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Abstract: Two main factors, including regression accuracy and adversarial attack robustness, of six
trajectory prediction models are measured in this paper using the traffic flow management system
(TFMS) public dataset of fixed-wing aircraft trajectories in a specific route provided by the Federal
Aviation Administration. Six data-driven regressors with their desired architectures, from basic
conventional to advanced deep learning, are explored in terms of the accuracy and reliability of their
predicted trajectories. The main contribution of the paper is that the existence of adversarial samples
was characterized for an aircraft trajectory problem, which is recast as a regression task in this paper.
In other words, although data-driven algorithms are currently the best regressors, it is shown that they
can be attacked by adversarial samples. Adversarial samples are similar to training samples; however,
they can cause finely trained regressors to make incorrect predictions, which poses a security concern
for learning-based trajectory prediction algorithms. It is shown that although deep-learning-based
algorithms (e.g., long short-term memory (LSTM)) have higher regression accuracy with respect to
conventional classifiers (e.g., support vector regression (SVR)), they are more sensitive to crafted
states, which can be carefully manipulated even to redirect their predicted states towards incorrect
states. This fact poses a real security issue for aircraft as adversarial attacks can result in intentional
and purposely designed collisions of built-in systems that can include any type of learning-based
trajectory predictor.

Keywords: aircraft trajectory prediction; deep neural network; reliability; adversarial attack

1. Introduction

Avionics transportation standards and policies established by official agencies require all aviation
companies to respect the approved safety protocols. These standards have been developed to ensure
safe aircraft transportation, especially for modern automatic flights. Huge investments have been
made in the United States over the last decades by the Federal Aviation Administration (FAA) into
“The Next-Generation of Aerial Transportation” project, with the aim of increasing the safety and
reliability of flights [1].

Safety protocols are required for air traffic control, safe path definition, and collision avoidance,
which determine conditions in which aircraft are allowed to fly, while safety policies reduce the chance
of collisions. In this way, aircraft trajectory prediction (ATP) can be considered as an excellent tool for
achieving safe aerial transportation. This prediction method may be used at different times, including
for short-term and long-term predictions. Long-term prediction is useful for air traffic control, fuel
consumption optimization, and logistics operations while short-term prediction is useful for conflict
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detection. The predicted trajectories may be utilized by ground computer units as part of an air
traffic control system (ATCS) or by computer units of the aerial collision avoidance system (ACAS) in
the cockpit.

Many aerial control tasks are processed by avionics systems. Such tasks might include aircraft
trajectory optimization [2] and its application into flight management systems [3], which aim to reduce
operational costs [4], fuel consumption, and adverse environmental side effects [5]. A variety of
algorithms, such as genetic algorithm (GA) [6], particle swarm optimization (PSO) [7], ant colony [8],
bee colony [9], beam search [10], and harmony search [11] have been employed to solve aircraft
trajectory optimization problems. However, the main aim of avionics control systems is aerial collision
avoidance [12], where ATP contributes to solving encounter scenarios efficiently. This paper is focused
on ATP accuracy and reliability; the accuracy of predicted trajectories was assessed using the error rate
in the test phase, and the reliability of ATP neural network models was evaluated based on the fooling
rate for the adversarial attack. Evaluating the ACAS performance analysis based on data-driven
trajectory predictors was not the aim of this article.

Generally, the predicted trajectory for each moving aircraft, produced by an algorithm, consists
of a sequence of position states in the Cartesian space with their respective displacements from
other sequences needed to prevent aircraft from colliding with each other. In cases when a safe zone
constraint related to the predicted paths is violated, real-time adjustment is required from the prediction
system in order to rearrange the aircraft position states [13]. In this type of setup, the computational
complexity of the predictors is a key factor in providing a rapid and practical solution [14] as delays
in aircraft equipped with aircraft trajectory prediction (ATP) systems can result in costly and mainly
dangerous collisions. In this paper, a novel algorithm is proposed for real-time and accurate ATP in
order to meet the high standards of a reliable control system.

Among all the algorithms developed for ATP, neural networks, especially deep learning approaches,
have shown the most accurate performance if enough training data are provided. Many public trajectory
datasets that are available online can be used for this aim. Deep learning (DL) models trained for path
prediction purposes significantly outperform any other data-driven algorithms based on comparisons
of runtime, from regression correctness to computational complexity. Unfortunately, recent studies
have uncovered the vulnerability of all data-driven models, whereby some input samples can be
purposely manipulated to mislead them [15]. These fake samples are known as adversarial samples
and, unfortunately, detection of fake sample intrusion is presently an ongoing problem for the machine
learning community. In this paper, the existence and impacts of these samples are characterized in
relation to ATP for both conventional regressors and cutting-edge deep learning models.

The organization of this paper is as follows. The common approaches developed for air vehicle
trajectory prediction are reviewed in the following section. Brief explanations of data-driven predictors
are provided in the third section. Section four is dedicated to our experimental results and to a deep
analysis of adversarial attacks on a variety of trained models. Finally, the related ongoing problems are
elaborated for future works. For instance, we can characterize the existence of adversarial attacks for
any learning-based algorithm while there is no certain systematic defense. Moreover, unfortunately,
studies show that these adversarial samples are transferable from one model to another, even if they
have been manipulated for other algorithms.

