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Abstract: Attitude determination represents a fundamental task for spacecraft. Achieving this task
on small satellites, and nanosatellites in particular, is further challenging, because the limited power
and computational resources available on-board, together with the low development budget, set
strict constraints on the selection of the sensors and the complexity of the algorithms. Attitude
determination is obtained here from the only measurements of a three-axis magnetometer and a model
of the Geomagnetic field, stored on the on-board computer. First, the angular rates are estimated
and processed using a second-order low-pass Butterworth filter, then they are used as an input,
along with Geomagnetic field data, to estimate the attitude matrix using an unsymmetrical TRIAD.
The computational efficiency is enhanced by arranging complex matrix operations into a form of the
Faddeev algorithm, which is implemented using systolic array architecture on the FPGA core of a
CubeSat on-board computer. The performance and the robustness of the algorithm are evaluated by
means of numerical analyses in MATLAB Simulink, showing pointing and angular rate accuracy
below 10◦ and 0.2◦/s. The algorithm implemented on FPGA is verified by Hardware-in-the-loop
simulation, confirming the results from numerical analyses and efficiency.

Keywords: magnetometer-only; attitude determination; CubeSat; Faddeev algorithm; systolic
array; HiL

1. Introduction

Mission operations often require the capability to orient the spacecraft in a specific direction.
To perform these maneuvers, an adequately accurate knowledge of the spacecraft orientation in space,
namely its attitude, is required, and this is the goal of attitude determination. The results from this
process are input to attitude control, which produces, through the actuators, an adequate control torque
driving the spacecraft to the desired attitude.

The problem of attitude determination has been extensively studied since the outset of space
exploration, and consists of the determination of the rotation matrix A, which transforms any vector vb,
whose coordinates are expressed in a reference frame Fb rotating rigidly with the spacecraft, to the
corresponding vector vi, expressed in a reference coordinate system Fi [1]. Typically, the problem is
solved using the Tri-axial Attitude Determination (TRIAD) algorithm which requires the knowledge
of at least two couples of vectors in both Fb and Fi [2]. Similar methods, representing solutions
to Wahba’s problem [3], have been widely applied and include the q-method by Davenport [1,4],
Schuster’s QUaternion ESTimator (QUEST) algorithm [5,6] and the optimized TRIAD by Bar-Itzhack
and Harman [7]. Other approaches produce attitude determination by direct quaternion estimation [8,9],
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and can be significantly faster than the other algorithms outlined but can show singularities, which
occur when the attitude rotation axis lays on the plane of the unit vectors on which the estimation is
based, as detail by Markley [10].

The above-mentioned algorithms require two vector measurements in two-body frames Fb and Fi.
In fact, the measurements in Fi can be replaced by predictions of the vector behavior in time and space;
for instance, the International Geomagnetic Reference Field (IGRF) model can be used to estimate
the values of the Geomagnetic field vector at any orbital coordinates of the spacecraft [11]. These
models can be rather complex and accurate, and their selection is a crucial part of the design process.
A similar approach is not effective for vectors in Fb because their prediction requires knowledge of
the spacecraft attitude, which is instead the unknown of the attitude determination problem. As a
result, on-board sensors must be used for vector measurements in Fb, and their characteristics strongly
determine the accuracy of the attitude determination algorithm. The use of star trackers can produce
attitude determination with accuracy less than 0.01◦. Nevertheless, these components are relatively
expensive, power and memory consuming if compared to MEMS (Micro-Electro-Mechanical Systems)
sensors, such as magnetometers, gyroscopes, and sun sensors, which, therefore, represent an attracting
alternative for low-cost missions. MEMS gyroscopes are accurate angular rate sensors; nevertheless,
because of technological limitations, they usually have structure defects which produce high drift and
require compensation, thus opening to alternative methods of angular rate determination [12].

Gyroless attitude determination methods are of interest as backup solutions for small satellite
missions that do not require high pointing accuracy for basic operations [13]. Such a solution can be
effective when the above-mentioned measurement drift increases above a threshold level, in case of
failure of the sensor and in the presence of an error in the algorithm which produces the interpretation
of the signal. Several methods have been proposed based on the use of a three-axis magnetometer
together either with other low-cost sensors or solar panels [14–17] or on their own.

Magnetometer-only attitude determination is a challenging task, mainly because the measurements
from a three-axis magnetometer can provide information on only two axes of the spacecraft attitude.
To resolve all three axes, either some constraints on the attitude motion or a filtering process is required.
A first solution was proposed by Natanson et al. [18], whose DADMOD algorithm provided good
results in the post-processing. A further implementation of the algorithm using DADMOD to initialize
a Real-Time Sequential Filter (RTSF) extended it to real-time applications [19,20], with an accuracy of
2◦ on attitude and 0.01◦/s on angular rates.

