
aerospace

Article

New Reliability Studies of Data-Driven Aircraft
Trajectory Prediction

Seyed Mohammad Hashemi 1,†, Ruxandra Mihaela Botez 1,* and Teodor Lucian Grigorie 2,†

1 ÉTS, LARCASE, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
seyed-mohammad.hashemi.1@ens.etsmtl.ca

2 Military Technical Academy Ferdinand I, 39-49 George Cosbuc, 040531 Bucharest, Romania;
ltgrigorie@yahoo.com

* Correspondence: ruxandra.botez@etsmtl.ca
† These authors contributed equally to this work.

Received: 2 August 2020; Accepted: 15 September 2020; Published: 9 October 2020
����������
�������

Abstract: Two main factors, including regression accuracy and adversarial attack robustness, of six
trajectory prediction models are measured in this paper using the traffic flow management system
(TFMS) public dataset of fixed-wing aircraft trajectories in a specific route provided by the Federal
Aviation Administration. Six data-driven regressors with their desired architectures, from basic
conventional to advanced deep learning, are explored in terms of the accuracy and reliability of their
predicted trajectories. The main contribution of the paper is that the existence of adversarial samples
was characterized for an aircraft trajectory problem, which is recast as a regression task in this paper.
In other words, although data-driven algorithms are currently the best regressors, it is shown that they
can be attacked by adversarial samples. Adversarial samples are similar to training samples; however,
they can cause finely trained regressors to make incorrect predictions, which poses a security concern
for learning-based trajectory prediction algorithms. It is shown that although deep-learning-based
algorithms (e.g., long short-term memory (LSTM)) have higher regression accuracy with respect to
conventional classifiers (e.g., support vector regression (SVR)), they are more sensitive to crafted
states, which can be carefully manipulated even to redirect their predicted states towards incorrect
states. This fact poses a real security issue for aircraft as adversarial attacks can result in intentional
and purposely designed collisions of built-in systems that can include any type of learning-based
trajectory predictor.

Keywords: aircraft trajectory prediction; deep neural network; reliability; adversarial attack

1. Introduction

Avionics transportation standards and policies established by official agencies require all aviation
companies to respect the approved safety protocols. These standards have been developed to ensure
safe aircraft transportation, especially for modern automatic flights. Huge investments have been
made in the United States over the last decades by the Federal Aviation Administration (FAA) into
“The Next-Generation of Aerial Transportation” project, with the aim of increasing the safety and
reliability of flights [1].

Safety protocols are required for air traffic control, safe path definition, and collision avoidance,
which determine conditions in which aircraft are allowed to fly, while safety policies reduce the chance
of collisions. In this way, aircraft trajectory prediction (ATP) can be considered as an excellent tool for
achieving safe aerial transportation. This prediction method may be used at different times, including
for short-term and long-term predictions. Long-term prediction is useful for air traffic control, fuel
consumption optimization, and logistics operations while short-term prediction is useful for conflict

Aerospace 2020, 7, 145; doi:10.3390/aerospace7100145 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://dx.doi.org/10.3390/aerospace7100145
http://www.mdpi.com/journal/aerospace
https://www.mdpi.com/2226-4310/7/10/145?type=check_update&version=2


Aerospace 2020, 7, 145 2 of 19

detection. The predicted trajectories may be utilized by ground computer units as part of an air
traffic control system (ATCS) or by computer units of the aerial collision avoidance system (ACAS) in
the cockpit.

Many aerial control tasks are processed by avionics systems. Such tasks might include aircraft
trajectory optimization [2] and its application into flight management systems [3], which aim to reduce
operational costs [4], fuel consumption, and adverse environmental side effects [5]. A variety of
algorithms, such as genetic algorithm (GA) [6], particle swarm optimization (PSO) [7], ant colony [8],
bee colony [9], beam search [10], and harmony search [11] have been employed to solve aircraft
trajectory optimization problems. However, the main aim of avionics control systems is aerial collision
avoidance [12], where ATP contributes to solving encounter scenarios efficiently. This paper is focused
on ATP accuracy and reliability; the accuracy of predicted trajectories was assessed using the error rate
in the test phase, and the reliability of ATP neural network models was evaluated based on the fooling
rate for the adversarial attack. Evaluating the ACAS performance analysis based on data-driven
trajectory predictors was not the aim of this article.

Generally, the predicted trajectory for each moving aircraft, produced by an algorithm, consists
of a sequence of position states in the Cartesian space with their respective displacements from
other sequences needed to prevent aircraft from colliding with each other. In cases when a safe zone
constraint related to the predicted paths is violated, real-time adjustment is required from the prediction
system in order to rearrange the aircraft position states [13]. In this type of setup, the computational
complexity of the predictors is a key factor in providing a rapid and practical solution [14] as delays
in aircraft equipped with aircraft trajectory prediction (ATP) systems can result in costly and mainly
dangerous collisions. In this paper, a novel algorithm is proposed for real-time and accurate ATP in
order to meet the high standards of a reliable control system.

Among all the algorithms developed for ATP, neural networks, especially deep learning approaches,
have shown the most accurate performance if enough training data are provided. Many public trajectory
datasets that are available online can be used for this aim. Deep learning (DL) models trained for path
prediction purposes significantly outperform any other data-driven algorithms based on comparisons
of runtime, from regression correctness to computational complexity. Unfortunately, recent studies
have uncovered the vulnerability of all data-driven models, whereby some input samples can be
purposely manipulated to mislead them [15]. These fake samples are known as adversarial samples
and, unfortunately, detection of fake sample intrusion is presently an ongoing problem for the machine
learning community. In this paper, the existence and impacts of these samples are characterized in
relation to ATP for both conventional regressors and cutting-edge deep learning models.

The organization of this paper is as follows. The common approaches developed for air vehicle
trajectory prediction are reviewed in the following section. Brief explanations of data-driven predictors
are provided in the third section. Section four is dedicated to our experimental results and to a deep
analysis of adversarial attacks on a variety of trained models. Finally, the related ongoing problems are
elaborated for future works. For instance, we can characterize the existence of adversarial attacks for
any learning-based algorithm while there is no certain systematic defense. Moreover, unfortunately,
studies show that these adversarial samples are transferable from one model to another, even if they
have been manipulated for other algorithms.

2. Related Works on Trajectory-Based Operations

Generally, trajectory-based operations are categorized as either short- or long-term predictions,
whereby each prediction type has its own advantages relevant to the corresponding task. Figure 1
depicts the general setup of an aircraft encounter scenario, which could be visualized in short-
and/or long-term prediction frameworks. Although encounter scenarios, such as the one shown in
Figure 1, have been solved using Traffic Collision Avoidance System (TCAS) without future trajectories,
the collision avoidance task can be performed more optimally by relying on predicted trajectories.
In fact, it is known that the TCAS modifies the owner’s future trajectory if an intruder enters into the



Aerospace 2020, 7, 145 3 of 19

owner’s resolution advisory zone. Moreover, the TCAS design is based on the current aircraft position
and on its conservative virtual unsafe zone. Hence, many false alarms and unnecessary resolution
advisory events may occur during the flight. In this way, the collision zone can be reduced using an
accurately predicted trajectory (position of aircraft in the nth step), which leads to avoiding unnecessary
trajectory modification. Therefore, the design of a reliable and precise trajectory prediction algorithm
is needed [16].

Aerospace 2020, 7, x FOR PEER REVIEW 3 of 19 

 

unnecessary resolution advisory events may occur during the flight. In this way, the collision zone 
can be reduced using an accurately predicted trajectory (position of aircraft in the nth step), which 
leads to avoiding unnecessary trajectory modification. Therefore, the design of a reliable and precise 
trajectory prediction algorithm is needed [16]. 

 
Figure 1. Encounter scenario  

There is a large volume of research targeting these frameworks. Since the trajectory prediction 
could be formulated as a regression problem, these researches could be mainly employed for 
improving regression performance [17]. In all these frameworks, the encounter scenario is defined 
based on owner and intruder attitudes [16]. The encounter scenario may occur due to the pilot 
mistake [18], lack of visibility [19], actuator failure [20], or loss of communications [21]. When an 
intruder arrives in the vicinity of the owner’s neighborhood, after intruder detection [22], the ACAS 
resolution advisories commands should be transferred to the fixed-wing aircraft control system, 
which is supposed to deflect control surfaces with the aim to modify future trajectory. The control 
system of the owner aircraft (that is flying in a specific route) updates its subsequent trajectory with 
respect to the built-in regression model, while sensory radar information is being provided 
simultaneously [23]. Finally, the safety control system takes proper actions in order to avoid a 
possible collision [24]. 

2.1. Collision Avoidance 

Model predictive control is an algorithm designed for trajectory prediction and path planning 
[25,26]. This strategy is used to model both the dynamics and the kinematics of a moving vehicle in 
order to predict the most appropriate trajectory to be followed. In contrast to this deterministic 
approach, a stochastic method is proposed in [27], which implements the assembly of the multiple 
models to be tuned via optimization techniques. Since real-time optimization for prediction, even for 
a single model, is very costly, an adaptive control model that runs quadratic programming 
optimizers is developed in [28]. 