2. Related Works on Trajectory-Based Operations

Generally, trajectory-based operations are categorized as either short- or long-term predictions,
whereby each prediction type has its own advantages relevant to the corresponding task. Figure 1
depicts the general setup of an aircraft encounter scenario, which could be visualized in short-
and/or long-term prediction frameworks. Although encounter scenarios, such as the one shown in
Figure 1, have been solved using Traffic Collision Avoidance System (TCAS) without future trajectories,
the collision avoidance task can be performed more optimally by relying on predicted trajectories.
In fact, it is known that the TCAS modifies the owner’s future trajectory if an intruder enters into the
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owner’s resolution advisory zone. Moreover, the TCAS design is based on the current aircraft position
and on its conservative virtual unsafe zone. Hence, many false alarms and unnecessary resolution
advisory events may occur during the flight. In this way, the collision zone can be reduced using an
accurately predicted trajectory (position of aircraft in the nth step), which leads to avoiding unnecessary
trajectory modification. Therefore, the design of a reliable and precise trajectory prediction algorithm
is needed [16].
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There is a large volume of research targeting these frameworks. Since the trajectory prediction
could be formulated as a regression problem, these researches could be mainly employed for improving
regression performance [17]. In all these frameworks, the encounter scenario is defined based on owner
and intruder attitudes [16]. The encounter scenario may occur due to the pilot mistake [18], lack of
visibility [19], actuator failure [20], or loss of communications [21]. When an intruder arrives in the
vicinity of the owner’s neighborhood, after intruder detection [22], the ACAS resolution advisories
commands should be transferred to the fixed-wing aircraft control system, which is supposed to deflect
control surfaces with the aim to modify future trajectory. The control system of the owner aircraft (that
is flying in a specific route) updates its subsequent trajectory with respect to the built-in regression
model, while sensory radar information is being provided simultaneously [23]. Finally, the safety
control system takes proper actions in order to avoid a possible collision [24].

2.1. Collision Avoidance

Model predictive control is an algorithm designed for trajectory prediction and path
planning [25,26]. This strategy is used to model both the dynamics and the kinematics of a moving
vehicle in order to predict the most appropriate trajectory to be followed. In contrast to this deterministic
approach, a stochastic method is proposed in [27], which implements the assembly of the multiple
models to be tuned via optimization techniques. Since real-time optimization for prediction, even for a
single model, is very costly, an adaptive control model that runs quadratic programming optimizers is
developed in [28].

In [29], a nonlinear model predictive setup was proposed in an effort to solve multiconvex
obstacles. A linear optimization algorithm was designed for the owner aircraft model to avoid
collisions with other aircraft models. A multiagent control policy for handling complex encounter
scenarios is discussed in [30]. Since the agents were distributed, and the agreement of each agent was
needed, the optimization problem was expensive. Instead, their optimization procedure generated
more accurate position states that were followed by the aircraft.

Given that nonlinearities and uncertainties are involved in all these optimization problems,
research efforts have been employed to develop evolutionary algorithms for fine path regression.
Particle swarm optimization (PSO) has been adapted to generate 3D position states illustrated by
B-spline curves [31]. Genetic algorithm (GA) is a greedy-based evolutionary procedure that has
been utilized for greedy regression in highly convex scenarios [32]. This algorithm incorporates only
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local nearby consistencies in its optimization routine with the aim of generating to-the-point states
regardless of the entire path. In order to fully take advantage of the benefits of GA and PSO approaches,
their combination has been proposed in [33], and it was demonstrated that the combined GA–PSO
algorithm was able to outperform GA and PSO individually.

In addition to these greedy approaches, data-driven algorithms have been developed for trajectory
predictions by rectifying the trajectories’ local state shortcomings. For example, a neural-network-based
clustering approach that implements an unsupervised learning process is discussed in [34]. In some
research studies, deep neural networks have been utilized for two aims, firstly for safe zone clustering
and, secondly, for correct position prediction of an aircraft over time [35,36]. Deep reinforcement
learning approaches have also been embedded into this setup, and promising results have been
reported thus far [37].

2.2. Data-Driven Trajectory Prediction

A long-term aircraft trajectory is predicted using a trained hidden Markov model (HMM) [38]
using 3D positional and, in addition, environmental data, which are considered as the fourth dimension
of the dataset needed to consider weather uncertainties. That work divides the whole path into small
patches of 3D cubes and then predicts the future trajectory under real flight conditions. Similarly,
a long-term four-dimensional (4D) aircraft trajectory has been predicted using a deep generative neural
network architecture modeled in the presence of uncertainties, such as wind, convective weather,
and temperature [39].

In [40], aircraft trajectory prediction is considered as a flight sequence estimation problem.
That work proposes a recurrent neural network for trajectory prediction. The results reveal noticeable
improvements in state predictions. Following this idea, a long short-term memory (LSTM) algorithm
has been developed which outperformed its predecessor [41]. Although a comparative study conducted
in [42] showed that deep learning algorithms outperform all other machine learning approaches, a
variety of their models were implemented to further investigate their prediction capability, as well as
their vulnerability to adversarial attacks.

Overall, the trajectory may be predicted using conventional approaches (e.g., model predictive
control (MPC)) based on aircraft dynamics models or modern data-driven techniques (e.g., deep
neural network (DNN)) that rely on large amounts of recorded data. Studies have shown that modern
data-driven techniques outperform conventional approaches if enough training data is available and
security issues are respected. It is known that in conventional approaches, uncertainties backpropagate
through the prediction horizon, and errors increase dramatically. Hence, the data-driven algorithms
were adopted for trajectory prediction, and the ATP task was performed regardless of aircraft dynamics
models, which is a remarkable advantage of data-driven predictors. A carefully tuned and real-time
predictable path is therefore required for each aircraft. Since data-driven algorithms have been used
for path prediction, they have been found to be not completely fault-tolerant, and they may create
security issues for aviation transportation systems. In the following section, some of our benchmarking
algorithms and datasets are explained. Then, we will explain how the adversarial samples can be
generalized to models being trained using standard aircraft trajectory datasets.