The most popular methods for three-axis magnetometer-only attitude determination are based on
the Extended Kalman Filter (EKF) and can reach an accuracy below 5◦ on attitude and 0.01◦/s on the
angular rates [21–23]. Other solutions include the Unscented Kalman Filter (UKF) algorithm by Ma
and Jiang [24], or the two-step EKF algorithm proposed by Searcy and Pernicka [25], which achieves
accuracies of less than 1◦, but is effective only if the angular rates along at least one axis exceeds 0.1◦/s.

Despite their rather high accuracy, the mentioned algorithms either require sophisticate models
for vector estimation, are effective only under some specific attitude control, or include complex vector
and matrix operations. The latter can be rather complex to be implemented as the Field Programmable
Gate Array (FPGA) core of an On-Board Computer (OBC). The use of FPGA-based OBC in small
satellites, especially CubeSats, has grown in the last years. This trend is motivated by FPGA hardware
and software flexibility, which allows on-ground and in-orbit risk-free reconfiguration, and by their
capability to perform processes in parallel.

In this work, we propose a simple attitude determination strategy suitable to be implemented
on an FPGA-based OBC. The solution does not require any Kalman Filter and is based only on the
measurements of a three-axis magnetometer and the Geomagnetic field data stored on the OBC memory.
Angular rates are determined independently from attitude, based on a method proposed previously by
the same authors [26]. The Attitude matrix is then estimated by developing a form of the unsymmetrical
TRIAD. All the complex matrix operations are arranged in the form of a Faddeev algorithm [27], which
can be implemented on FPGA using one single compact systolic array architecture [28]. The use of the
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same architecture for all the complex matrix operations leads to an increase in the system and algorithm
efficiency. The performance and robustness of the attitude determination strategy are verified by
means of numerical analyses in MATLAB Simulink, showing an accuracy of 0.2◦/s for angular rates and
below 10◦ for the attitude. The results show how process delay, characterizing the algorithm, can be
minimal when implemented on real hardware, as verified by Hardware-in-the-Loop (HiL) simulation.

The manuscript is organized as follows. In Section 2, the dynamical framework and the models
used for the analysis are introduced. The design and implementation of the attitude determination
algorithm is provided in Section 3, and its performance and robustness are verified by numerical
analyses in Section 4. The analyses are performed simulating the detumbling and pointing of the
satellite after deployment, assuming unknown initial conditions randomly selected. In Section 5 the
algorithm is implemented on the FPGA core of a CubeSat OBC, and tested by HiL simulation as a
preliminary verification of its suitability for implementation for real missions.

2. Dynamical Framework

The attitude determination strategy presented in this work is targeted to spacecraft orbiting in
circular Low Earth Orbits (LEO) and does not require any a-priori knowledge of the Right Ascension
of the Ascending Node (RAAN) Ω, orbit phase angle φ0, attitude and angular rates.

The satellite is modeled as a rigid body, and its attitude is described using Euler angles (ϕ,θ, ψ)
and angular rates (ω = [ ωx ωy ωz ]T), representing the angular velocity components of the
reference frame Fb = [ x̂b ŷb ẑb ]T, attached to the satellite, with respect to the inertial reference
frame Fi = [ x̂i ŷi ẑi ]T, here selected as the Geo-Centric Inertial (GCI) frame. Assuming Fb to be
coincident with the principal axes of inertia of the satellite, then attitude dynamics can be expressed by
the following set of equations [1]

.
ϕ = ωx + sinϕ tanθωy + cosϕ tanθωz

.
θ = cosϕωy − sinϕωz

.
ψ =

(
sinϕωy − cosϕ ωz

)
cosθ

.
ωx =

(
Iy − Iz

Ix

)
ωyωz + τx

.
ωy =

(
Iz − Ix

Iy

)
ωxωz + τy

.
ωz =

(
Ix − Iy

Iz

)
ωxωy + τz

, (1)

where Ii and τi are, respectively, the moment of inertia and the external torque in the i-th direction of
Fb. It can be noticed that the third equation in system (1) shows a singularity for θ = π

2 + kπ k ∈ Z, and
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this can be avoided using quaternions instead of Euler angles to represent the attitude [1]. The attitude
dynamics using the quaternion representation can be expressed by the following system:

.
q1 = 1

2

(
q4ωx + q2ωz − q3ωy

)
.

q2 = 1
2

(
q4ωy − q1ωz + q3ωx

)
.

q3 = 1
2

(
q4ωz + q1ωy − q2ωx

)
.

q4 = − 1
2

(
q1ωx + q2ωy + q3ωz

)

.
ωx =

(
Iy − Iz

Ix

)
ωyωz + τx

.
ωy =

(
Iz − Ix

Iy

)
ωxωz + τy

.
ωz =

(
Ix − Iy

Iz

)
ωxωy + τz

, (2)

