aircraft nose up (ANU)” electric trim to
counter the ‘AND’ as and when it was encountered, but the faulty AoA sensor kept sending the wrong
signal triggering the MCAS to cause automatic aircraft nose down repeatedly. The erroneous reading
by the faulty AoA sensor threw up multiple and confusing signals to the aircrew in the cockpit, and the
pilots were not trained to handle such an automation surprise.
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This vicious cycle of the automatic ‘AND’ by the MCAS and the manual ‘ANU’ by the pilot
continued many times, and finally the pilot had to give up the control to the MCAS automation under
duress, causing the aircraft to plunge downwards and crash in both the disaster cases, as shown in the
“FRAMED-IN-FRAM® diagram” (Thomas et al. [1,2]), given in Figure 11.
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The case study shows the disconnect between the ‘intent’ of the designers, the ‘execution’ by the
MCAS and the pilot, and finally the ‘manifestation’ of the disasters due to the disconnect. Had such
possibilities been anticipated as a mental model, necessary checks and controls could have been
instituted in the design stage itself so as to obviate the fatal disasters.

The traditional accident analysis methods like AcciMap [13] would have tried to understand
the event along the macro-meso-micro levels of vertical integration, which can be captured by the
“axis of perspective’ of the integration-in-totality principle. The design-related aspects of the MCAS
and its integration into the aircraft system and its testing and certification could be captured by the
‘axis of performance’. However, the ‘axis of perception’ provides a powerful tool for understanding
and analysis in the form of an intuitional mental model along the ‘intent-execution-manifestation’
continuum as shown in the case study, highlighting the applicability of integration-in-totality principle
in general and the axis of perception in particular in safety investigations.

8. Axis of Performance—The Design-Manufacture-Operation Continuum

8.1. The Axis of Performance—The Pathway for Improvement Processes

The continuum of design-development-manufacturing-assembly-test-operation along the axis of
performance in the integration-in-totality principle is the real pathway for improvement processes in a
system, applying the intent-execution-manifestation mental models of the axis of perception, and the
macro-meso-micro levels of the axis of perspective simultaneously, and hence the Rubik’s cube simile
for the integration-in-totality principle.

The analysis along the continuum of the ‘axis of performance’ has to happen bi-directionally.
Normally, the flow of information and the consequent action, if any, happen uni-directionally along the
forward direction only. But there is a need to have a bi-directional flow of information and action in the
value chain of production/overhaul of an aircraft or aero engine between all the stages and sub-stages.
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For example, the expected acceptance test parameters of an aero-engine are made available with the
assembly personnel and the expected assembly acceptance criteria of the manufactured components are
taken care by the people involved in manufacture/overhaul of the aero-engine, as shown in Figure 12.
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8.2. The Design-Manufacure-Operation Continuum of the Axis of Performance—A Case Study

Quantitative and qualitative analysis bi-directionally along the life-cycle continuum of
design-manufacture-operation of an airborne system can help improving performance and safety of
the system. As a case study, the authors would like to present a glimpse into a research done by them
on performance enhancement of a turbofan aero-engine. The engine type used to have pre-mature
withdrawals before completion of the specified time between overhaul (TBO) due to performance
deterioration, manifesting in the form of higher turbine entry temperature (TET), consequent upon the
higher fuel burning requirement to get the required engine thrust. An analysis of the engine test data
of 200 engines for various engine performance parameters revealed very interesting results. Two of the
typical trend graphs (for the TET and the compressor pressure ratio, with respect to the compressor
mass flow rate) are shown in Figure 13.

The graphs show that the more the compressor mass flow rate, the lesser is the turbine entry
temperature, and the higher is the compressor pressure ratio. Working backward along the axis of
performance, the analysis of the assembly procedures revealed the various reasons for a reduction in the
compressor pressure ratio, and in turn the compressor mass flow rate, leading to higher turbine entry
temperature, thus making the engine susceptible to early withdrawal due to performance deterioration,
like a higher blade tip run-out.

Working further backward along the axis of performance, the contributing factors at the component
manufacturing stage which eventually led to the higher blade tip run-out could be found out.
Improvement actions taken in the manufacturing stage on the blade realization processes and in
the assembly stage on the assembly procedures, and establishing the best practice rules accordingly,
helped in getting a lower turbine entry temperature and thus higher thrust at the testing stage.
This could substantially reduce the susceptibility of the aero-engine for pre-mature withdrawals from
the operating unit due to performance deterioration, since sufficient margin of safety was provided in
the engine pass-out stage itself by aiming for an engine with lesser TET.
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9. The Quality-Reliability-Risk-Safety Paradigm

The concepts of quality, reliability, risk and safety are correlated, as shown in the
FRAMED-IN-FRAM® diagram of quality-reliability-risk-safety paradigm (Thomas et al. [2]) in
Figure 14.
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10. Integration-In-Totality Principle—Linkages to Systems Engineering and Airworthiness

In this section, the ‘integration-in-totality principle’ is explained in the context of systems
engineering concepts applicable to reliability and airworthiness, and the linkage between the
integration-in-totality principle and the “V-model of systems engineering” is established.
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Systems engineering is the structured approach towards definition, implementation, integration
and operation of a system to meet its functional, physical and operational performance requirements,
in the given environment over the planned life cycle. The V-model captures the essence of the systems
engineering process [37].