3. Building Data-Driven Predictors

Data-driven predictors have shown great performance in all regression tasks, which is also
shown in our present study. Therefore, several different learning-based algorithms are explored for
solving the aircraft trajectory regression problem (ATRP). The benchmarking algorithms that we will
propose range from conventional (e.g., logistic regression) to state-of-the-art (e.g., convolutional neural
network). The performance of these algorithms is totally dependent on the characteristics of the given
dataset and on its sample distributions, in which sampling distribution is defined as a probability
distribution of a statistic that is derived from a considered population. Since there is no practical
approach to define the best regression algorithm for our dataset, conducting experiments on all of them
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to determine the most proper one is needed. Although, nowadays, deep learning-based approaches
(such as CNN, LSTM) are the best performing algorithms, there is no guarantee of outperforming
conventional algorithms, such as support vector regression (SVR). Due to these reasons, six regression
algorithms have been included in our study. These regression algorithms are logistic regression (LR),
support vector regression (SVR), deep neural network (DNN), convolutional neural network (CNN),
recurrent CNN (RNN) and, finally, long short-term memory (LSTM). Our motivation for utilizing all
these algorithms is to measure and compare the strength, generalizability, and robustness of these
models. Brief explanations are provided for each of these algorithms in the following subsections.

3.1. Logistic Regression (LR)

Logistic regression has the potential to fit its results to the training data if the uniformity of
the given dataset is standard and without fluctuations. Since our experimental dataset is “evenly”
distributed over time, it does not contain noticeable fluctuations and, thus, LR can learn from the
mentioned dataset finely and make accurate predictions [43].

By assuming that the given inputs and outputs to the algorithm are X and Y, respectively, Equation
(1) is considered for LR model learning [44]:

Y =
1

exp(θ0 − θ1x1 − θ2x2 − · · · − θnxn)
(1)

where θ is the weight vector that could be obtained during training by optimization using a relevant
cost function J(θ). Conventionally, the cost function is defined in Equation (2) [45]

J(θ) =
1
m

m∑
i=1

[−yi log(hθ(xi)) − (1− yi) log(1− hθ(xi))] (2)

where the number of samples is denoted by m in the training set, and hθ(X), known as the hypothesis,
is defined in Equation (3) [46]

hθ(X) =
1

exp(−θXT)
(3)

where θ ∈ {θi}. One of the crucial observations is that the logistic function θ considered in the above
equations increases the risk of saturation during the training phase; the regularization term is added,
as shown in Equation (4), to rectify this problem [45]:

λ
2m

n∑
j=1

(
θ j

)2
(4)

where λ the regularization term that binds the cost function given by Equation (3) to more parameters
shown in Equation (4) in order to improve the model’s precision. λ should be manually tuned with
respect to the training statistics. Training statistics refer to weight vectors obtained while running an
iterative process for learning, in which their fine tuning increases the chance of obtaining better weight
vectors. The addition of this term to Equation (2) contributes to avoiding overfitting of the dataset
and the need to memorize samples. We trained this LR model on some standard aircraft trajectory
datasets and fine-tuned its hyperparameters. The basic problem of this regressor is its generalization
to complicated patterns, which could be challenging for the LR model to learn. Hence, support vectors
are used to capture data distribution better than the LR, even in cases when the training data are not
linearly separable.
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3.2. Support Vector Regression (SVR)

This conventional regressor is based on the well-known principle of support vector machines,
which is capable of learning from high-dimensional spaces. The concept supported by the SVR is
the mapping of training data from the Euclidean space to another higher dimension space by using
the “kernel trick”, then the learning of the decision boundaries. There are many kernel functions that
could implement this mapping, such as homogeneous/inhomogeneous polynomials, tan h, Gaussian,
and others. Different experiments were performed by us on these kernels in order to determine and
adopt the best ones. The optimization process employed for our SVR model is given in Equation (5) [47]:

min
1
2
‖ θ ‖2 s.t.

{
θixi + b− yi ≤ ε
yi − θixi − b ≤ ε

(5)

where ε denotes the decision boundary precision which should be tuned carefully. The performance of
the SVR model as well as the performance of any other learning-based algorithm is totally dependent
on the type of regression task and on the dataset used for training. Moreover, SVR learns from a
mapped subspace, which could be very challenging. To address this potential problem, some other
algorithms that can learn from raw samples are used. The state-of-the-art of these algorithms will be
reviewed in the following subsections.

3.3. Deep Neural Network (DNN)

Neural network algorithms have been implemented for many regression tasks. It has been shown
that multilayer perceptrons (MLPs) can produce accurate models for any regression problem if enough
training samples are provided [48]. With the advancement of deep neural networks, many interesting
architectures have been introduced, outperforming MLPs. These algorithms learn from raw data,
and can be used to solve time series problems [49], such as aircraft trajectory prediction.