For the case examined here, the control torque is produced by three magnetorquers each one
orthogonal to an axis of Fb. Indicating with m the magnetic dipole moment produced by the three
magnetorquers, the control torque is given by:

τ = m×Bb, (3)

where Bb =
[

Bb,x Bb,y Bb,z
]T

is the Geomagnetic field vector in Fb.
Considering the worst-case scenario of a spacecraft deployed with unknown attitude and angular

rates, equipped with only a three-axis magnetometer as an attitude sensor, then the only control actions
that can be performed are stabilization and pointing with respect to the Geomagnetic field. A case
of interest is that in which the satellite is stabilized to pure-spin around the i-th axis, with a desired
angular rate ωi and, contemporarily, the i-th axis is redirected towards the Geomagnetic field vector.
A suitable control law, leading to the mentioned result for x̂b, is given by the following equations:

m = md + mp (4a)

md,x = k1
.
β

md,y =
−k2(ωx −ωx) sign

(
Bb,z

)
i f

∣∣∣Bb,z
∣∣∣ ≥ ∣∣∣Bb,y

∣∣∣
0 i f

∣∣∣Bb,z
∣∣∣ < ∣∣∣Bb,y

∣∣∣
md,z =

k2(ωx −ωx) sign
(
Bb,y

)
i f

∣∣∣Bb,z
∣∣∣ < ∣∣∣Bb,x

∣∣∣
0 i f

∣∣∣Bb,z
∣∣∣ ≥ ∣∣∣Bb,x

∣∣∣
(4b)

mp = kpBb ×
(
x̂b × B̂b

)
(4c)

where the hat “ â ” indicates the direction of the vector a,
.
β = acos

(
B̂b,x

)
, kp is the gain for the pointing

control, and ki are the gains for the stabilization law. It can be noticed that Equation (4a) is similar to
the nadir-pointing control in [29], in which the nadir direction in Equation (4c) is replaced by B̂b and
the damping term, originally given by the B-dot, has been changed to Equation (4b). Equation (4b)
corresponds to a rearrangement of the Y-Thompson spin, where the spin axis is x̂b instead of ŷb [30].
In this arrangement, a magnetic torque along x̂b produces damping, which is inversely proportional
to the angular displacement between x̂b and the magnetic field vector, in virtue of

.
β = acos

(
B̂b,x

)
.

Differently, the magnetic torques along ŷb and ẑb decrease as ωx reaches the desired value ωi allowing
non-zero spin stabilization. It is worth noting that, once solved the attitude determination problem, the
same control law Equations (4a)–(4c) can be used to point towards the desired direction r̂, by simply
replacing B̂b with r̂ in Equation (4c). The selection of the control gain represents a rather complex issue
for both the control laws Equations (4b) and (4c). In fact, even though higher gains correspond to
higher torques, these are typically limited by the threshold value of the magnetic dipole moments,
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which can be generated by the attitude control system. Some criteria for an optimal selection of these
gains, in the presence of different constraints, have been developed [31–33].

In Sections 4 and 5, numerical and HiL simulations are performed to verify the performance and
robustness of the attitude determination algorithm.

3. Attitude Determination Algorithm

The design and implementation of the proposed magnetometer-only attitude determination
algorithm are hereafter discussed. The spacecraft attitude and angular rates are determined in two
different steps, thus limiting the size of the vectors and matrixes computed through the process to 3 × 1
and 3 × 3. All those vector and matrix operations that can be rearranged into the following form, a
matrix equation of size 3:

U = WX−1Y + Z, (5)

can be implemented on FPGA by means of the Faddeev algorithm [34], using a single systolic
array architecture. It means that the FPGA area dedicated to the systolic array can be used to
calculate the results for any vector or matrix operation expressed in the form of Equation (5), taking
advantage of parallel computing and reducing the usage on FPGA, thus increasing the efficiency of the
algorithm [35–37]. This concept is now applied to implement the attitude determination algorithm.

The three-axis magnetometer operates at a fixed sampling frequency fk, producing the

measurement B(k)
b . The time derivatives of Bb can be approximated as

.
B
(k)
b = fk

(
B(k)

b −B(k−1)
b

)
and, as proved in a previous work by the authors [26], the angular rates can be estimated by processing
with a second-order low-pass filter the results from the following equation:

ω(k)
≈ fk

.
B
(k)
b ×

.
B
(k−1)
b∣∣∣∣∣∣∣∣∣∣ .

B
(k)
b

∣∣∣∣∣∣∣∣∣∣2 , (6)

It is worth highlighting that Equation (6) requires three consecutive samplings B(k)
b ; therefore,

it produces an estimation of the angular rates with a delay equal to three times the sampling time
(3/ fk). The effect of this delay will be examined in Sections 4 and 5.