10.1. The Integration-In-Totality Principle Represented in the V-Model of Systems Engineering

It is interesting to note that the system safety principle of integration-in-totality, with its axes
of perspective, perception and performance, can be depicted in the V-model of systems engineering,
as shown in Figure 15.
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10.2. The Systems Engineering Process and the Macro-Meso-Micro Levels of ‘Axis of Perspective’

The “axis of perspective”, comprising of the macro-meso-micro levels of vertical integration in
the integration-in-totality principle, can be viewed in two different ways in the V-model of systems
engineering. The creation of a “system” in systems engineering is meant to meet the mission objective or
the “purpose” [37]. This is achieved by means of various design teams (applying concurrent engineering
concepts) working on multiple “subsystems” having their own “function”. At a lower level, specialized
design groups (applying the engineering design process) design the “components”, forming part
of the “equipment”. Thus it can be seen that systems engineering follows the macro-meso-micro
levels of system-subsystem-component bi-directionally, which in turn corresponds to the abstraction
hierarchy levels of purpose-function-equipment, fundamental to the axis of perspective of the
integration-in-totality principle.

The left leg of the systems engineering V-model represents the ‘Formulation phases of
decomposition and definition’, wherein ‘tearing down’ of the system is done to reveal the complete
system architectural design. The right leg of the V-model, on the other hand, represents the
‘Implementation phases of integration and verification’ that are effectively ‘building up’ the system
from the component level to the functional sub-systems to the complete system. This traversal from
the highest level to the lowest level and then back to the highest level, like the traversal from the bird’s
eye-view to the worm’s eye-view and back, is in accordance with the “bi-directional synthesis” with
“continuum approach” along the ‘axis of perspective’ of the integration-in-totality principle, as shown
alongside the figure of V-model by bi-directional arrows. The same ‘bi-directional synthesis’ and
‘continuum approach’ are applicable along the ‘axis of perception’ and the ‘axis of performance’ as well.
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10.3. The Systems Engineering Process and the Intent-Execution-Manifestation of ‘Axis of Perception’

The V-model of systems engineering, which is basically a process model, calls for moving down
along the left leg by completing each phase sequentially and then moving up the right leg, applying
the ‘eleven systems engineering functions’ at each stage to achieve the objectives [37]. This process
traverses along the mental model path of intent-execution-manifestation of the “axis of perception” of
the integration-in-totality principle. It can be seen that there is a one-to-one correspondence between
the Intent and the manifestation at each level of execution (viz. the operational need of the system
and the delivered capability; the functional requirement of the subsystem and the validated solution;
and the detailed design of the equipment and the verified parts).

10.4. The Systems Engineering Process and the Design-Manufacture-Operation Path of ‘Axis of Performance’

The engineering design process (EDP) in the V-model follows the “axis of performance” of
design-manufacture-operation. As illustrated in the representative V-model of systems engineering in
Figure 15 linking it to the integration-in-totality principle, the axis of performance can also be shown
perpendicular to the plane of the page bi-directionally, since the same V-model having the axes of
perspective and perception is applicable not only for design in the plane of the diagram, but also for
the parallel planes for manufacture and operation as well.

10.5. Integration-In-Totality Principle in Airworthiness Certification

The operational requirements of an aircraft or an aero engine are specified by the customer and
designed, manufactured and maintained by the contractor firm having the ‘system design responsibility
(SDR)’. The design organization holds the ‘type approval’ which is obtained through an elaborate type
certification process undertaken by a dedicated airworthiness certification agency. The ‘military type
qualification process’ regulates the procedures concerning the military aircraft ‘type qualification’ for
performance and ‘certification’ for airworthiness, and the qualification and suitability for installation
of pertinent systems.

Typically, the verification process of a ‘type design’ for airworthiness is done in a three-stage
process, viz. (i) definition of the type in accordance with approved documentation or design standard,
(ii) definition of the ‘means of compliance’ to demonstrate each requirement as per the qualification
programme plan, and (iii) demonstration of compliance with the safety requirements. It can be
seen from the foregoing discussions that the integration-in-totality principle, with its three axes
of perspective, perception and performance, can be used as a valuable theoretical foundation for
airworthiness certification, including for continuing and continued airworthiness, since it takes care of
all the related aspects of reliability, risk, safety and quality.