In [29], a nonlinear model predictive setup was proposed in an effort to solve multiconvex 
obstacles. A linear optimization algorithm was designed for the owner aircraft model to avoid 
collisions with other aircraft models. A multiagent control policy for handling complex encounter 
scenarios is discussed in [30]. Since the agents were distributed, and the agreement of each agent 
was needed, the optimization problem was expensive. Instead, their optimization procedure 
generated more accurate position states that were followed by the aircraft. 

Given that nonlinearities and uncertainties are involved in all these optimization problems, 
research efforts have been employed to develop evolutionary algorithms for fine path regression. 
Particle swarm optimization (PSO) has been adapted to generate 3D position states illustrated by 
B-spline curves [31]. Genetic algorithm (GA) is a greedy-based evolutionary procedure that has been 
utilized for greedy regression in highly convex scenarios [32]. This algorithm incorporates only local 
nearby consistencies in its optimization routine with the aim of generating to-the-point states 
regardless of the entire path. In order to fully take advantage of the benefits of GA and PSO 

Figure 1. Encounter scenario.

There is a large volume of research targeting these frameworks. Since the trajectory prediction
could be formulated as a regression problem, these researches could be mainly employed for improving
regression performance [17]. In all these frameworks, the encounter scenario is defined based on owner
and intruder attitudes [16]. The encounter scenario may occur due to the pilot mistake [18], lack of
visibility [19], actuator failure [20], or loss of communications [21]. When an intruder arrives in the
vicinity of the owner’s neighborhood, after intruder detection [22], the ACAS resolution advisories
commands should be transferred to the fixed-wing aircraft control system, which is supposed to deflect
control surfaces with the aim to modify future trajectory. The control system of the owner aircraft (that
is flying in a specific route) updates its subsequent trajectory with respect to the built-in regression
model, while sensory radar information is being provided simultaneously [23]. Finally, the safety
control system takes proper actions in order to avoid a possible collision [24].

2.1. Collision Avoidance

Model predictive control is an algorithm designed for trajectory prediction and path
planning [25,26]. This strategy is used to model both the dynamics and the kinematics of a moving
vehicle in order to predict the most appropriate trajectory to be followed. In contrast to this deterministic
approach, a stochastic method is proposed in [27], which implements the assembly of the multiple
models to be tuned via optimization techniques. Since real-time optimization for prediction, even for a
single model, is very costly, an adaptive control model that runs quadratic programming optimizers is
developed in [28].

In [29], a nonlinear model predictive setup was proposed in an effort to solve multiconvex
obstacles. A linear optimization algorithm was designed for the owner aircraft model to avoid
collisions with other aircraft models. A multiagent control policy for handling complex encounter
scenarios is discussed in [30]. Since the agents were distributed, and the agreement of each agent was
needed, the optimization problem was expensive. Instead, their optimization procedure generated
more accurate position states that were followed by the aircraft.

Given that nonlinearities and uncertainties are involved in all these optimization problems,
research efforts have been employed to develop evolutionary algorithms for fine path regression.
Particle swarm optimization (PSO) has been adapted to generate 3D position states illustrated by
B-spline curves [31]. Genetic algorithm (GA) is a greedy-based evolutionary procedure that has
been utilized for greedy regression in highly convex scenarios [32]. This algorithm incorporates only



Aerospace 2020, 7, 145 4 of 19

local nearby consistencies in its optimization routine with the aim of generating to-the-point states
regardless of the entire path. In order to fully take advantage of the benefits of GA and PSO approaches,
their combination has been proposed in [33], and it was demonstrated that the combined GA–PSO
algorithm was able to outperform GA and PSO individually.

In addition to these greedy approaches, data-driven algorithms have been developed for trajectory
predictions by rectifying the trajectories’ local state shortcomings. For example, a neural-network-based
clustering approach that implements an unsupervised learning process is discussed in [34]. In some
research studies, deep neural networks have been utilized for two aims, firstly for safe zone clustering
and, secondly, for correct position prediction of an aircraft over time [35,36]. Deep reinforcement
learning approaches have also been embedded into this setup, and promising results have been
reported thus far [37].

2.2. Data-Driven Trajectory Prediction

A long-term aircraft trajectory is predicted using a trained hidden Markov model (HMM) [38]
using 3D positional and, in addition, environmental data, which are considered as the fourth dimension
of the dataset needed to consider weather uncertainties. That work divides the whole path into small
patches of 3D cubes and then predicts the future trajectory under real flight conditions. Similarly,
a long-term four-dimensional (4D) aircraft trajectory has been predicted using a deep generative neural
network architecture modeled in the presence of uncertainties, such as wind, convective weather,
and temperature [39].

In [40], aircraft trajectory prediction is considered as a flight sequence estimation problem.
That work proposes a recurrent neural network for trajectory prediction. The results reveal noticeable
improvements in state predictions. Following this idea, a long short-term memory (LSTM) algorithm
has been developed which outperformed its predecessor [41]. Although a comparative study conducted
in [42] showed that deep learning algorithms outperform all other machine learning approaches, a
variety of their models were implemented to further investigate their prediction capability, as well as
their vulnerability to adversarial attacks.

Overall, the trajectory may be predicted using conventional approaches (e.g., model predictive
control (MPC)) based on aircraft dynamics models or modern data-driven techniques (e.g., deep
neural network (DNN)) that rely on large amounts of recorded data. Studies have shown that modern
data-driven techniques outperform conventional approaches if enough training data is available and
security issues are respected. It is known that in conventional approaches, uncertainties backpropagate
through the prediction horizon, and errors increase dramatically. Hence, the data-driven algorithms
were adopted for trajectory prediction, and the ATP task was performed regardless of aircraft dynamics
models, which is a remarkable advantage of data-driven predictors. A carefully tuned and real-time
predictable path is therefore required for each aircraft. Since data-driven algorithms have been used
for path prediction, they have been found to be not completely fault-tolerant, and they may create
security issues for aviation transportation systems. In the following section, some of our benchmarking
algorithms and datasets are explained. Then, we will explain how the adversarial samples can be
generalized to models being trained using standard aircraft trajectory datasets.

3. Building Data-Driven Predictors

Data-driven predictors have shown great performance in all regression tasks, which is also
shown in our present study. Therefore, several different learning-based algorithms are explored for
solving the aircraft trajectory regression problem (ATRP). The benchmarking algorithms that we will
propose range from conventional (e.g., logistic regression) to state-of-the-art (e.g., convolutional neural
network). The performance of these algorithms is totally dependent on the characteristics of the given
dataset and on its sample distributions, in which sampling distribution is defined as a probability
distribution of a statistic that is derived from a considered population. Since there is no practical
approach to define the best regression algorithm for our dataset, conducting experiments on all of them



Aerospace 2020, 7, 145 5 of 19

to determine the most proper one is needed. Although, nowadays, deep learning-based approaches
(such as CNN, LSTM) are the best performing algorithms, there is no guarantee of outperforming
conventional algorithms, such as support vector regression (SVR). Due to these reasons, six regression
algorithms have been included in our study. These regression algorithms are logistic regression (LR),
support vector regression (SVR), deep neural network (DNN), convolutional neural network (CNN),
recurrent CNN (RNN) and, finally, long short-term memory (LSTM). Our motivation for utilizing all
these algorithms is to measure and compare the strength, generalizability, and robustness of these
models. Brief explanations are provided for each of these algorithms in the following subsections.

3.1. Logistic Regression (LR)

Logistic regression has the potential to fit its results to the training data if the uniformity of
the given dataset is standard and without fluctuations. Since our experimental dataset is “evenly”
distributed over time, it does not contain noticeable fluctuations and, thus, LR can learn from the
mentioned dataset finely and make accurate predictions [43].

By assuming that the given inputs and outputs to the algorithm are X and Y, respectively, Equation
(1) is considered for LR model learning [44]:

Y =
1

exp(θ0 − θ1x1 − θ2x2 − · · · − θnxn)
(1)

where θ is the weight vector that could be obtained during training by optimization using a relevant
cost function J(θ). Conventionally, the cost function is defined in Equation (2) [45]

J(θ) =
1
m

m∑
i=1

[−yi log(hθ(xi)) − (1− yi) log(1− hθ(xi))] (2)

where the number of samples is denoted by m in the training set, and hθ(X), known as the hypothesis,
is defined in Equation (3) [46]

hθ(X) =
1

exp(−θXT)
(3)

where θ ∈ {θi}. One of the crucial observations is that the logistic function θ considered in the above
equations increases the risk of saturation during the training phase; the regularization term is added,
as shown in Equation (4), to rectify this problem [45]:

λ
2m

n∑
j=1

(
θ j

)2
(4)

where λ the regularization term that binds the cost function given by Equation (3) to more parameters
shown in Equation (4) in order to improve the model’s precision. λ should be manually tuned with
respect to the training statistics. Training statistics refer to weight vectors obtained while running an
iterative process for learning, in which their fine tuning increases the chance of obtaining better weight
vectors. The addition of this term to Equation (2) contributes to avoiding overfitting of the dataset
and the need to memorize samples. We trained this LR model on some standard aircraft trajectory
datasets and fine-tuned its hyperparameters. The basic problem of this regressor is its generalization
to complicated patterns, which could be challenging for the LR model to learn. Hence, support vectors
are used to capture data distribution better than the LR, even in cases when the training data are not
linearly separable.