Equation (6) can be rearranged in a form suitable for systolic array implementation, which consists
of the determination of the values of matrixes W, X, Y, and Z. A solution is given by the following set:

U = ω (7a)

W =
( .
B
(k)
b ×

.
B
(k−1)
b

)[
1 1 1

]
(7b)

X =
.
B
(k)
b

T .
B
(k)
b I (7c)

Y = I (7d)

Z = 0 (7e)

where I and 0 indicate the 3 × 3 identities and the 3 × 3 zero matrixes. If the mass distribution of the
spacecraft is not spherical, such as in CubeSats, Equation (6) is affected by an error, that resembles a
high-frequency noise [26], associated with the nonlinear terms −ω× Iω. This can be removed using a
second-order Butterworth low-pass filter [35,36], characterized by the following transfer function:

H(s) =
K0(

s
fco

)2
+ 1.4142

(
s
fco

)
+ 1

(8)



Aerospace 2020, 7, 3 6 of 21

where K0 is the filter gain and fco is the cut-off frequency.
The estimated values of the angular rates and a model of the Geomagnetic field are now used to

implement the unsymmetrical TRIAD and estimate the attitude matrix A. As discussed in Section 1,
the TRIAD requires knowledge of at least two vectors in Fb and the corresponding values in Fi. Each
vector vb can be converted to the corresponding vi by applying the transformation vi = Avb, where
the expression for the rotation matrix A is given below:

A =


cosψ cosθ cosϕ sinψ+ cosψ sinϕ sinθ sinϕ sinψ− cosϕ cosψ sinθ
− cosθ sinψ cosϕ cosψ − sinϕ sinψ sinθ cosψ sinϕ+ cosϕ sinψ sinθ

sinθ − cosθsinϕ cosϕ cosθ

, (9)

According to Equation (9), A depends on the Euler angles and; therefore, it changes in time with
the attitude of the spacecraft. The value of A is here estimated based on the values of B(k)

b which
are provided at fixed sampling rates. The value of the attitude matrix is estimated corresponding to
each sample k and indicated as A(k). The matrix is assumed constant in the interval between two
consecutive samplings.

Based on these considerations, the Geomagnetic field vector and its derivative in the two reference
frames can be related by the following equations:

B(k)
i = A(k)B(k)

b (10a)

.
Bi

(k)
= A(k)

( .
Bb

(k)
+ω(k)

×B(k)
b

)
(10b)

If the inclination of the orbital plane i and the altitude h of the spacecraft are known, the IGRF
model can be used to calculate the Geomagnetic field data to be stored on the OBC [11]. These
data are selected and arranged into tables whose first entry is the true anomaly (ϑ) of the satellite
(i.e., [ϑ(k) B(k)

i,x B(k)
i,y B(k)

i,z ]). When the satellite passes over the ground station, the value of ϑ at the passage
is sent to the satellite and stored by the FPGA, which then propagates it in time. The value of ϑ triggers
the reading of the table, producing the vector B(k)

i . The derivative in time of B(k)
i can then be computed

as
.
B
(k)
i = fk

(
B(k)

i −B(k−1)
i

)
.

Equation (6) could be used to solve the determination problem; nevertheless, a more accurate
expression was developed based on the following result in [26]:

ω⊥ =

.
Bb ×Bb

||Bb||
2 (11)

The vector product ω×Bb in Equation (10b) can be rearranged as follows:

ω×Bb = ‖ω‖‖Bb‖ sinα n̂

where α is the angle between the vectors and n̂ is the direction orthogonal to the plane, which they
define. Noting that ‖ω‖ sinα is the projection of ω orthogonal to Bb, then ω⊥ = ‖ω‖ sinα and
considering Equation (11) it follows that:

ω×Bb = ‖ω‖‖Bb‖ sinα n̂ = ω⊥ ×Bb =

.
Bb ×Bb

||Bb||
2 ×Bb (12)
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Using the triple vector product properties
.
Bb×Bb

||Bb||
2 × Bb =

[
−(BT

b Bb)
.
Bb+

(
BT

b

.
Bb

)
Bb

]
||Bb||

2 = −
.
Bb +

(
BT

b

.
Bb

)
Bb

||Bb||
2 ,

then Equation (10b) can be written as:

.
Bi

(k)
= A(k)

( .
Bb

(k)
+ω(k)

×B(k)
b

)
= A(k)

 .
Bb

(k)
−

.
Bb

(k)
+

B(k)
b

.
B
(k)
b

T B(k)
b∣∣∣∣∣∣∣∣B(k)

b

∣∣∣∣∣∣∣∣2
 =

= A(k)
(
B̂(k)

b

.
B
(k)
b

TB̂(k)
b

) (13)

For the sake of clearness, the following compact notation is introduced:

b̂1 = B̂(k)
b

b̂2 = B̂(k)
b

.̂
B
(k)

b
TB̂(k)

b

b̂3 = b̂1 × b̂2

b̂4 = b̂1 × b̂3



r̂1 = B̂(k)
i

r̂2 =
.̂
B
(k)

i

r̂3 = r̂1 × r̂2

r̂4 = r̂1 × r̂3

(14)