Unlike conventional data-driven models, modern DNNs learn from training sample distributions
with any dimensionality; sometimes, dimension conversion has to be conducted with respect to the
complexity of the regression task. This fact means that learning-based algorithms can be categorized
into feature-based (conventional algorithms such as SVR, LR) and raw inputs (modern deep learning
algorithms, such as CNN, LSTM). The latter category does not need to be provided by handcrafted
feature vectors, but they need more training samples than conventional algorithms. Otherwise, their
performance may decrease. It is important to have a large enough dataset for training deep learning
algorithms. When there is no access to a large dataset, transferring of dimensions can be applied to
enhance sample distributions in order to improve the algorithm performance. To some extent, DNNs
can be sensitive to the volume of the training set, and their performance may degrade if the training
dataset is not large enough. To rectify this issue, several data augmentation algorithms have been
proposed [50].

Similarly to MLPs, input, hidden, and output layers are the mains components of DNNs. New
proposed architectures for DNNs include very dense hidden layers with a massive number of filters.
AlexNet [51], GoogLeNet [52], and ResNet [53] are some of the modern architectures proposed
for DNNs.

Cutting-edge DNN architectures consist of very deep hidden layers, but they also take advantage of
modern blocks in their hidden layers, such as dropout [54], rectified nonlinear activation functions [55],
and optimized cost functions with momentum and adaptive learning rates [56]. “Dropout” is a
regularization technique for training a neural network. It randomly freezes some weight vectors in the
training process and avoids updating them to the end of the ongoing epoch, which boosts the training
performance especially for very dense CNNs. Rectified nonlinear activation function is a discrete

activation function including two linear functions. Mathematically, ReLu (x) =
{

0 f or x ≤ 0
x f or x > 0

. It has

been demonstrated that it outperforms the traditional sigmoid function in neural network training.
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Momentum and adaptive learning rate tune the training cost function with slightly perturbation weight
vectors toward the maximum variations direction.

The abovementioned DNN architectures have been developed for complex computer vision
applications, and they are not fully compatible with the aircraft trajectory regression problem (ATRP).
Therefore, we propose our DNN architecture, adapted to our dataset as shown in Figure 2.
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Figure 2. Proposed deep neural network (DNN) architecture for the aircraft trajectory regression
problem (ATRP).

This figure shows the architecture of our proposed DNN. There are three types of blocks, namely
the input vector (input layer), dense (hidden layer), and fully connected (FC). The dense and FC layers
are the same, but the latter is not connected to any other layers after it. The highlighted parts of each
block specify its input and output dimensions as well as the number of trained filters (weight vectors
per layer) shown in triplet of (number of filters, input dimensions, output dimensions). For instance,
by considering the input of Dense 2, triplet of (8,5,1) means that there are eight filters in this layer, and
the dimension of the input vector is 5 × 1. Moreover, the connection between layers is shown with
oriented arrows.

The input layer in this architecture is a 1× 5× 1 tuple consisting of one filter. Filter dimension
is defined based on the input dataset which consists of five recorded measured parameters
represented as [latitude, longitude, altitude, velocity, time]T5×1. “Hidden layers” are shown as
five dense layers that are fully connected to the next layer in order to produce outputs as
[latitude, longitude, altitude, time]T4×1. Except for the latter layer, all other layers include batch
normalization [57] with normal distribution, dropout with a 0.5 ratio, and rectified linear unit (ReLU)

activation function as a nonlinearity.
Unfortunately, there is no deterministic approach for designing DNN architecture that is obtained

after running several exploratory experiments and after achieving the desired DNN performance in
terms of regression accuracy or error rate. In order to avoid overfitting our model to the training
set, “early stopping” [58] was used to achieve the highest regression accuracy while keeping it
still generalizable.

Although DNN filters are capable of learning very complex sample distributions, incorporating
convolution layers can noticeably improve model performance. These layers could be added
with/without dense hidden layers, and they could be revealed by running experiments on the
given dataset. In the next subsection, our desired CNN architecture for the ATRP is presented.



Aerospace 2020, 7, 145 8 of 19

3.4. Convolutional Neural Network (CNN)

Assuming that a random function gi(θ) and an input sample xi ∈ {X} are given, then their
convolution, gi ~ xi for i ∈ {1, 2, 3, . . . , n} will give a “convolution filter” if Equation (6) approaches to
zero [59]:

dKL
(
dg ‖ dx

)
= −

m∑
i=1

dg log
(

dg

dx

)
= 0 (6)

where dKL denotes the Kullback–Leibler divergence of filter distributions dg and input distributions dx.
CNNs use the backpropagation technique for their cost function optimization, and the filter size

totally depends on the dataset features. For the ATRP, gi(θ) with dimensions of 5 × 1 is suggested,
as well as our DNN filter size. Our proposed CNN architecture, adapted to the ATRP upon conducting
various experiments, is shown in Figure 3, which has only one difference with respect to Figure 2. In this
architecture, there are convolution layers followed by a max-pooling operation which interpolates the
dimensions of the outputs to half of it for each dense layer. This operation reduces potential noise in
the input vectors.
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Figure 3. Proposed convolutional neural network (CNN) architecture for the ATRP.

The initialization scheme, batch normalization, regularization, and dropout ratio have been
set to be the same as the ones of our DNN architecture, with one exception: the inclusion of a
max-pooling (MaxP) operation for dimension reduction and noise removal purposes. Max-pooling is
a post-processing operation that usually comes after convolution layer operation, which shrinks the
input dimensions by half. It has been shown that these operations reduce potential noise in the input
vectors. The ratio of MaxP is chosen to be 0.5 in order to reduce the input sequence by half, which is a
default value for all the deep learning packages.