Aerospace 2020, 7, 145 6 of 19

3.2. Support Vector Regression (SVR)

This conventional regressor is based on the well-known principle of support vector machines,
which is capable of learning from high-dimensional spaces. The concept supported by the SVR is
the mapping of training data from the Euclidean space to another higher dimension space by using
the “kernel trick”, then the learning of the decision boundaries. There are many kernel functions that
could implement this mapping, such as homogeneous/inhomogeneous polynomials, tan h, Gaussian,
and others. Different experiments were performed by us on these kernels in order to determine and
adopt the best ones. The optimization process employed for our SVR model is given in Equation (5) [47]:

min
1
2
‖ θ ‖2 s.t.

{
θixi + b− yi ≤ ε
yi − θixi − b ≤ ε

(5)

where ε denotes the decision boundary precision which should be tuned carefully. The performance of
the SVR model as well as the performance of any other learning-based algorithm is totally dependent
on the type of regression task and on the dataset used for training. Moreover, SVR learns from a
mapped subspace, which could be very challenging. To address this potential problem, some other
algorithms that can learn from raw samples are used. The state-of-the-art of these algorithms will be
reviewed in the following subsections.

3.3. Deep Neural Network (DNN)

Neural network algorithms have been implemented for many regression tasks. It has been shown
that multilayer perceptrons (MLPs) can produce accurate models for any regression problem if enough
training samples are provided [48]. With the advancement of deep neural networks, many interesting
architectures have been introduced, outperforming MLPs. These algorithms learn from raw data,
and can be used to solve time series problems [49], such as aircraft trajectory prediction.

Unlike conventional data-driven models, modern DNNs learn from training sample distributions
with any dimensionality; sometimes, dimension conversion has to be conducted with respect to the
complexity of the regression task. This fact means that learning-based algorithms can be categorized
into feature-based (conventional algorithms such as SVR, LR) and raw inputs (modern deep learning
algorithms, such as CNN, LSTM). The latter category does not need to be provided by handcrafted
feature vectors, but they need more training samples than conventional algorithms. Otherwise, their
performance may decrease. It is important to have a large enough dataset for training deep learning
algorithms. When there is no access to a large dataset, transferring of dimensions can be applied to
enhance sample distributions in order to improve the algorithm performance. To some extent, DNNs
can be sensitive to the volume of the training set, and their performance may degrade if the training
dataset is not large enough. To rectify this issue, several data augmentation algorithms have been
proposed [50].

Similarly to MLPs, input, hidden, and output layers are the mains components of DNNs. New
proposed architectures for DNNs include very dense hidden layers with a massive number of filters.
AlexNet [51], GoogLeNet [52], and ResNet [53] are some of the modern architectures proposed
for DNNs.

Cutting-edge DNN architectures consist of very deep hidden layers, but they also take advantage of
modern blocks in their hidden layers, such as dropout [54], rectified nonlinear activation functions [55],
and optimized cost functions with momentum and adaptive learning rates [56]. “Dropout” is a
regularization technique for training a neural network. It randomly freezes some weight vectors in the
training process and avoids updating them to the end of the ongoing epoch, which boosts the training
performance especially for very dense CNNs. Rectified nonlinear activation function is a discrete

activation function including two linear functions. Mathematically, ReLu (x) =
{

0 f or x ≤ 0
x f or x > 0

. It has

been demonstrated that it outperforms the traditional sigmoid function in neural network training.



Aerospace 2020, 7, 145 7 of 19

Momentum and adaptive learning rate tune the training cost function with slightly perturbation weight
vectors toward the maximum variations direction.

The abovementioned DNN architectures have been developed for complex computer vision
applications, and they are not fully compatible with the aircraft trajectory regression problem (ATRP).
Therefore, we propose our DNN architecture, adapted to our dataset as shown in Figure 2.
Aerospace 2020, 7, x FOR PEER REVIEW 7 of 19 

 

 
Figure 2. Proposed deep neural network (DNN) architecture for the aircraft trajectory regression 
problem (ATRP). 

This figure shows the architecture of our proposed DNN. There are three types of blocks, 
namely the input vector (input layer), dense (hidden layer), and fully connected (FC). The dense and 
FC layers are the same, but the latter is not connected to any other layers after it. The highlighted 
parts of each block specify its input and output dimensions as well as the number of trained filters 
(weight vectors per layer) shown in triplet of (number of filters, input dimensions, output 
dimensions). For instance, by considering the input of Dense 2, triplet of (8,5,1) means that there are 
eight filters in this layer, and the dimension of the input vector is 5 × 1. Moreover, the connection 
between layers is shown with oriented arrows. 

The input layer in this architecture is a 1 × 5 × 1 tuple consisting of one filter. Filter dimension 
is defined based on the input dataset which consists of five recorded measured parameters 
represented as [latitude, longitude, altitude, velocity, time] × . “Hidden layers” are shown as five 
dense layers that are fully connected to the next layer in order to produce outputs as [latitude, longitude, altitude, time] × . Except for the latter layer, all other layers include batch 
normalization [57] with normal distribution, dropout with a 0.5 ratio, and rectified linear unit (𝑅𝑒𝐿𝑈) activation function as a nonlinearity. 

Unfortunately, there is no deterministic approach for designing DNN architecture that is 
obtained after running several exploratory experiments and after achieving the desired DNN 
performance in terms of regression accuracy or error rate. In order to avoid overfitting our model to 
the training set, “early stopping” [58] was used to achieve the highest regression accuracy while 
keeping it still generalizable. 

Although DNN filters are capable of learning very complex sample distributions, incorporating 
convolution layers can noticeably improve model performance. These layers could be added 
with/without dense hidden layers, and they could be revealed by running experiments on the given 
dataset. In the next subsection, our desired CNN architecture for the ATRP is presented. 

3.4. Convolutional Neural Network (CNN) 

Assuming that a random function 𝑔 (𝜃) and an input sample 𝑥 ∈ 𝑋  are given, then their 
convolution, 𝑔 ⊛ 𝑥  for 𝑖 ∈ 1, 2, 3, … , 𝑛  will give a “convolution filter” if Eq. (6) approaches to 
zero [59]: 𝑑 𝑑 ∥ 𝑑 = − 𝑑 log 𝑑𝑑 = 0 (6) 

where 𝑑  denotes the Kullback–Leibler divergence of filter distributions 𝑑  and input 
distributions 𝑑 . 

CNNs use the backpropagation technique for their cost function optimization, and the filter size 
totally depends on the dataset features. For the ATRP, 𝑔 (𝜃) with dimensions of 5 × 1 is suggested, 

Figure 2. Proposed deep neural network (DNN) architecture for the aircraft trajectory regression
problem (ATRP).

This figure shows the architecture of our proposed DNN. There are three types of blocks, namely
the input vector (input layer), dense (hidden layer), and fully connected (FC). The dense and FC layers
are the same, but the latter is not connected to any other layers after it. The highlighted parts of each
block specify its input and output dimensions as well as the number of trained filters (weight vectors
per layer) shown in triplet of (number of filters, input dimensions, output dimensions). For instance,
by considering the input of Dense 2, triplet of (8,5,1) means that there are eight filters in this layer, and
the dimension of the input vector is 5 × 1. Moreover, the connection between layers is shown with
oriented arrows.

The input layer in this architecture is a 1× 5× 1 tuple consisting of one filter. Filter dimension
is defined based on the input dataset which consists of five recorded measured parameters
represented as [latitude, longitude, altitude, velocity, time]T5×1. “Hidden layers” are shown as
five dense layers that are fully connected to the next layer in order to produce outputs as
[latitude, longitude, altitude, time]T4×1. Except for the latter layer, all other layers include batch
normalization [57] with normal distribution, dropout with a 0.5 ratio, and rectified linear unit (ReLU)

activation function as a nonlinearity.
Unfortunately, there is no deterministic approach for designing DNN architecture that is obtained

after running several exploratory experiments and after achieving the desired DNN performance in
terms of regression accuracy or error rate. In order to avoid overfitting our model to the training
set, “early stopping” [58] was used to achieve the highest regression accuracy while keeping it
still generalizable.

Although DNN filters are capable of learning very complex sample distributions, incorporating
convolution layers can noticeably improve model performance. These layers could be added
with/without dense hidden layers, and they could be revealed by running experiments on the
given dataset. In the next subsection, our desired CNN architecture for the ATRP is presented.



Aerospace 2020, 7, 145 8 of 19

3.4. Convolutional Neural Network (CNN)

Assuming that a random function gi(θ) and an input sample xi ∈ {X} are given, then their
convolution, gi ~ xi for i ∈ {1, 2, 3, . . . , n} will give a “convolution filter” if Equation (6) approaches to
zero [59]:

dKL
(
dg ‖ dx

)
= −

m∑
i=1

dg log
(

dg

dx

)
= 0 (6)

where dKL denotes the Kullback–Leibler divergence of filter distributions dg and input distributions dx.
CNNs use the backpropagation technique for their cost function optimization, and the filter size

totally depends on the dataset features. For the ATRP, gi(θ) with dimensions of 5 × 1 is suggested,
as well as our DNN filter size. Our proposed CNN architecture, adapted to the ATRP upon conducting
various experiments, is shown in Figure 3, which has only one difference with respect to Figure 2. In this
architecture, there are convolution layers followed by a max-pooling operation which interpolates the
dimensions of the outputs to half of it for each dense layer. This operation reduces potential noise in
the input vectors.