11. Integration-In-Totality Principle—Linkage to Risk Management

11.1. Risk Management and System Safety

“Safety is the state in which risk (of personal harm or property damage) is reduced to and
maintained at or below an acceptable level, through a continuing process of hazard identification
and risk management”, according to the ICAO definition [8]. Quantitative risk management is done
based on the assessment of ‘probability’ of occurrence of safety hazards/events and ‘severity’ of their
consequences. The integration-in-totality principle, being the system safety principle based on systems
thinking in safety, has got major relevance in the process of identifying the hazards and managing the
associated risks. This is done by way of mitigating the risk through necessary corrective actions in the
short term and eliminating the risk altogether through effective preventive actions for the long term.



Aerospace 2020, 7, 149 20 of 23

11.2. Risk Management along the Axes of Perspective, Perception and Performance

Risk management in an organization is carried out at different levels. ‘Organizational risk
management’ is concerned with the threats and opportunities external to the organization, and hence
is ‘strategic’ in nature. ‘Operational risk management’, on the other hand, deals with the weaknesses
and strengths within the organization and are therefore ‘tactical’ and ‘operational’ in practice. Hence it
can be seen that risk management has a strategic-tactical-operational continuum of vertical integration
as shown in Figure 7, along the ‘axis of perspective’ of the integration-in-totality principle.

Risk management also works along the ‘axis of perception’. The disconnect between the
design intent, manufacturing execution and the operational manifestation are to be captured by
applying forward-looking and backward-looking logics respectively between the safety event and the
cause/consequence using the various inductive and deductive techniques of system safety analysis.
This requires ‘bidirectional synthesis’ along the intent-execution-manifestation continuum in the axis
of perception of integration-in-totality principle.

Analyzing the system along the ‘axis of performance’ of the design-development-manufacturing-
testing-operation continuum also is equally important for risk management, to understand the
system deficiencies and vulnerabilities along the path. Bi-directional synthesis along the chain of
adjacent operations, treating the personnel dealing with the next phase or process or operation as
the external/internal customer is very important for achieving risk mitigation at each stage, bringing
down the probability of occurrence of safety events and severity of their consequences. In order
to mitigate risk, and enhance quality, reliability and safety, it is necessary to act upon the accident
precursors, pathogens and latent defects in a near-miss management framework early on along the
axis of performance of the integration-in-totality principle.

12. Integration-In-Totality Principle—Linkage to Strategic Quality Management

12.1. Strategic Quality Management—A Convergence Concept

Quality as an organizational function has evolved over the years, from inspection to
quality-control to quality-assurance to company-wide-quality-control to total-quality-management to
strategic-quality-management. In the process, the tenets of quality also got enlarged with a snowballing
effect, encompassing and subsuming the product, process, system, people, improvement-cycle and
risk [38]. Strategic quality management (SQM) is a convergent concept, combining the basic concepts
of total quality management and corporate strategy management [39].

12.2. Integration-In-Totality Principle and Strategic Quality Management

The integration-in-totality principle is the pivotal concept which can bridge the gap between the
two parallel knowledge fields of safety and quality, by integrating the concepts of systems thinking in
aerospace safety and strategic quality management, as shown in Figure 16.

Strategic quality management and system safety principles represent the latest developments
in the fields of quality and safety, respectively. Quality and safety are linked through the
quality-reliability-risk-safety paradigm presented in an earlier section [2], and strategic quality
management has risk-based thinking as one of the cornerstones [39]. Hence application of strategic
quality management and integration-in-totality principle together in the systems thinking framework
can help understand aerospace systems like aircraft, aero engines, etc. better and achieve performance
enhancement of the system, applying quantitative analysis using predictive analytics, and also
employing qualitative analysis techniques like functional resonance analysis method (FRAM).
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13. Conclusions

A new safety concept called “integration-in-totality principle” has been introduced in this article
as the 7th system safety principle. A “seven-principles-framework of system safety principles” is
proposed, adding two more principles to the five basic/technical system safety principles conceptualized
by Saleh et al. The “integration-in-totality principle” is illustrated with the simile of a “Rubik’s cube
model of integration-in-totality principle” having three axes, viz. the axis of performance, the axis
of perception, and the axis of perspective, reinforcing the key systems thinking tenet of “vertical
and horizontal integration”. The relevance of ‘bidirectional synthesis’ of a socio-technical system
with a ‘continuum approach’ along these three axes to facilitate systems thinking is articulated,
drawing upon the ‘abstraction hierarchy’ and the ‘SRK framework’ by Rasmussen, ‘DCP diagram’
by Stoop and ‘mental models in systems-theoretic framework’ by Leveson. The article also explores
the linkage of integration-in-totality principle to strategic quality management and risk management,
bridging the gap between two parallel fields of knowledge. The integration-in-totality principle is
interpreted in terms of the ‘V-model of systems engineering’, to establish its linkage to reliability and
airworthiness of an aerospace system. It is expected that the new safety concepts shall augment the
existing body of knowledge and trigger further research in the field of systems thinking and strategic
quality management.
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