Although this proposed CNN architecture outperforms the aforementioned DNN, it is still not
appropriate for our regression task. Therefore, this architecture is extended to include some recurrent
blocks, thus aiming to improve the characterization of input sample distributions.
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3.5. Recurrent CNN (RNN)

Recurrent neural networks (RNN) are versions of CNNs/RNNs developed for complex input
streams (input data distributed over time characterized by strong dependency between consecutive
vectors) as their current states are dependent upon their previous and subsequent states. In fact,
multiple feedbacks among the layers are needed to maintain the dependency of distributions. For this
type of dataset, a recurrent neural network (RNN) may outperform common CNN. RNN implements
transitions between consecutive input vectors, which are distributed over time using connected states.
Each state is similar to a hidden layer in a typical CNN. Connection between states could be bijective
from one state to another, which is called “feedback”. RNN states and feedbacks can extract the input
vector dependence on time.

Since samples in our dataset are distributed over time, a suitable RNN architecture is proposed
for the ATRP, as shown in Figure 4. The interpretation of this architecture is as same as the one shown
as Figure 3 with one difference. In this architecture, feedbacks from one state (layer) to another state
have been shown by dotted arrows. For example, gradient information which has been computed for
states of Dense 5 will be transferred to states of Dense 3, and affect its weight vectors. This setup tracks
temporal dependency in a sequence of input streams.

Aerospace 2020, 7, x FOR PEER REVIEW 9 of 19 

 

computed for states of Dense 5 will be transferred to states of Dense 3, and affect its weight vectors. 
This setup tracks temporal dependency in a sequence of input streams. 

 
Figure 4. Proposed recurrent CNN (RNN) architecture for the ATRP. 

This architecture is similar to our designed CNN-based architecture. Hidden layers have been 
empirically designed to achieve competitive performance with our CNN. The activation function 
used for this RNN is “tanh  with a random bias vector”. Kernel, bias, and recurrent initializers have 
been set to a truncated normal distribution of samples with 𝜇 = 0.5 and 𝑠𝑡𝑑 = 0.5. The constraints 
applied to the recurrent blocks are max-norm, while there are no constraints defined for kernel or 
bias. As explained earlier, the dropout is a regularization scheme which randomly freezes some 
weight vectors from their updates. The dropout ratio identifies the probability of randomly selection 
of neurons. When this dropout ratio is set to 0.5, then it means that there is a 50% chance for every 
neuron to be frozen in each epoch. In this paper, a dropout ratio of 0.5 was considered for all the 
layers. There are three recurrent blocks in our proposed RNN. 

Since there is no optimal approach in order to automatize this process, different feedbacks have 
been tested for hidden layers. While designing the architecture for our RNN, consecutive feedbacks 
(from one state to another) were discovered from one hidden layer to another in addition to gradient 
saturation to memorize their dependencies among samples, in which the generalizability of the 
model was negatively affected. In other words, the chance of overtraining of RNN is very high, 
which highly depends on the number of feedbacks among hidden layers. If this setup is not tuned 
properly, the gradient information might be saturated, and the training track would be lost. 
Therefore, a feedback was set up from the sixth dense layer to the fourth and from the fifth to the 
third dense layer. 

Since the dimensionality of our input training data is low, 5 × 1, a connection is set from the 
fourth convolution layer to the first dense layer in order to rectify the gradient vanishing problem. 
“Gradient vanishing” refers to any operation which may give a “zero” value to the gradient 
information. If gradient vectors vanish, then no weight vector can be updated. As shown in our 
previous networks, the last layer of the RNN’s final mapping is fully connected to the output. 

Although RNNs are very much qualified for time-distributed feature learning, some short-term 
dependencies of the input vector among its measured states may be lost within training. Short-term 
dependency can be expressed by the relation between velocity and acceleration, or velocity and 
displacement. Therefore, a long short-term memory (LSTM) algorithm is implemented to solve the 
problem discussed here. 

Figure 4. Proposed recurrent CNN (RNN) architecture for the ATRP.

This architecture is similar to our designed CNN-based architecture. Hidden layers have been
empirically designed to achieve competitive performance with our CNN. The activation function used
for this RNN is “tanh with a random bias vector”. Kernel, bias, and recurrent initializers have been set
to a truncated normal distribution of samples with µ = 0.5 and std = 0.5. The constraints applied to the
recurrent blocks are max-norm, while there are no constraints defined for kernel or bias. As explained
earlier, the dropout is a regularization scheme which randomly freezes some weight vectors from their
updates. The dropout ratio identifies the probability of randomly selection of neurons. When this
dropout ratio is set to 0.5, then it means that there is a 50% chance for every neuron to be frozen in each
epoch. In this paper, a dropout ratio of 0.5 was considered for all the layers. There are three recurrent
blocks in our proposed RNN.

Since there is no optimal approach in order to automatize this process, different feedbacks have
been tested for hidden layers. While designing the architecture for our RNN, consecutive feedbacks
(from one state to another) were discovered from one hidden layer to another in addition to gradient
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saturation to memorize their dependencies among samples, in which the generalizability of the model
was negatively affected. In other words, the chance of overtraining of RNN is very high, which highly
depends on the number of feedbacks among hidden layers. If this setup is not tuned properly, the
gradient information might be saturated, and the training track would be lost. Therefore, a feedback
was set up from the sixth dense layer to the fourth and from the fifth to the third dense layer.

Since the dimensionality of our input training data is low, 5 × 1, a connection is set from the
fourth convolution layer to the first dense layer in order to rectify the gradient vanishing problem.
“Gradient vanishing” refers to any operation which may give a “zero” value to the gradient information.
If gradient vectors vanish, then no weight vector can be updated. As shown in our previous networks,
the last layer of the RNN’s final mapping is fully connected to the output.