Aerospace 2020, 7, x FOR PEER REVIEW 8 of 19 

 

as well as our DNN filter size. Our proposed CNN architecture, adapted to the ATRP upon 
conducting various experiments, is shown in Figure 3, which has only one difference with respect to 
Figure 2. In this architecture, there are convolution layers followed by a max-pooling operation 
which interpolates the dimensions of the outputs to half of it for each dense layer. This operation 
reduces potential noise in the input vectors. 

 
Figure 3. Proposed convolutional neural network (CNN) architecture for the ATRP. 

The initialization scheme, batch normalization, regularization, and dropout ratio have been set 
to be the same as the ones of our DNN architecture, with one exception: the inclusion of a 
max-pooling (MaxP) operation for dimension reduction and noise removal purposes. Max-pooling 
is a post-processing operation that usually comes after convolution layer operation, which shrinks 
the input dimensions by half. It has been shown that these operations reduce potential noise in the 
input vectors. The ratio of MaxP is chosen to be 0.5 in order to reduce the input sequence by half, 
which is a default value for all the deep learning packages. 

Although this proposed CNN architecture outperforms the aforementioned DNN, it is still not 
appropriate for our regression task. Therefore, this architecture is extended to include some 
recurrent blocks, thus aiming to improve the characterization of input sample distributions. 

3.5. Recurrent CNN (RNN) 

Recurrent neural networks (RNN) are versions of CNNs/RNNs developed for complex input 
streams (input data distributed over time characterized by strong dependency between consecutive 
vectors) as their current states are dependent upon their previous and subsequent states. In fact, 
multiple feedbacks among the layers are needed to maintain the dependency of distributions. For 
this type of dataset, a recurrent neural network (RNN) may outperform common CNN. RNN 
implements transitions between consecutive input vectors, which are distributed over time using 
connected states. Each state is similar to a hidden layer in a typical CNN. Connection between states 
could be bijective from one state to another, which is called “feedback”. RNN states and feedbacks 
can extract the input vector dependence on time. 

Since samples in our dataset are distributed over time, a suitable RNN architecture is proposed 
for the ATRP, as shown in Figure 4. The interpretation of this architecture is as same as the one 
shown as Figure 3 with one difference. In this architecture, feedbacks from one state (layer) to 
another state have been shown by dotted arrows. For example, gradient information which has been 

Figure 3. Proposed convolutional neural network (CNN) architecture for the ATRP.

The initialization scheme, batch normalization, regularization, and dropout ratio have been
set to be the same as the ones of our DNN architecture, with one exception: the inclusion of a
max-pooling (MaxP) operation for dimension reduction and noise removal purposes. Max-pooling is
a post-processing operation that usually comes after convolution layer operation, which shrinks the
input dimensions by half. It has been shown that these operations reduce potential noise in the input
vectors. The ratio of MaxP is chosen to be 0.5 in order to reduce the input sequence by half, which is a
default value for all the deep learning packages.

Although this proposed CNN architecture outperforms the aforementioned DNN, it is still not
appropriate for our regression task. Therefore, this architecture is extended to include some recurrent
blocks, thus aiming to improve the characterization of input sample distributions.



Aerospace 2020, 7, 145 9 of 19

3.5. Recurrent CNN (RNN)

Recurrent neural networks (RNN) are versions of CNNs/RNNs developed for complex input
streams (input data distributed over time characterized by strong dependency between consecutive
vectors) as their current states are dependent upon their previous and subsequent states. In fact,
multiple feedbacks among the layers are needed to maintain the dependency of distributions. For this
type of dataset, a recurrent neural network (RNN) may outperform common CNN. RNN implements
transitions between consecutive input vectors, which are distributed over time using connected states.
Each state is similar to a hidden layer in a typical CNN. Connection between states could be bijective
from one state to another, which is called “feedback”. RNN states and feedbacks can extract the input
vector dependence on time.

Since samples in our dataset are distributed over time, a suitable RNN architecture is proposed
for the ATRP, as shown in Figure 4. The interpretation of this architecture is as same as the one shown
as Figure 3 with one difference. In this architecture, feedbacks from one state (layer) to another state
have been shown by dotted arrows. For example, gradient information which has been computed for
states of Dense 5 will be transferred to states of Dense 3, and affect its weight vectors. This setup tracks
temporal dependency in a sequence of input streams.

Aerospace 2020, 7, x FOR PEER REVIEW 9 of 19 

 

computed for states of Dense 5 will be transferred to states of Dense 3, and affect its weight vectors. 
This setup tracks temporal dependency in a sequence of input streams. 

 
Figure 4. Proposed recurrent CNN (RNN) architecture for the ATRP. 

This architecture is similar to our designed CNN-based architecture. Hidden layers have been 
empirically designed to achieve competitive performance with our CNN. The activation function 
used for this RNN is “tanh  with a random bias vector”. Kernel, bias, and recurrent initializers have 
been set to a truncated normal distribution of samples with 𝜇 = 0.5 and 𝑠𝑡𝑑 = 0.5. The constraints 
applied to the recurrent blocks are max-norm, while there are no constraints defined for kernel or 
bias. As explained earlier, the dropout is a regularization scheme which randomly freezes some 
weight vectors from their updates. The dropout ratio identifies the probability of randomly selection 
of neurons. When this dropout ratio is set to 0.5, then it means that there is a 50% chance for every 
neuron to be frozen in each epoch. In this paper, a dropout ratio of 0.5 was considered for all the 
layers. There are three recurrent blocks in our proposed RNN. 

Since there is no optimal approach in order to automatize this process, different feedbacks have 
been tested for hidden layers. While designing the architecture for our RNN, consecutive feedbacks 
(from one state to another) were discovered from one hidden layer to another in addition to gradient 
saturation to memorize their dependencies among samples, in which the generalizability of the 
model was negatively affected. In other words, the chance of overtraining of RNN is very high, 
which highly depends on the number of feedbacks among hidden layers. If this setup is not tuned 
properly, the gradient information might be saturated, and the training track would be lost. 
Therefore, a feedback was set up from the sixth dense layer to the fourth and from the fifth to the 
third dense layer. 

Since the dimensionality of our input training data is low, 5 × 1, a connection is set from the 
fourth convolution layer to the first dense layer in order to rectify the gradient vanishing problem. 
“Gradient vanishing” refers to any operation which may give a “zero” value to the gradient 
information. If gradient vectors vanish, then no weight vector can be updated. As shown in our 
previous networks, the last layer of the RNN’s final mapping is fully connected to the output. 

Although RNNs are very much qualified for time-distributed feature learning, some short-term 
dependencies of the input vector among its measured states may be lost within training. Short-term 
dependency can be expressed by the relation between velocity and acceleration, or velocity and 
displacement. Therefore, a long short-term memory (LSTM) algorithm is implemented to solve the 
problem discussed here. 

Figure 4. Proposed recurrent CNN (RNN) architecture for the ATRP.

This architecture is similar to our designed CNN-based architecture. Hidden layers have been
empirically designed to achieve competitive performance with our CNN. The activation function used
for this RNN is “tanh with a random bias vector”. Kernel, bias, and recurrent initializers have been set
to a truncated normal distribution of samples with µ = 0.5 and std = 0.5. The constraints applied to the
recurrent blocks are max-norm, while there are no constraints defined for kernel or bias. As explained
earlier, the dropout is a regularization scheme which randomly freezes some weight vectors from their
updates. The dropout ratio identifies the probability of randomly selection of neurons. When this
dropout ratio is set to 0.5, then it means that there is a 50% chance for every neuron to be frozen in each
epoch. In this paper, a dropout ratio of 0.5 was considered for all the layers. There are three recurrent
blocks in our proposed RNN.

Since there is no optimal approach in order to automatize this process, different feedbacks have
been tested for hidden layers. While designing the architecture for our RNN, consecutive feedbacks
(from one state to another) were discovered from one hidden layer to another in addition to gradient



Aerospace 2020, 7, 145 10 of 19

saturation to memorize their dependencies among samples, in which the generalizability of the model
was negatively affected. In other words, the chance of overtraining of RNN is very high, which highly
depends on the number of feedbacks among hidden layers. If this setup is not tuned properly, the
gradient information might be saturated, and the training track would be lost. Therefore, a feedback
was set up from the sixth dense layer to the fourth and from the fifth to the third dense layer.

Since the dimensionality of our input training data is low, 5 × 1, a connection is set from the
fourth convolution layer to the first dense layer in order to rectify the gradient vanishing problem.
“Gradient vanishing” refers to any operation which may give a “zero” value to the gradient information.
If gradient vectors vanish, then no weight vector can be updated. As shown in our previous networks,
the last layer of the RNN’s final mapping is fully connected to the output.

Although RNNs are very much qualified for time-distributed feature learning, some short-term
dependencies of the input vector among its measured states may be lost within training. Short-term
dependency can be expressed by the relation between velocity and acceleration, or velocity and
displacement. Therefore, a long short-term memory (LSTM) algorithm is implemented to solve the
problem discussed here.