Based on Equation (14) the attitude matrix at time k can be estimated as follows:

A(k) = [b1
...b3

...b4][r1
...r3

...r4]
T (15)

Equation (15) is equivalent to the unsymmetrical form of the TRIAD algorithm [10], in which the
relative weight of the measurement b1 is higher than that of b2 in the estimation of A(k). This form was
preferred because the accuracy on B(k)

b , measured by on-board sensors, is reasonably higher than that

of ω⊥, estimated during the process. It can be noticed that the matrix [r1
...r3

...r4] has a unit norm, and its
transpose corresponds to the inverse. Therefore, Equation (15) can be set in the form Equation (6) of
the Faddeev algorithm and solved through the systolic array architecture:

U = Ak (16a)

W = [b1
...b3

...b4] (16b)

X = [r1
...r3

...r4] (16c)

Y = I (16d)

Z = 0 (16e)

4. Performance and Robustness Analysis

A preliminary analysis of the attitude determination algorithm is performed by numerical
simulation on two Test Cases (TC), TC1 and TC2, which differ by the angular rates at the deployment.
The simulations are performed considering the properties of the 3U CubeSat Tigrisat, launched by
the School of Aerospace Engineering in 2014, with volume 340× 100× 100 mm3 and the total mass
m = 4 kg. The dynamic attitude equations are integrated using Matlab Simulink ode8 fixed-step solver,
considering a time step of 1 s and for a total time corresponding to three orbital periods. For each step
of the integration, the Geomagnetic field vector Bi is calculated using the IGRF model and converted
to Bb as Bb = A−1Bi [11].

The inertial properties of the satellite, the orbital elements and the filter and control parameters
common to the two test cases are listed in Table 1, where the total time of the simulation corresponds to
three orbital periods. The angular rates at the deployment for the two test cases are shown in Table 2.
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Table 1. Parameters for the simulations of Test Case 1 and Test Case2.

Moments of Inertia Orbital Parameters

Ix
(
kgm2

)
0.0065 h (km) 600

Iy
(
kgm2

)
0.0409 i (◦) 87

Iz
(
kgm2

)
0.0409 Ω (◦) 0

Coil number of Turns Coil Area

Nx 320 Ax
(
m2

)
0.0032

Ny 220 Ay
(
m2

)
0.0149

Nz 220 Az
(
m2

)
0.0149

Control Gains Filter Cut-off Frequencies

k1 1.8 fcox (Hz) 0.0218
k2 1 fcoy (Hz) 0.0017
kp 500 fcoz (Hz) 0.0017

Filter Gains Euler Angles at Deployment

K0,x 1 ϕ 0
K0,y 1 θ 0
K0,z 1 ψ 0

Simulation Parameters

fk (Hz) 1
Solver ODE8

Total time (s) 17386
ωx (◦/s) 2.5

Table 2. Angular rates at deployment for Test Case 1 and Test Case 2.

TC1 TC2

ωx (◦/s) 11 ωx (◦/s) 5
ωx (◦/s) 11 ωx (◦/s) 3
ωx (◦/s) 10 ωx (◦/s) −3

First, TC1 is examined. To investigate the accuracy of the attitude determination algorithm, the
Mean Squared Error (MSE) between the actual A and the estimated Ak is calculated. The actual A is
calculated based on the Euler angles calculated during the numerical integration by means of Equation
(9). Figure 1 shows that the MSE assumes a final value of 1.172 × 10−2 end enters the ±10% error band
(with respect to the final value) in 16680 s. The figure also reports the MSE calculated for A considering
a delay of 5 (dashed line) and 6 (dotted line) seconds. These are calculated comparing, for each sample,
the actual A with the same matrix at, respectively, the sample k-5 and k-6. The MSE for the 5 s and 6
s “delayed” A reaches the final value of, respectively, 1.065 × 10−2 and 1.533 × 10−2, 10% lower and
23% higher than the MSE for TC1. This result indicates that the process suffers a delay, which is in the
range 5–6 s, thus five to six times higher than the simulation time step. Such a process delay arises
because both the estimation processes require the same systolic array architecture, and the attitude
matrix is calculated after the angular rates, which require three consecutive samples (3/ fk = 3 s), and
filtering to produce the result. The delay is considerably reduced when the algorithm is implemented
on real hardware with higher operating and sampling frequency.
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Figure 1. Mean Square Error calculated on the estimated Ak and on the actual A with 5 s and 6 s delay
for Test Case 1.