Although RNNs are very much qualified for time-distributed feature learning, some short-term
dependencies of the input vector among its measured states may be lost within training. Short-term
dependency can be expressed by the relation between velocity and acceleration, or velocity and
displacement. Therefore, a long short-term memory (LSTM) algorithm is implemented to solve the
problem discussed here.

3.6. Long Short-Term Memory (LSTM)

Currently, the use of LSTM algorithms represents the cutting-edge data-driven approach for
classification tasks as they are conveniently generalizable for regression problems. LSTMs incorporate
three major gates: input, output, and forget [60]. The LSTM relying on cooperation of these blocks
can temporarily remember some information about previously input vectors. The forget gate is
used for tracking similar patterns over time/sequence. The schematic of our LSTM adapted to our
regression task is depicted in Figure 5. Dimensions of our LSTM input are 5× 1 for a given number
of five measured parameters corresponding to the latitude, longitude, altitude, speed, and time for
input vector. The dimensions of our LSTM output are 4× 1, and include four predicted parameters
corresponding to the latitude, longitude, altitude, and time for output vector. Gates have been
represented by blue blocks followed by hyperbolic operations of h. This module tunes the timing of
output vectors derived from the states.
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As seen in Figure 5, the conducted LSTM architecture includes the input unit followed by a
hyperbolic tangent (tan h) activation function. For recurrent activation, a “hard sigmoid” (between
LSTM blocks) is used, through the linear activation function works fine as well. Kernel, recurrent,
and bias initializers are chosen to be “random uniform functions” with “min” and “max” values
equal to 0.05. For all these modules, L2 similarity metric (Euclidean distance) is embedded with
regularization constant λ = 0.01. For simplicity of calculations, we have not taken any kernel, bias, or
recurrent constraints into account. Moreover, the dropout ratio for all the layers was tentatively set to
0.5. No sensitivity analysis was conducted for this LSTM architecture. We have adopted this network
due to its very good regression accuracy with respect to the accuracy of previous deep networks.

4. Numerical Results

In this section, a brief explanation is provided regarding the dataset used and utilization procedure,
and then the prediction results of several models are discussed.

4.1. Dataset

The benchmarking dataset for conducting the proposed research is the traffic flow management
system publicly available online for educational use. Each record of this dataset contains latitude,
longitude, altitude, velocity, and time obtained from 1676 flights [61].

4.2. Measuring the Resiliency of Models

As stated earlier, all six employed algorithms were trained with the maximum generalizability
possible for our dataset. We implemented a 10-fold cross validation [62] for all these models and then
controlled their comprehensiveness by using an early stopping technique. Experiments were further
performed with the aim to determine the extent to which these models could resist given perturbations
and random noise.

We assume that the trained model was built, including post-activation operations, on the training
set of xi ∈ {X}. The following optimization problem was further solved:

min
ε
‖ x− x̃ ‖≤ ε s.t. f (xi) , f (x̃). (7)

In general, this optimization problem is known as an “adversarial attack” [63], which results in
producing samples similar to the original samples but which might lead to mistakes in the model and,
thus, its correction is needed.

Although classification and regression tasks are similar to each other, Equation (7) should be
updated to non-label values for regression problems. In fact, unlike classification, there is no label for
input vectors in the regression task. Therefore, to justify adversarial optimization problem we would
need to replace the “label” with a “threshold” and solve for it. To achieve the minimum perturbation
of ε, the following optimization statement is suggested:

min
ε
‖ x− x̃ ‖≤ ε s.t. min

δ
‖ f (xi) − f (x̃) ‖≥ δ. (8)

Optimizing for ε and δ generates a series of samples that are remarkably similar to the legitimate
inputs, but they are totally different to their associated outputs. In other words, after running the
optimization inequality as defined in Equation (8), the manipulated input, x̃, is similar to the given
legitimate input x although their associated output vectors are not similar. This optimization problem
could be developed to include certain conditions, namely by redirecting the f (x̃) towards a predefined
or random value, which can identify a targeted attack. This condition could add overhead to our
abovementioned optimization problem and, therefore, we do not analyze it in the current paper. In our
future studies, we will study possible approaches for the defense of our developed prediction models
against adversarial attacks.
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Having access to the training set, parameters, and hyperparameters of the trained model constitute
a white-box attack, although it would still be possible to attack even without them. Both white- and
black-box attacks are explained next.

The architectures and training setups of all six models were all the same in this paper, as explained
earlier. For the training data with columns of latitude, longitude, altitude, time, and speed, the models
were finely trained to predict their future states (latitude, longitude, altitude, time). The given input
sample xi was randomly perturbed while keeping it close to its associated original value by using an L2

similarity metrics. There is no generic approach to define the exact values for these hyperparameters.
We empirically obtained these values and they can be changed following the adversary’s suggestions.
Here, the initial values assigned to ε and δ are 0.01 and 100, respectively. Table 1 summarizes the
values of ε and δ achieved for all models trained on the traffic flow management system (TFMS) public
dataset of aircraft trajectories.

Table 1. Mean values of ε and δ for training samples of the TFMS dataset.