3.6. Long Short-Term Memory (LSTM)

Currently, the use of LSTM algorithms represents the cutting-edge data-driven approach for
classification tasks as they are conveniently generalizable for regression problems. LSTMs incorporate
three major gates: input, output, and forget [60]. The LSTM relying on cooperation of these blocks
can temporarily remember some information about previously input vectors. The forget gate is
used for tracking similar patterns over time/sequence. The schematic of our LSTM adapted to our
regression task is depicted in Figure 5. Dimensions of our LSTM input are 5× 1 for a given number
of five measured parameters corresponding to the latitude, longitude, altitude, speed, and time for
input vector. The dimensions of our LSTM output are 4× 1, and include four predicted parameters
corresponding to the latitude, longitude, altitude, and time for output vector. Gates have been
represented by blue blocks followed by hyperbolic operations of h. This module tunes the timing of
output vectors derived from the states.

Aerospace 2020, 7, x FOR PEER REVIEW 10 of 19 

 

3.6. Long Short-Term Memory (LSTM) 

Currently, the use of LSTM algorithms represents the cutting-edge data-driven approach for 
classification tasks as they are conveniently generalizable for regression problems. LSTMs 
incorporate three major gates: input, output, and forget [60]. The LSTM relying on cooperation of 
these blocks can temporarily remember some information about previously input vectors. The forget 
gate is used for tracking similar patterns over time/sequence. The schematic of our LSTM adapted to 
our regression task is depicted in Figure 5. Dimensions of our LSTM input are 5 × 1 for a given 
number of five measured parameters corresponding to the latitude, longitude, altitude, speed, and 
time for input vector. The dimensions of our LSTM output are 4 × 1, and include four predicted 
parameters corresponding to the latitude, longitude, altitude, and time for output vector. Gates have 
been represented by blue blocks followed by hyperbolic operations of ℎ. This module tunes the 
timing of output vectors derived from the states. 

 
Figure 5. Proposed long short-term memory (LSTM) architecture for the ATRP. 

As seen in Figure 5, the conducted LSTM architecture includes the input unit followed by a 
hyperbolic tangent (tanh ) activation function. For recurrent activation, a “hard sigmoid” (between 
LSTM blocks) is used, through the linear activation function works fine as well. Kernel, recurrent, 
and bias initializers are chosen to be “random uniform functions” with “min” and “max” values 
equal to 0.05. For all these modules, 𝐿  similarity metric (Euclidean distance) is embedded with 
regularization constant 𝜆 = 0.01. For simplicity of calculations, we have not taken any kernel, bias, 
or recurrent constraints into account. Moreover, the dropout ratio for all the layers was tentatively 
set to 0.5. No sensitivity analysis was conducted for this LSTM architecture. We have adopted this 
network due to its very good regression accuracy with respect to the accuracy of previous deep 
networks. 

4. Numerical Results 

In this section, a brief explanation is provided regarding the dataset used and utilization 
procedure, and then the prediction results of several models are discussed. 
  

Figure 5. Proposed long short-term memory (LSTM) architecture for the ATRP.



Aerospace 2020, 7, 145 11 of 19

As seen in Figure 5, the conducted LSTM architecture includes the input unit followed by a
hyperbolic tangent (tan h) activation function. For recurrent activation, a “hard sigmoid” (between
LSTM blocks) is used, through the linear activation function works fine as well. Kernel, recurrent,
and bias initializers are chosen to be “random uniform functions” with “min” and “max” values
equal to 0.05. For all these modules, L2 similarity metric (Euclidean distance) is embedded with
regularization constant λ = 0.01. For simplicity of calculations, we have not taken any kernel, bias, or
recurrent constraints into account. Moreover, the dropout ratio for all the layers was tentatively set to
0.5. No sensitivity analysis was conducted for this LSTM architecture. We have adopted this network
due to its very good regression accuracy with respect to the accuracy of previous deep networks.

4. Numerical Results

In this section, a brief explanation is provided regarding the dataset used and utilization procedure,
and then the prediction results of several models are discussed.

4.1. Dataset

The benchmarking dataset for conducting the proposed research is the traffic flow management
system publicly available online for educational use. Each record of this dataset contains latitude,
longitude, altitude, velocity, and time obtained from 1676 flights [61].

4.2. Measuring the Resiliency of Models

As stated earlier, all six employed algorithms were trained with the maximum generalizability
possible for our dataset. We implemented a 10-fold cross validation [62] for all these models and then
controlled their comprehensiveness by using an early stopping technique. Experiments were further
performed with the aim to determine the extent to which these models could resist given perturbations
and random noise.

We assume that the trained model was built, including post-activation operations, on the training
set of xi ∈ {X}. The following optimization problem was further solved:

min
ε
‖ x− x̃ ‖≤ ε s.t. f (xi) , f (x̃). (7)

In general, this optimization problem is known as an “adversarial attack” [63], which results in
producing samples similar to the original samples but which might lead to mistakes in the model and,
thus, its correction is needed.

Although classification and regression tasks are similar to each other, Equation (7) should be
updated to non-label values for regression problems. In fact, unlike classification, there is no label for
input vectors in the regression task. Therefore, to justify adversarial optimization problem we would
need to replace the “label” with a “threshold” and solve for it. To achieve the minimum perturbation
of ε, the following optimization statement is suggested:

min
ε
‖ x− x̃ ‖≤ ε s.t. min

δ
‖ f (xi) − f (x̃) ‖≥ δ. (8)

Optimizing for ε and δ generates a series of samples that are remarkably similar to the legitimate
inputs, but they are totally different to their associated outputs. In other words, after running the
optimization inequality as defined in Equation (8), the manipulated input, x̃, is similar to the given
legitimate input x although their associated output vectors are not similar. This optimization problem
could be developed to include certain conditions, namely by redirecting the f (x̃) towards a predefined
or random value, which can identify a targeted attack. This condition could add overhead to our
abovementioned optimization problem and, therefore, we do not analyze it in the current paper. In our
future studies, we will study possible approaches for the defense of our developed prediction models
against adversarial attacks.



Aerospace 2020, 7, 145 12 of 19

Having access to the training set, parameters, and hyperparameters of the trained model constitute
a white-box attack, although it would still be possible to attack even without them. Both white- and
black-box attacks are explained next.

The architectures and training setups of all six models were all the same in this paper, as explained
earlier. For the training data with columns of latitude, longitude, altitude, time, and speed, the models
were finely trained to predict their future states (latitude, longitude, altitude, time). The given input
sample xi was randomly perturbed while keeping it close to its associated original value by using an L2

similarity metrics. There is no generic approach to define the exact values for these hyperparameters.
We empirically obtained these values and they can be changed following the adversary’s suggestions.
Here, the initial values assigned to ε and δ are 0.01 and 100, respectively. Table 1 summarizes the
values of ε and δ achieved for all models trained on the traffic flow management system (TFMS) public
dataset of aircraft trajectories.

Table 1. Mean values of ε and δ for training samples of the TFMS dataset.

LR SVR DNN CNN RNN LSTM

ε 0.0103 0.0174 0.0139 0.0165 0.0237 0.0142

δ 59 126 207 67 106 92

Table 1 compares ε and δ values found by use of six benchmarking regression algorithms. Basically,
adoption of smaller values for ε results in higher similarity between generated adversarial samples
and their associated legitimate samples. Additionally, adoption higher values for δ leads to higher
discrepancies between the ground-truth and the predicted outputs. Ground-truth is defined for
supervised learning methods in order to measure the accuracy of the training set. Among these models,
higher values for δ were achieved using DNN, which means this model yields higher variation in its
predictions for legitimate inputs.

We generated adversarial samples for all the records of the dataset and we tested them by using
of all the trained models. Interestingly, by applying these samples, all models predicted incorrectly.

Table 2 lists the fooling rates of all six models with their prediction confidence scores. This table
compares fooling rates of six victim models against adversarial attacks that were generated by
FGSM algorithm. Unfortunately, all these models were completely vulnerable against adversarial
samples. The results shown in Table 2 clearly restate a security concern regarding the robustness of the
data-driven models, including the conventional and advanced deep learning architectures. Scaled
values of prediction confidence reveal the weakness of each model in terms of its prediction. The main
difference between these algorithms is their prediction confidence. Apparently, RNN predicted wrongly
with the highest confidence.

Table 2. Fooling rate and prediction confidence of the models.

LR SVR DNN CNN RNN LSTM

Fooling rate 100 100 100 100 100 100

Prediction confidence score 0.784 0.843 0.732 0.879 0.910 0.881

Another important concern is the transferability of the generated fake samples from one model
to another. To evaluate this situation, adversarial samples were crafted for each model, and were
feed-forwarded to another model. The results of this experiment are shown in Table 3. This table
statistically explains the transferability property of adversarial samples.



Aerospace 2020, 7, 145 13 of 19

Table 3. Transferability of adversarial samples from one model to another model.

LR SVR DNN CNN RNN LSTM

LR 100 78.36 84.14 91.23 89.66 91.17

SVR 81.23 100 84.17 95.07 84.56 89.59

DNN 90.07 89.23 100 95.81 97.33 94.46

CNN 86.75 88.71 91.63 100 91.55 93.57

RNN 97.29 94.58 90.67 95.58 100 98.26

LSTM 79.16 81.92 89.99 93.52 88.37 100

This table depicts the transferability of adversarial samples from one victim model to another.
Reported percentage values are averaged among all 10 folds, which is equivalent to say that the
given dataset was divided into 10 equal-size segments versus time and, thus, each one of them was
considered a test segment. Finally, the average of accuracy was we computed for these segments.
The most transferable adversarial samples for each model are shown in Table 3 in bold characters.
For instance, 81.23% of total crafted adversarial samples for SVR are successfully transferable to the
LR model.