For the sake of clarity, the accuracy of the attitude determination is also evaluated by comparing
the “actual” Euler angles, resulting from the ODE8 solver to the estimated ones, computed from Ak.
The difference between the estimated and the actual (from the integration) Euler angles is shown in
Figure 2.
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In particular, a highlight of Figure 2 from time 6000 s to the end of the simulation is reported in
Figure 3, showing that the estimated ϕ and θ enter the ±10◦ error band but the same is not verified for
ψ. The Root Mean Square (RMS) values of the estimation errors for three different time windows are
reported in Table 3.
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Table 3. Root Mean Square of attitude estimation errors for Test Case 1.

TC1

Time Window (s) RMS ϕ (◦) RMS θ (◦) RMS ψ (◦)

0–6000 17.99 22.80 42.62
6000–12,000 7.99 1.95 23.72

12,000–17,386 (end) 4.42 3.97 14.23

Figures 4 and 5 show the comparison and the estimation error between the actual angular rates
and the estimated ones.
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It can be noticed that the angular rateωx reaches the target value of 2.5◦, whileωy andωz approach
zero. The angular rates enter the ±0.2◦/s error band in the times and with the RMS error indicated in
Table 4.

Table 4. Root Mean Square of the angular rates estimation error and settling times for Test Case 1.

TC1

RMS ωx (◦/s) 0.034 ts,x (s) 11707
RMS ωy (◦/s) 0.004 ts,y (s) 6639
RMS ωz (◦/s) 0.003 ts,z (s) 6697

Simulations results indicate that the control law Equations (4a)–(4c) is effective in producing the
desired attitude, with the x-axis aligning to the Geomagnetic field vector, as shown in Figure 6.
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The same analysis is repeated for the TC2, in which the satellite is supposed to be deployed at
lower angular rates. The MSE between the actual A and the estimated A(k) are plotted in Figure 7. In
TC2, the MSE enters the ±10% error band with respect to the final value of 1.158 × 10−2 in 12,111 s. The
MSE for 5 s and 6 s delays are 1.071 × 10−2 and 1.539 × 10−2, respectively, the 8% lower and the 25%
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higher than the final MSE for TC2. Similar to TC1, this result indicates which the delay process is in
the interval 5–6 s.
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Figure 7. Mean Squared Error calculated on the estimated Ak and on the actual A with the 5 s and 6 s
delay for Test Case 2.

The estimation errors on the Euler angles show similar behavior in time, as reported in Figure 8,
with ϕ and θ entering the ±10◦ error band in 4740 s and 5367 s, and ψ settling between 10◦ and 15◦.
The RMS values for TC2 are reported in Table 5.
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Table 5. Root Mean Square of attitude estimation errors for Test Case 2.

TC2

Time Window (s) RMS ϕ (◦) RMS θ (◦) RMS ψ (◦)

0–6000 16.70 11.15 26.69
6000–12,000 4.69 5.61 14.41

12,000–17,386 (end) 3.77 4.03 13.76
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With respect to the angular rates, the target values are reached, and the error band of ±0.2 ◦/s is
entered for all the axes in a time shorter than that for TC1. The results are shown in Figure 9 and in
Table 6, including the RMS of angular rates estimation errors after settling time.
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Table 6. Root Mean Square of the angular rates estimation error and settling times for Test Case 2.

TC2

RMS ωx (◦/s) 0.014 ts,x (s) 7175
RMS ωy (◦/s) 0.001 ts,y (s) 5550
RMS ωz (◦/s) 0.002 ts,z (s) 5584

To evaluate the robustness of the algorithm, a total of 100 Test Cases (TC) is simulated, selecting
random initial conditions for the orbital parameters, initial attitude, and initial angular rates. The
values are selected within the following ranges:

Ω,φ0 ∈
[
−180 180

]
◦

ϕ, θ, ψ ∈
[
−180 180

]
◦

ωx, ωy, ωz ∈
[
−10 10

]
◦

h ∈
[

400 700
]

km

i ∈
[

80 100
]
◦

There are different altitudes; therefore, the orbital period of the 100 TC will be different, therefore
a unique total time for the simulation is selected, and it is set equal to 18,000 s, to be comparable with
TC1 and TC2. To ensure that all the simulated TC converge within the mentioned time, the control
gains were set to the following values kp = 400, k1 = 10, and k2 = 1. The filter parameters are the same
for all the TC and equal to the values reported in Table 1.

The MSE was calculated on A(k) for all the 100 TC, and it settles to a value ranging from 1.856 × 10−2

to 2.505 × 10−2, proving that the algorithm is robust with respect to the uncertain initial. For a clearer
evaluation of the performance, the mean value for the RMS of the attitude estimation errors over the
100 TC was calculated and are reported in Table 7. The results in the table are in agreement with those
evaluated for TC1 and TC2, with the accuracy of attitude determination exceeding the threshold level
only for ψ. Angular rates determination is verified as well, registering that all the TC enter the ±0.2◦/s
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error band within 14,902 s. The mean value for the RMS of the angular rates estimation errors was
calculated and are reported in Table 8.