LR SVR DNN CNN RNN LSTM

ε 0.0103 0.0174 0.0139 0.0165 0.0237 0.0142

δ 59 126 207 67 106 92

Table 1 compares ε and δ values found by use of six benchmarking regression algorithms. Basically,
adoption of smaller values for ε results in higher similarity between generated adversarial samples
and their associated legitimate samples. Additionally, adoption higher values for δ leads to higher
discrepancies between the ground-truth and the predicted outputs. Ground-truth is defined for
supervised learning methods in order to measure the accuracy of the training set. Among these models,
higher values for δ were achieved using DNN, which means this model yields higher variation in its
predictions for legitimate inputs.

We generated adversarial samples for all the records of the dataset and we tested them by using
of all the trained models. Interestingly, by applying these samples, all models predicted incorrectly.

Table 2 lists the fooling rates of all six models with their prediction confidence scores. This table
compares fooling rates of six victim models against adversarial attacks that were generated by
FGSM algorithm. Unfortunately, all these models were completely vulnerable against adversarial
samples. The results shown in Table 2 clearly restate a security concern regarding the robustness of the
data-driven models, including the conventional and advanced deep learning architectures. Scaled
values of prediction confidence reveal the weakness of each model in terms of its prediction. The main
difference between these algorithms is their prediction confidence. Apparently, RNN predicted wrongly
with the highest confidence.

Table 2. Fooling rate and prediction confidence of the models.

LR SVR DNN CNN RNN LSTM

Fooling rate 100 100 100 100 100 100

Prediction confidence score 0.784 0.843 0.732 0.879 0.910 0.881

Another important concern is the transferability of the generated fake samples from one model
to another. To evaluate this situation, adversarial samples were crafted for each model, and were
feed-forwarded to another model. The results of this experiment are shown in Table 3. This table
statistically explains the transferability property of adversarial samples.
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Table 3. Transferability of adversarial samples from one model to another model.

LR SVR DNN CNN RNN LSTM

LR 100 78.36 84.14 91.23 89.66 91.17

SVR 81.23 100 84.17 95.07 84.56 89.59

DNN 90.07 89.23 100 95.81 97.33 94.46

CNN 86.75 88.71 91.63 100 91.55 93.57

RNN 97.29 94.58 90.67 95.58 100 98.26

LSTM 79.16 81.92 89.99 93.52 88.37 100

This table depicts the transferability of adversarial samples from one victim model to another.
Reported percentage values are averaged among all 10 folds, which is equivalent to say that the
given dataset was divided into 10 equal-size segments versus time and, thus, each one of them was
considered a test segment. Finally, the average of accuracy was we computed for these segments.
The most transferable adversarial samples for each model are shown in Table 3 in bold characters.
For instance, 81.23% of total crafted adversarial samples for SVR are successfully transferable to the
LR model.

Although LSTM is more advanced than the RNN, it is more vulnerable to transferred adversarial
attacks. Equation (8) is further explored for a better understanding of crafted samples. A first
impression could be that adversarial samples are “noises”. To accept or reject this impression, we need
to run experiments to determine if ε and δ constitute “noise” (or not).

To answer the abovementioned question, we utilized the local intrinsic dimensionality (LID)
score [64]. This score differentiates “noisy samples” from “crafted adversarial samples”. Assuming that
di(x) refers to the distance from legitimate sample xi to its nearest neighbors, dk(x), then the maximum
of the neighbor distances can be found in which k is the number of neighbor samples. Therefore, the
LID score can be computed as shown in Equation (9).

LID(x) = −

1
k

k∑
i=1

log
di(x)
dk(x)


−1

(9)

Around 15% of the training set and generated random noisy samples were randomly selected
using Gaussian distribution with 10 different values of µ ∈ [−1, 1] and σ ∈ [−0.75, 0.75]. For fairness
comparison, we repeated this generation 10 times and exported all the generated noisy samples into
the original dataset by building a new directory to include both noisy and legitimate samples. We also
generated new adversarial samples for every record in the original training set and further exported
them into the adversarial category. Eventually, a logistic regression algorithm is trained for two
considered classes in order to classify legitimate and adversarial samples. Table 4 summarizes the
details of this binary classification.

Table 4. Performance comparison of logistic regression (LR) on local intrinsic dimensionality (LID)
scores. The solver for this LR classifier is “liblinear”.

Max Iteration Training
Accuracy (%) Test Accuracy (%) Penalty Tolerance Fitting Intercept # Jobs C

Without
cross-validation 120 86.36 84.27 L2 1e−5 False 4 0.002

5-fold
cross-validation 100 91.23 87.75 L2 1e−5 False 4 0.001

10-fold
cross-validation 95 92.13 86.49 L1 1e−6 True 8 0.003

15-fold
cross-validation 85 92.67 86.18 L1 1e−6 True 8 0.002
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Table 4 primarily compares the accuracy of LR on the LID scores as well its setups for training.
For example, the first row of this table shows that LR without cross validation has 86.36% and 84.27%
accuracy in training and test, respectively. These accuracies have been achieved at the 120th iteration
with L2 regularization penalty and with a prediction tolerance (error) of 1e−5. Training has been
executed using four CPU core (jobs) without weight normalization (false fitting intercept). The inverse
of the regularization strength (C) for this model is set to 0.002.