Although LSTM is more advanced than the RNN, it is more vulnerable to transferred adversarial
attacks. Equation (8) is further explored for a better understanding of crafted samples. A first
impression could be that adversarial samples are “noises”. To accept or reject this impression, we need
to run experiments to determine if ε and δ constitute “noise” (or not).

To answer the abovementioned question, we utilized the local intrinsic dimensionality (LID)
score [64]. This score differentiates “noisy samples” from “crafted adversarial samples”. Assuming that
di(x) refers to the distance from legitimate sample xi to its nearest neighbors, dk(x), then the maximum
of the neighbor distances can be found in which k is the number of neighbor samples. Therefore, the
LID score can be computed as shown in Equation (9).

LID(x) = −

1
k

k∑
i=1

log
di(x)
dk(x)


−1

(9)

Around 15% of the training set and generated random noisy samples were randomly selected
using Gaussian distribution with 10 different values of µ ∈ [−1, 1] and σ ∈ [−0.75, 0.75]. For fairness
comparison, we repeated this generation 10 times and exported all the generated noisy samples into
the original dataset by building a new directory to include both noisy and legitimate samples. We also
generated new adversarial samples for every record in the original training set and further exported
them into the adversarial category. Eventually, a logistic regression algorithm is trained for two
considered classes in order to classify legitimate and adversarial samples. Table 4 summarizes the
details of this binary classification.

Table 4. Performance comparison of logistic regression (LR) on local intrinsic dimensionality (LID)
scores. The solver for this LR classifier is “liblinear”.

Max Iteration Training
Accuracy (%) Test Accuracy (%) Penalty Tolerance Fitting Intercept # Jobs C

Without
cross-validation 120 86.36 84.27 L2 1e−5 False 4 0.002

5-fold
cross-validation 100 91.23 87.75 L2 1e−5 False 4 0.001

10-fold
cross-validation 95 92.13 86.49 L1 1e−6 True 8 0.003

15-fold
cross-validation 85 92.67 86.18 L1 1e−6 True 8 0.002



Aerospace 2020, 7, 145 14 of 19

Table 4 primarily compares the accuracy of LR on the LID scores as well its setups for training.
For example, the first row of this table shows that LR without cross validation has 86.36% and 84.27%
accuracy in training and test, respectively. These accuracies have been achieved at the 120th iteration
with L2 regularization penalty and with a prediction tolerance (error) of 1e−5. Training has been
executed using four CPU core (jobs) without weight normalization (false fitting intercept). The inverse
of the regularization strength (C) for this model is set to 0.002.

As shown in Table 4, the LR is favorably used for the binary classes of the LID scores, and it
supports our previous hypothesis (can adversarial samples be interpreted as noisy samples or not?)
regarding the fundamental difference between noisy and adversarial samples. For a very good
characterization of the distribution values of the original, noisy, and adversarial samples, we plotted
their LID scores in Cartesian space. Please note that LID is a score given to every input. Figure 6
visually shows distribution of LID scores for triplet of original, noisy, and adversarial samples.

Aerospace 2020, 7, x FOR PEER REVIEW 13 of 19 

 

maximum of the neighbor distances can be found in which 𝑘 is the number of neighbor samples. 
Therefore, the LID score can be computed as shown in Equation (9). 𝐿𝐼𝐷(𝑥) = − 1𝑘 𝑙𝑜𝑔 𝑑 (𝑥)𝑑 (𝑥)  (9) 

Around 15% of the training set and generated random noisy samples were randomly selected 
using Gaussian distribution with 10 different values of 𝜇 ∈ [−1, 1]  and 𝜎 ∈ [−0.75, 0.75] . For 
fairness comparison, we repeated this generation 10 times and exported all the generated noisy 
samples into the original dataset by building a new directory to include both noisy and legitimate 
samples. We also generated new adversarial samples for every record in the original training set and 
further exported them into the adversarial category. Eventually, a logistic regression algorithm is 
trained for two considered classes in order to classify legitimate and adversarial samples. Table 4 
summarizes the details of this binary classification. 

Table 4. Performance comparison of logistic regression (LR) on local intrinsic dimensionality (LID) 
scores. The solver for this LR classifier is “liblinear”. 

 Max 
Iteration 

Training 
Accuracy 

(%) 

Test 
Accuracy 

(%) 
Penalty Tolerance Fitting 

Intercept 
# 

Jobs C 

Without 
cross-validation 120 86.36 84.27 𝐿  1𝑒  False 4 0.002 

5-fold 
cross-validation 100 91.23 87.75 𝐿  1𝑒  False 4 0.001 

10-fold 
cross-validation 95 92.13 86.49 𝐿  1𝑒  True 8 0.003 

15-fold 
cross-validation 85 92.67 86.18 𝐿  1𝑒  True 8 0.002 

Table 4 primarily compares the accuracy of LR on the LID scores as well its setups for training. 
For example, the first row of this table shows that LR without cross validation has 86.36% and 
84.27% accuracy in training and test, respectively. These accuracies have been achieved at the 120th 
iteration with 𝐿  regularization penalty and with a prediction tolerance (error) of 1𝑒 . Training 
has been executed using four CPU core (jobs) without weight normalization (false fitting intercept). 
The inverse of the regularization strength (C) for this model is set to 0.002. 

As shown in Table 4, the LR is favorably used for the binary classes of the LID scores, and it 
supports our previous hypothesis (can adversarial samples be interpreted as noisy samples or not?) 
regarding the fundamental difference between noisy and adversarial samples. For a very good 
characterization of the distribution values of the original, noisy, and adversarial samples, we plotted 
their LID scores in Cartesian space. Please note that LID is a score given to every input. Figure 6 
visually shows distribution of LID scores for triplet of original, noisy, and adversarial samples. 

 

 

(a) (b) 
Aerospace 2020, 7, x FOR PEER REVIEW 14 of 19 

 

  

(c)  (d). 

  

(e) (f) 

Figure 6. LID score comparisons for different random samples chosen from the training set. (a) The 
first random set; (b) The second random set; (c) The third random set; (d) The fourth random set; (e) 
The fifth random set; (f) The sixth random set. 

Figure 6 shows the LID score comparisons for random samples chosen from the training set. As 
this figure indicates, original and noisy samples lie in the same LID subspace, which denotes their 
structural similarity. Conversely, adversarial samples are located in a separated upper subspace 
different from the original and noisy sets. To demonstrate that these LID scores were also 
statistically different, we trained an LR in order to classify LID scores of original, noisy, and 
adversarial samples. Obviously, higher values of accuracy of the trained LR mean better 
classification for LIDs. We summarize the details of the LR in Table 4 as well as other training 
information. 

Overall, Table 4 statistically proves that LIDs for adversarial samples are far from original and 
noisy samples, and Figure 6 shows this difference visually. 

Generating adversarial samples with respect to the intrinsic characteristics of the given dataset 
could be very costly in terms of optimization overhead. In other words, Equation (8) does not always 
show a complex optimization task and could be a non-polynomial problem. These problems cannot 
be solved by polynomial functions approximation (of any degree). Therefore, Equation (8) could be 
replaced by a faster operation, namely, by taking advantage of gradient information backpropagated 
through the network during its training. Generating adversarial samples relying on gradient 
information was first introduced in the computer vision community, and was called “fast gradient 
sign method” (FGSM) [63]. We will adapt this attack for our regression task. 

The FGSM is categorized as a white-box and non-targeted adversarial attack, mainly for 
architectures trained by backpropagation, and requires the model gradient information. For a given 
input 𝑥 , the FGSM crafts adversarial sample 𝑥, as defined in Equation (10): �́� = 𝑥 + 𝜖 × 𝑠𝑖𝑔𝑛 𝛻 𝐽(𝜃, 𝑥, 𝑙)  (10) 

where 𝐽 is the cost function of the model, and 𝜖 is a float scalar to be defined by a local search. Since 
the FGSM attack was introduced for classification purposes, we needed to update the label index of 

Figure 6. LID score comparisons for different random samples chosen from the training set. (a) The first
random set; (b) The second random set; (c) The third random set; (d) The fourth random set; (e) The
fifth random set; (f) The sixth random set.



Aerospace 2020, 7, 145 15 of 19

Figure 6 shows the LID score comparisons for random samples chosen from the training set. As this
figure indicates, original and noisy samples lie in the same LID subspace, which denotes their structural
similarity. Conversely, adversarial samples are located in a separated upper subspace different from
the original and noisy sets. To demonstrate that these LID scores were also statistically different,
we trained an LR in order to classify LID scores of original, noisy, and adversarial samples. Obviously,
higher values of accuracy of the trained LR mean better classification for LIDs. We summarize the
details of the LR in Table 4 as well as other training information.

Overall, Table 4 statistically proves that LIDs for adversarial samples are far from original and
noisy samples, and Figure 6 shows this difference visually.