Table 7. Mean Root Mean Square of the attitude estimation errors for the 100 Test Cases.

100 TC

Time Window (s) RMS ϕ (◦) RMS θ (◦) RMS ψ (◦)

0–6000 19.79 17.99 34.39
6000–12,000 11.35 9.52 25.07

12,000–18,000 (end) 5.65 6.55 18.06

Table 8. Mean Root Mean Square of the angular rates estimation errors for the 100 Test Cases.

100 TC

Time Window (s) RMS ωx (◦/s) RMS ωx (◦/s) RMS ωx (◦/s)

0–6000 1.21 1.49 1.49
6000–12,000 0.16 0.02 0.02

12,000–18,000 (end) 0.14 0.01 0.01

Numerical analyses here discussed represent only a preliminary result. The final validation of the
algorithm is performed by HiL simulations, discussed in the following section.

5. Implementation of FPGA and Hardware-in-the-Loop Simulations

Once validated, the global behavior of the algorithm was implemented on an Artix-7 xc7a50t FPGA,
which is a core of the OBC currently under development for STECCO (Space Traveling Egg-Controlled
Catadioptric Object), the first PocketQube of the School of Aerospace Engineering. The main blocks of
the algorithm are shown in Figure 10.

The Geomagnetic field is simulated using Matlab Simulink and sent to the FPGA for processing
them. The Geomagnetic field data were processed to include the quantization error characterizing
the 12-bit MEMS three-axis magnetometer and random white noise, considering a standard deviation
of 2 × 10−7 T. The same systolic array architecture is used for both angular rates and attitude
estimation, using Equations (7a)–(7d) and (16a)–(16d). The second-order Butterworth low-pass filter
was implemented according to [38,39].

When implementing an algorithm on FPGA, its mathematical formulation is converted into
several logical operations, which are stored into organized structures called Look Up Tables (LUT)
and executed with desired time scheduling, under the control of Flip Flops (FF) [40]. The number
of operators that can be stored in the LUT, as well as the total number of LUT and FF, is limited.
Therefore, minimizing their utilization is a crucial task, and for this aim, systolic array architecture was
considered [28]. It is worth highlighting that, as mentioned before, the use of the same architecture for
both attitude matrix and angular rates estimation further increases the efficiency in terms of usage.
Similar considerations apply for the total available memory (RAM) and the usage of the Digital Signal
Processor, leading the logical process.

The resource utilization for the algorithm implemented on the FGPA is reported in Table 9. One
run of the algorithm requires 53 clock cycles, 40 of which are addressed to the systolic array architecture,
which, therefore, represents the most computationally demanding section.
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Figure 10. Main blocks of the attitude determination algorithm implemented on Field Programmable
Gate Array.
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Table 9. Indicative values of the utilization and power required for the attitude determination algorithm.

Resource Utilization % Utilization

Look Up Table 4738 14.53
Flip Flop 2576 3.95

RAM 4.50 6
DSP 30 25

Power [W] 0.277
Digit representation 32-bit Fixed-point

No. clock cycles 53

The HiL simulations are performed based on the same data used for TC1, reported in Tables 1
and 2. The high working frequency of the FPGA, equal to 50 MHz, allows reducing both the delay
due to the filtering process, corresponding to a few clock cycles (2 × 10−8 s) and that related to the
sampling frequency of the magnetometer, which is here increased to fk = 100 Hz, with benefit on
the accuracy of the algorithm. In the selection of the sampling frequency, the Nyquist criterion must
be considered to avoid aliasing and, therefore, loss of information. In particular, according to Fonod
and Gill [33], the sampling frequency can be related to the maximum angular rate expected for the
satellite as fk ≥ ωmax

π , a condition which is verified for TC1 and fk = 100 Hz. The MSE for TC1 at
100 Hz sampling frequency is represented in Figure 11, finally showing that the impact of process
delay is a major cause of the error and that this delay can be reduced to negligible values in real
hardware implementation.
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Figure 11. MSE calculated on the estimated Ak and on the actual A with 5 × 10−2 s delay for Test Case
1 at 100 Hz.

It can be noticed that when the algorithm converges, the MSE settles in the range from 1.056 × 10−2

to 1.1805 × 10−2, a value included between the MSE calculated for A with 5 × 10−2 s and 6 × 10−2 s
delay, respectively equal to 1.038 × 10−2 and 1.2455 × 10−2. The estimation errors on the Euler angles
are shown in Figure 12.
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Figure 12. Difference between the actual and estimated Euler angles for Hardware-in-the-Loop
simulation of Test Case 1 in the range ± 15◦.

The results obtained from the HiL simulations match those from numerical analysis in Section 4,
with ϕ, θ, and ψ entering the ±10◦ error band in 13,431 s, 12,655 s, and 4775 s. The RMS values of the
attitude estimation error are reported in Table 10.