As shown in Table 4, the LR is favorably used for the binary classes of the LID scores, and it
supports our previous hypothesis (can adversarial samples be interpreted as noisy samples or not?)
regarding the fundamental difference between noisy and adversarial samples. For a very good
characterization of the distribution values of the original, noisy, and adversarial samples, we plotted
their LID scores in Cartesian space. Please note that LID is a score given to every input. Figure 6
visually shows distribution of LID scores for triplet of original, noisy, and adversarial samples.
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Figure 6 shows the LID score comparisons for random samples chosen from the training set. As this
figure indicates, original and noisy samples lie in the same LID subspace, which denotes their structural
similarity. Conversely, adversarial samples are located in a separated upper subspace different from
the original and noisy sets. To demonstrate that these LID scores were also statistically different,
we trained an LR in order to classify LID scores of original, noisy, and adversarial samples. Obviously,
higher values of accuracy of the trained LR mean better classification for LIDs. We summarize the
details of the LR in Table 4 as well as other training information.

Overall, Table 4 statistically proves that LIDs for adversarial samples are far from original and
noisy samples, and Figure 6 shows this difference visually.

Generating adversarial samples with respect to the intrinsic characteristics of the given dataset
could be very costly in terms of optimization overhead. In other words, Equation (8) does not
always show a complex optimization task and could be a non-polynomial problem. These problems
cannot be solved by polynomial functions approximation (of any degree). Therefore, Equation
(8) could be replaced by a faster operation, namely, by taking advantage of gradient information
backpropagated through the network during its training. Generating adversarial samples relying on
gradient information was first introduced in the computer vision community, and was called “fast
gradient sign method” (FGSM) [63]. We will adapt this attack for our regression task.

The FGSM is categorized as a white-box and non-targeted adversarial attack, mainly for
architectures trained by backpropagation, and requires the model gradient information. For a
given input xi, the FGSM crafts adversarial sample x̃, as defined in Equation (10):

x́ = x + ε× sign(∇x J(θ, x, l)) (10)

where J is the cost function of the model, and ε is a float scalar to be defined by a local search. Since the
FGSM attack was introduced for classification purposes, we needed to update the label index of l to a
bounded value by providing a “supremum” and an “infimum”. Therefore, Equation (10) should be
written under the following form [63]:

x́ = x + ε× sign(∇x J(θ, x, v)) (11)

where v < [a− λ, a + λ] is an output value, and a is the actual value as defined in the training set. Our
adapted version of the FGSM (AFGSM) requires its optimization for both ε and λ.

In our next experiment, we generated adversarial samples using the AFGSM for our proposed
DNN, CNN, RNN, and LSTM architectures. We also studied the transferability property of crafted
samples, as shown in Table 5. Table 5 compares the transferability of adversarial samples using our
proposed AFGSM algorithm. For instance, the first element in Table 5 suggests that 78.25% of total
crafted adversarial samples are successfully transferable from DNN to the LR model.

Table 5. Transferability of adversarial samples crafted by the adapted fast gradient sign method
(AFGSM). The highest values are in bold characters.

LR SVR DNN CNN RNN LSTM

DNN 78.25 86.94 100 91.25 89.36 90.71

CNN 85.13 84.58 92.47 100 91.55 92.05

RNN 90.96 92.37 88.24 93.37 100 91.08

LSTM 91.45 90.33 89.69 89.99 92.28 100

As shown in Table 5, all the models are vulnerable to our version of FGSM attack. Not surprisingly,
generated adversarial samples using the AFGSM for DNN and CNN are the most transferable
samples to each other and are shown in bold characters (91.25, 92.47). Moreover, AFGSM-generated
adversarial samples for RNN architecture are the samples most transferable to the CNN model (93.37).
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One hypothesis could be that this is related to their same utilized convolution layers, regardless of
their filters shape, sizes, or order.

4.3. Adversarial Retraining

One potential defense against the threat of adversarial attack would be to train models by use
of a combination of legitimate and adversarial samples. In other words, both original and crafted
adversarial samples could be fed with the correct labels to the model within it training, with the aim of
avoiding being misled during the testing time. Equation (12) shows our proposed retraining policy:

J̃(xi, yi,θ) = cJ(xi, yi,θ) + (1− c)cJ(x̃i, yi,θ) (12)

where c is a constant value set to 0.25, 0.5 and 0.75 for our dataset. Table 6 presents the performance of
the retraining policy for 3 different c values.

Table 6. Performance comparison of data-driven models by adversarial retraining.

c LR SVR DNN CNN RNN LSTM

0.25 86.45 77.36 80.35 81.06 78.37 79.08
Fooling rate (%) 0.50 83.25 76.28 79.47 81.69 79.84 74.41

0.75 84.27 75.79 80.23 81.97 80.56 73.19

0.25 66.16 56.33 61.74 57.19 59.67 61.54
Regression accuracy (%) 0.50 64.87 57.13 64.24 58.36 58.14 60.79

0.75 68.97 52.87 61.58 60.76 59.42 59.45

5. Conclusions

In this paper, the accuracy of data-driven regressors was investigated for conventional (LR and
SVR) and state-of-the-art (DNN, CNN, RNN, and LSTM) algorithms for aircraft trajectory prediction by
use of the traffic flow management system (TFMS) of aircraft trajectories. Although the results testify
the higher performance of the modern algorithms in terms of regression accuracy, they also show the
lowest resiliency against crafted adversarial attacks. We implemented FGSM and AFGSM adversarial
attacks for all the trained models, and measured their fooling rates. Interestingly, conventional
classifiers showed a higher robustness to adversarial attacks compared to the advanced deep neural
networks. As a pro-active approach for improving the robustness of the models, we adversarially
trained all of them, which also increased their error rates. This increased error rate poses a security
issue for learning-based regressors, especially since adversarial samples are transferable from any
learned model to another model, as already shown. For our future work, a data-driven regression
algorithm will be developed that will give a reasonable tradeoff between regression accuracy and
fooling rate.
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