Generating adversarial samples with respect to the intrinsic characteristics of the given dataset
could be very costly in terms of optimization overhead. In other words, Equation (8) does not
always show a complex optimization task and could be a non-polynomial problem. These problems
cannot be solved by polynomial functions approximation (of any degree). Therefore, Equation
(8) could be replaced by a faster operation, namely, by taking advantage of gradient information
backpropagated through the network during its training. Generating adversarial samples relying on
gradient information was first introduced in the computer vision community, and was called “fast
gradient sign method” (FGSM) [63]. We will adapt this attack for our regression task.

The FGSM is categorized as a white-box and non-targeted adversarial attack, mainly for
architectures trained by backpropagation, and requires the model gradient information. For a
given input xi, the FGSM crafts adversarial sample x̃, as defined in Equation (10):

x́ = x + ε× sign(∇x J(θ, x, l)) (10)

where J is the cost function of the model, and ε is a float scalar to be defined by a local search. Since the
FGSM attack was introduced for classification purposes, we needed to update the label index of l to a
bounded value by providing a “supremum” and an “infimum”. Therefore, Equation (10) should be
written under the following form [63]:

x́ = x + ε× sign(∇x J(θ, x, v)) (11)

where v < [a− λ, a + λ] is an output value, and a is the actual value as defined in the training set. Our
adapted version of the FGSM (AFGSM) requires its optimization for both ε and λ.

In our next experiment, we generated adversarial samples using the AFGSM for our proposed
DNN, CNN, RNN, and LSTM architectures. We also studied the transferability property of crafted
samples, as shown in Table 5. Table 5 compares the transferability of adversarial samples using our
proposed AFGSM algorithm. For instance, the first element in Table 5 suggests that 78.25% of total
crafted adversarial samples are successfully transferable from DNN to the LR model.

Table 5. Transferability of adversarial samples crafted by the adapted fast gradient sign method
(AFGSM). The highest values are in bold characters.

LR SVR DNN CNN RNN LSTM

DNN 78.25 86.94 100 91.25 89.36 90.71

CNN 85.13 84.58 92.47 100 91.55 92.05

RNN 90.96 92.37 88.24 93.37 100 91.08

LSTM 91.45 90.33 89.69 89.99 92.28 100

As shown in Table 5, all the models are vulnerable to our version of FGSM attack. Not surprisingly,
generated adversarial samples using the AFGSM for DNN and CNN are the most transferable
samples to each other and are shown in bold characters (91.25, 92.47). Moreover, AFGSM-generated
adversarial samples for RNN architecture are the samples most transferable to the CNN model (93.37).



Aerospace 2020, 7, 145 16 of 19

One hypothesis could be that this is related to their same utilized convolution layers, regardless of
their filters shape, sizes, or order.

4.3. Adversarial Retraining

One potential defense against the threat of adversarial attack would be to train models by use
of a combination of legitimate and adversarial samples. In other words, both original and crafted
adversarial samples could be fed with the correct labels to the model within it training, with the aim of
avoiding being misled during the testing time. Equation (12) shows our proposed retraining policy:

J̃(xi, yi,θ) = cJ(xi, yi,θ) + (1− c)cJ(x̃i, yi,θ) (12)

where c is a constant value set to 0.25, 0.5 and 0.75 for our dataset. Table 6 presents the performance of
the retraining policy for 3 different c values.

Table 6. Performance comparison of data-driven models by adversarial retraining.

c LR SVR DNN CNN RNN LSTM

0.25 86.45 77.36 80.35 81.06 78.37 79.08
Fooling rate (%) 0.50 83.25 76.28 79.47 81.69 79.84 74.41

0.75 84.27 75.79 80.23 81.97 80.56 73.19

0.25 66.16 56.33 61.74 57.19 59.67 61.54
Regression accuracy (%) 0.50 64.87 57.13 64.24 58.36 58.14 60.79

0.75 68.97 52.87 61.58 60.76 59.42 59.45

5. Conclusions

In this paper, the accuracy of data-driven regressors was investigated for conventional (LR and
SVR) and state-of-the-art (DNN, CNN, RNN, and LSTM) algorithms for aircraft trajectory prediction by
use of the traffic flow management system (TFMS) of aircraft trajectories. Although the results testify
the higher performance of the modern algorithms in terms of regression accuracy, they also show the
lowest resiliency against crafted adversarial attacks. We implemented FGSM and AFGSM adversarial
attacks for all the trained models, and measured their fooling rates. Interestingly, conventional
classifiers showed a higher robustness to adversarial attacks compared to the advanced deep neural
networks. As a pro-active approach for improving the robustness of the models, we adversarially
trained all of them, which also increased their error rates. This increased error rate poses a security
issue for learning-based regressors, especially since adversarial samples are transferable from any
learned model to another model, as already shown. For our future work, a data-driven regression
algorithm will be developed that will give a reasonable tradeoff between regression accuracy and
fooling rate.

Author Contributions: Conceptualization, S.M.H.; Data curation, S.M.H.; Funding acquisition, R.M.B.;
Investigation, T.L.G.; Methodology, S.M.H. and T.L.G.; Project administration, R.M.B.; Resources, R.M.B.;
Software, R.M.B.; Supervision, R.M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC within the Canada Research Chairs program, which made possible
the realization of this research and the publication of this paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Adesina, D.; Adagunodo, O.; Dong, X.; Qian, L. Aircraft Location Prediction using Deep Learning.
In Proceedings of the 2019 IEEE Military Communications Conference (MILCOM 2019), Norfolk, VA,
USA, 12–14 November 2019; pp. 127–132.



Aerospace 2020, 7, 145 17 of 19

2. Murrieta-Mendoza, A.; Romain, C.; Botez, R.M. Commercial aircraft lateral flight reference trajectory
optimization. IFAC-PapersOnLine 2016, 49, 1–6. [CrossRef]

3. Murrieta-Mendoza, A.; Botez, R. Aircraft Vertical Route Optimization Deterministic Algorithm for a Flight
Management System; 0148-7191; SAE Technical Paper: Warrendale, PA, USA, 2015.

4. Murrieta-Mendoza, A.; Botez, R.M. Methodology for vertical-navigation flight-trajectory cost calculation
using a performance database. J. Aerosp. Inf. Syst. 2015, 12, 519–532. [CrossRef]

5. Dancila, B.D.; Beulze, B.; Botez, R.M. Geometrical vertical trajectory optimization–comparative performance
evaluation of phase versus phase and altitude-dependent preferred gradient selection. IFAC-PapersOnLine
2016, 49, 17–22. [CrossRef]

6. Patrón, R.S.F.; Botez, R.M. Flight trajectory optimization through genetic algorithms for lateral and vertical
integrated navigation. J. Aerosp. Inf. Syst. 2015, 12, 533–544. [CrossRef]

7. Murrieta-Mendoza, A.; Ruiz, H.; Kessaci, S.; Botez, R.M. 3D reference trajectory optimization using particle
swarm optimization. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations
Conference, Denver, CO, USA, 5–9 June 2017; p. 3435.

8. Murrieta-Mendoza, A.; Hamy, A.; Botez, R.M. Four-and three-dimensional aircraft reference trajectory
optimization inspired by ant colony optimization. J. Aerosp. Inf. Syst. 2017, 14, 597–616. [CrossRef]

9. Murrieta-Mendoza, A.; Botez, R.M.; Bunel, A. Four-dimensional aircraft en route optimization algorithm
using the artificial bee colony. J. Aerosp. Inf. Syst. 2018, 15, 307–334. [CrossRef]

10. Murrieta-Mendoza, A.; Ternisien, L.; Beuze, B.; Botez, R.M. Aircraft vertical route optimization by beam
search and initial search space reduction. J. Aerosp. Inf. Syst. 2018, 15, 157–171. [CrossRef]

11. Ruby, M.; Botez, R.M. Trajectory optimization for vertical navigation using the harmony search algorithm.
IFAC-PapersOnLine 2016, 49, 11–16. [CrossRef]

12. Nolan, M. Fundamentals of Air Traffic Control; Cengage Learning: Boston, MA, USA, 2010.
13. Gardner, R.W.; Genin, D.; McDowell, R.; Rouff, C.; Saksena, A.; Schmidt, A. Probabilistic model checking of

the next-generation airborne collision avoidance system. In Proceedings of the 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–10.

14. Kochenderfer, M.J.; Holland, J.E.; Chryssanthacopoulos, J.P. Next-Generation Airborne Collision Avoidance
System; Massachusetts Institute of Technology-Lincoln Laboratory: Lexington, MA, USA, 2012.

15. Jin, W.; Li, Y.; Xu, H.; Wang, Y.; Tang, J. Adversarial Attacks and Defenses on Graphs: A Review and Empirical
Study. arXiv 2020, arXiv:2003.00653.

16. Federal Aviation Administration. Introduction to TCAS II; Version 7.1; Federal Aviation Administration:
Washington, DC, USA, 2011.

17. Kuchar, J.K.; Yang, L.C. A review of conflict detection and resolution modeling methods. IEEE Trans. Intell.
Transp. Syst. 2000, 1, 179–189. [CrossRef]

18. Ceruti, A.; Bombardi, T.; Piancastell, L. Visual Flight Rules Pilots into Instrumental Meteorological Conditions:
A Proposal for a Mobile Application to Increase In-flight Survivability. Int. Rev. Aerosp. Eng. (IREASE) 2016,
9, 4610–4616. [CrossRef]

19. Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.;
Bentini, G. A UAV system for observing volcanoes and natural hazards. AGUFM 2007, 2007, GC11B-05.