Table 10. Root Mean Square of the attitude estimation errors for Hardware-in-the-Loop simulation of
Test Case 1.

TC1

Time Window (s) RMS ϕ (◦) RMS θ (◦) RMS ψ (◦)

0–6000 17.99 22.80 23.72
6000–12,000 13.99 11.96 4.23

12,000–17,386 (end) 5.43 3.15 3.71

The time behavior of the estimation errors on the angular rates is reported in Figure 13, showing
that ωx reaches the target value of 2.5◦, while ωy and ωz approach zero. The settling times and the
RMS values of the estimation of the angular rates after settling are reported in Table 11.
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Table 11. Root Mean Square of angular rates estimation error and settling times for
Hardware-in-the-Loop simulation of Test Case 1.

TC2

RMS ωx (◦/s) 0.034 ts,x (s) 7104
RMS ωy (◦/s) 0.004 ts,y (s) 7140
RMS ωz (◦/s) 0.003 ts,z (s) 7155

6. Discussion

After having verified the performance of the algorithm, it is worth to compare it to other
magnetometer-only solutions available in the literature [19–25]. As mentioned in the introduction,
these are typically based on the use of a Kalman filter (EKF or UKF) and can provide accuracy as
good as 1◦ and 0.01◦/s in the estimation of, respectively, the Euler angles and the angular rates. By
comparison with the values reported in Tables 10 and 11, it can be noticed that the accuracy of KF based
algorithms is higher than that of the solution proposed. This result indicates that further investigation
should be performed to improve the accuracy of the algorithm, but the output from HiL simulations
is promising.

Nevertheless, the attitude matrix and angular rate estimation algorithm discussed here is proposed
to be a backup solution to be activated in case of failure of the primary attitude determination system.
Therefore, also other features, besides accuracy, should be taken into account to evaluate its suitability.
In particular, two aspects are worth to be examined, which are power and area usage. The former
should be limited to be compliant with realistic power limitations occurring when a backup mode
is required. The latter represents a constraint for the implementation on the FPGA, as discussed
in Section 5, and should be minimized. Using systolic array architecture represents our attempt to
reduce both power and area usage. This task was achieved by designing the attitude and angular rate
estimation algorithm to be implemented in the Faddeev form.

A detailed comparison in terms of power usage between the solution proposed and the KF based
algorithms available in the literature would require the implementation of these onto microprocessors,
which is beyond the scope of this work. Nevertheless, an estimation of power usage can be provided
from the analysis by Mohd et al. [41], evaluating N ×N matrix multiplication performance on FPGA,
using a systolic array, and on two microprocessors. A comparison between the power usage by the
two devices in terms of the size N of the matrix is reported in Table 12, considering the lowest value
between the two microprocessors.

Table 12. Comparison of the power usage between FPGA and microprocessor [41].

Matrix Size
Power Usage (mW)

FPGA Microprocessor

2 × 2 237.05 794.24
4 × 4 287.70 791.43
8 × 8 290.27 788.36

16 × 16 293.53 840.42

It can be noticed that the estimated power usage from the algorithm proposed, implementing 3
× 3 matrix operations, is equal to 277 mW, a value compatible with those in Table 12. If referring to
the methods [20–25], the matrix size ranges from 6 × 6 to 9 × 9; therefore, their power usage can be
estimated to approximately 2.7 times higher.

Recalling that the comparative analysis presented in this section represents only a preliminary
result, it indicates that the attitude matrix and angular rate estimation strategy proposed can be a
suitable option when the use of FPGA based OBC is preferred and lower accuracy can be accepted for
the benefit of lower power usage.
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7. Conclusions

We proposed a magnetometer-only attitude determination strategy tailored for implementation
on the FPGA core of an OBC, using systolic array architecture to enhance the efficiency of the algorithm.
The determination algorithm is aimed to be a backup solution in case of failure of the primary
determination system.

The algorithm provides results with accuracy of ±0.2◦/s on the angular rates and of ±10◦ on
the Euler angles. The numerical analyses and HiL simulations indicate that the algorithm suffers
some processing delay, introduced by the filtering process, and by the sampling frequency of the
magnetometer. This delay reduces as the operating frequency of the FPGA and, especially, the sampling
frequency of the magnetometer increase. Simulations performed considering a MEMS three-axis
magnetometer with sampling frequency as high as 100 Hz and an FPGA running at 50 MHz, indicate
that the processing delay can be reduced to 50–60 milliseconds.

Despite being compatible with several small satellite missions and applications, the algorithm
proposed is less accurate than other magnetometer-only methods available in the literature.
Nevertheless, its lower power usage can represent an advantage for some critical scenarios. Furthermore,
the low resources required and the use of systolic array architecture allows implementing the algorithm
on the OBC at minimal area usage, resulting in a suitable and versatile solution for the use in small
satellite missions.
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