20. Yu, Z.; Zhang, Y.; Jiang, B.; Su, C.-Y.; Fu, J.; Jin, Y.; Chai, T. Decentralized fractional-order backstepping
fault-tolerant control of multi-UAVs against actuator faults and wind effects. Aerosp. Sci. Technol. 2020,
104, 105939. [CrossRef]

21. Yu, Z.-Q.; Liu, Z.-X.; Zhang, Y.-M.; Qu, Y.-H.; Su, C.-Y. Decentralized fault-tolerant cooperative control of
multiple UAVs with prescribed attitude synchronization tracking performance under directed communication
topology. Front. Inf. Technol. Electron. Eng. 2019, 20, 685–700. [CrossRef]

22. Ceruti, A.; Curatolo, S.; Bevilacqua, A.; Marzocca, P. Image Processing Based Air Vehicles Classification for UAV
Sense and Avoid Systems; SAE Technical Paper: Warrendale, PA, USA, 2015; ISSN 0148-7191.

23. Julian, K.D.; Kochenderfer, M.J.; Owen, M.P. Deep neural network compression for aircraft collision avoidance
systems. J. Guid. Control Dyn. 2019, 42, 598–608. [CrossRef]

24. Guo, L.; YU, X.; Zhang, X.; Zhang, Y. Safety control system technologies for UAVs: Review and prospect. Sci.
Sin. Inf. 2020, 50, 184–194. [CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2016.09.001
http://dx.doi.org/10.2514/1.I010347
http://dx.doi.org/10.1016/j.ifacol.2016.09.004
http://dx.doi.org/10.2514/1.I010348
http://dx.doi.org/10.2514/1.I010540
http://dx.doi.org/10.2514/1.I010523
http://dx.doi.org/10.2514/1.I010561
http://dx.doi.org/10.1016/j.ifacol.2016.09.003
http://dx.doi.org/10.1109/6979.898217
http://dx.doi.org/10.15866/irease.v9i5.10391
http://dx.doi.org/10.1016/j.ast.2020.105939
http://dx.doi.org/10.1631/FITEE.1800569
http://dx.doi.org/10.2514/1.G003724
http://dx.doi.org/10.1360/SSI-2019-0101


Aerospace 2020, 7, 145 18 of 19

25. Benavides, J.V.; Kaneshige, J.; Sharma, S.; Panda, R.; Steglinski, M. Implementation of a trajectory prediction
function for trajectory based operations. In Proceedings of the AIAA Atmospheric Flight Mechanics
Conference, Minneapolis, MI, USA, 13–16 August 2012; p. 2198.

26. Sahawneh, L.R.; Beard, R.W. A probabilistic framework for unmanned aircraft systems collision detection
and risk estimation. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA,
USA, 15–17 December 2014; pp. 242–247.

27. Jilkov, V.P.; Ledet, J.H.; Li, X.R. Multiple model method for aircraft conflict detection and resolution in intent
and weather uncertainty. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 1004–1020. [CrossRef]

28. Pereida, K.; Schoellig, A.P. Adaptive model predictive control for high-accuracy trajectory tracking in
changing conditions. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7831–7837.

29. Wang, M.; Luo, J.; Walter, U. A non-linear model predictive controller with obstacle avoidance for a space
robot. Adv. Space Res. 2016, 57, 1737–1746. [CrossRef]

30. Dai, L.; Cao, Q.; Xia, Y.; Gao, Y. Distributed MPC for formation of multi-agent systems with collision
avoidance and obstacle avoidance. J. Frankl. Inst. 2017, 354, 2068–2085. [CrossRef]

31. Foo, J.L.; Knutzon, J.; Kalivarapu, V.; Oliver, J.; Winer, E. Path planning of unmanned aerial vehicles using
B-splines and particle swarm optimization. J. Aerosp. Comput. Inf. Commun. 2009, 6, 271–290. [CrossRef]

32. Cobano, J.A.; Conde, R.; Alejo, D.; Ollero, A. Path planning based on genetic algorithms and the monte-carlo
method to avoid aerial vehicle collisions under uncertainties. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4429–4434.

33. Duan, H.; Luo, Q.; Shi, Y.; Ma, G. hybrid particle swarm optimization and genetic algorithm for multi-UAV
formation reconfiguration. IEEE Comput. Intell. Mag. 2013, 8, 16–27. [CrossRef]

34. Barratt, S.T.; Kochenderfer, M.J.; Boyd, S.P. Learning probabilistic trajectory models of aircraft in terminal
airspace from position data. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3536–3545. [CrossRef]

35. Andersson, O.; Wzorek, M.; Doherty, P. Deep learning quadcopter control via risk-aware active learning.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9
February 2017; pp. 3812–3818.

36. Pham, D.-T.; Tran, N.P.; Alam, S.; Duong, V.; Delahaye, D. A machine learning approach for conflict resolution
in dense traffic scenarios with uncertainties. In Proceedings of the Thirteenth USA/Europe Air Traffic
Management Research and Development Seminar (ATM2019), Vienna, Austria, 17–21 June 2019; pp. 1–12.

37. Wang, X.; Sun, T.; Yang, R.; Li, C.; Luo, B.; Tang, J. Quality-aware dual-modal saliency detection via deep
reinforcement learning. Signal Process. Image Commun. 2019, 75, 158–167. [CrossRef]

38. Ayhan, S.; Samet, H. Aircraft trajectory prediction made easy with predictive analytics. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, 13–17 August 2016; pp. 21–30.

39. Liu, Y.; Hansen, M. Predicting aircraft trajectories: A deep generative convolutional recurrent neural networks
approach. arXiv 2018, arXiv:1812.11670.

40. Wu, H.; Chen, Z.; Sun, W.; Zheng, B.; Wang, W. Modeling Trajectories with Recurrent Neural Networks.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17),
Melbourne, Australia, 19–25 August 2017; pp. 3083–3090.

41. Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory
via LSTM encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium
(IV), Changshu, China, 1–26 July 2018; pp. 1672–1678.

42. Guan, X.; Lv, R.; Sun, L.; Liu, Y. A study of 4D trajectory prediction based on machine deep learning.
In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin,
China, 12–15 June 2016; pp. 24–27.

43. Ter Braak, C.J.; Looman, C.W. Weighted averaging, logistic regression and the Gaussian response model.
Vegetatio 1986, 65, 3–11. [CrossRef]

44. Wright, R.E. Logistic Regression. In Reading and Understanding Multivariate Statistics; Grimm, L.G.,
Yarnold, P.R., Eds.; American Psychological Association: Washington, DC, USA, 1995; pp. 217–244.

45. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001;
Volume 1.

46. Allison, P.D. Logistic Regression Using SAS: Theory and Application; SAS institute: Cary, NC, USA, 2012.

http://dx.doi.org/10.1109/TAES.2018.2867698
http://dx.doi.org/10.1016/j.asr.2015.06.012
http://dx.doi.org/10.1016/j.jfranklin.2016.12.021
http://dx.doi.org/10.2514/1.36917
http://dx.doi.org/10.1109/MCI.2013.2264577
http://dx.doi.org/10.1109/TITS.2018.2877572
http://dx.doi.org/10.1016/j.image.2019.03.012
http://dx.doi.org/10.1007/BF00032121


Aerospace 2020, 7, 145 19 of 19

47. Chen, D.-R.; Wu, Q.; Ying, Y.; Zhou, D.-X. Support vector machine soft margin classifiers: Error analysis.
J. Mach. Learn. Res. 2004, 5, 1143–1175.

48. Rocha, M.; Cortez, P.; Neves, J. Evolution of neural networks for classification and regression. Neurocomputing
2007, 70, 2809–2816. [CrossRef]

49. Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time
series forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble
Learning (CIEL), Orlando, FL, USA, 9–12 December 2014; pp. 1–6.

50. Van Dyk, D.A.; Meng, X.-L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [CrossRef]
51. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA,
3–8 December 2012; pp. 1097–1105.

52. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 770–778.

54. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

55. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

56. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
57. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.
58. Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,

Germany, 1998; pp. 55–69.
59. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
60. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
61. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter traffic prediction

using big data, in-memory computing, deep learning and GPUs. Sensors 2019, 19, 2206. [CrossRef]
62. Wiens, T.S.; Dale, B.C.; Boyce, M.S.; Kershaw, G.P. Three way k-fold cross-validation of resource selection

functions. Ecol. Model. 2008, 212, 244–255. [CrossRef]
63. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014,

arXiv:1412.6572.
64. Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J.

Characterizing adversarial subspaces using local intrinsic dimensionality. arXiv 2018, arXiv:1801.02613.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2006.05.023
http://dx.doi.org/10.1198/10618600152418584
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3390/s19092206
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works on Trajectory-Based Operations 
	Collision Avoidance 
	Data-Driven Trajectory Prediction 

	Building Data-Driven Predictors 
	Logistic Regression (LR) 
	Support Vector Regression (SVR) 
	Deep Neural Network (DNN) 
	Convolutional Neural Network (CNN) 
	Recurrent CNN (RNN) 
	Long Short-Term Memory (LSTM) 

	Numerical Results 
	Dataset 
	Measuring the Resiliency of Models 
	Adversarial Retraining 

	Conclusions 
	References

