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Abstract: In this paper, the attitude determination problem from two vector observations is revisited,
incorporating the redundant equality constraint obtained by the dot product of vector observations.
Analytical solutions to this constrained attitude determination problem are derived. It is found
out that the studied two-vector attitude determination problem by Davenport q-method under the
dot product constraint has deterministic maximum eigenvalue, which leads to its advantage in
error/perturbation analysis and covariance determination. The proposed dot product constrained
two-vector attitude solution is applied then to solve several engineering problems. Detailed
simulations on spacecrafts attitude determination indicate the efficiency of the proposed theory.

Keywords: attitude determination; redundant reference information; vector observations; equality
constraint; eigenvalue problem

1. Introduction

Attitude determination from vector observations is usually employed in astronautical applications
for state estimation and control of spacecrafts [1–3]. Commonly, the vector observations are acquired
from vector-measurement sensors e.g., Sun sensor, Nadir sensor, magnetometer, star tracker, etc. [4–6].
The usage of direct attitude determination from such sensors has the advantage of compensating for
biases in rate gyroscopes to cancel the long-endurance drifts inside inertial navigation results [7,8].

In the past several decades, many algorithms for optimal attitude determination have been
developed [9,10]. Apart from some intuitive geometric approaches, most of the others are based
on the Wahba’s problem posed in 1965, giving optimal attitude matrix estimates with normalized
vector measurements along with their statistical weights [11]. There have been a lot of Wahba’s
solvers developed in the past 30 years, including celebrated ones such as the QUaternion ESTimator
(QUEST [12]), singular value decomposition (SVD [13]) and Euler-q [14], and recent ones such
as the vector-inertia-based method by Patera [15], the Riemannian-manifold-based on by Yang [16],
the optimal linear estimator of quaternion (OLEQ [17]), etc. These solver are all general ones facing
the multivector cases. Actually, when there are few pairs of vector observations, the Wahba’s
optimization can also be solved via numerical algorithms like gradient-descent algorithm (GDA [18]),
Gauss–Newton algorithm (GNA [19]), Levenberg–Marquardt algorithm (LMA [20]), etc. Such
optimization-based solvers are popular in mechatronic navigation tasks with accelerometers and
magnetometers only [21].

It was found that with two vector observation pairs, we can compute the full attitude results using
the methods such as TRIAD [22]. For instance, with a sun sensor and a magnetometer, the full attitude
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angles along with the orbit can already be determined accurately [23,24]. Based on the two-vector
case, Markley has developed two approaches [25,26]. For the very first one, the attitude quaternion
is employed for parameterizing the orientation transformation; and, in the second one, the optimal
attitude matrix of such problem has been successfully found out. Markley’s methods are proven to
be efficient in engineering practice. These two optimized approaches are all based on conventional
Wahba’s framework and can not improve the essential accuracy. However, for some two-vector based
attitude determination system, e.g., accelerometer–magnetometer-based one, the magnetometer’s
reference vector for true-north-finding is determined by the absolute position of the object in Earth
coordination system [27]. Commonly, when there is no magnetic distortion, the attitude results will
be quite reliable. When adding some magnetic interferences, all Euler angles using a true-north
reference vector will all be disturbed, thus generating large attitude biases. However, the accelerometer
can independently determine the roll and pitch angles, which indicates that the disturbances from
magnetic sensing can be separated. In the work by the authors of [28], this is achieved by introducing
an equality constraint formed by vector dot product from rigid-body motion; whereas, the two-vector
attitude determination system is far beyond the single accelerometer–magnetometer one, it is believed
that there might be some more generalized theory inside such two-vector system with dot product
equality constraint, as some system dynamics will be interesting by incorporating external equality
constraints, e.g., the works by the authors of [29–31].

Guided by the aforementioned problem, in this paper, we present a novel attitude determination
algorithm from two vector observations. The framework is still within the Wahba’s optimization, but is
penalized by adding a dot product equality constraint derived from vector relations. We also show
that under the proposed conditions of dot product constraint, the loss function of Wahba’s problem
can be reduced to 0, i.e., the sensors can extract self information to for possible maximum separation
of different sensor effects and angle observabilities. The proposed two-vector approach can be an
alternative for spacecraft attitude determination backup that subjects to the minimum equipment
list (MEL).

The remainder of the paper is organized as follows. Sections 2 contains problem backgrounds.
Section 3 includes our main results on the studied problem. Section 4 consists an astronautical
application and some related experimental results. In Section 5, we draw the concluding remarks.

2. Problem Fomulation

Given two normalized vector observation pairs in the body frame b and reference frame r, one can
relate them by

b1 = Cr1

b2 = Cr2
(1)

where C in the special orthogonal group SO(3) := {C|CTC = I, det(C) = 1} is the direction cosine
matrix (DCM); the sensor measurements are given by{

b1 =
(
bx,1, by,1, bz,1

)T

r1 =
(
rx,1, ry,1, rz,1

)T ,

{
b2 =

(
bx,2, by,2, bz,2

)T

r2 =
(
rx,2, ry,2, rz,2

)T (2)

provided that 
b2

x,1 + b2
y,1 + b2

z,1 = 1
r2

x,1 + r2
y,1 + r2

z,1 = 1
b2

x,2 + b2
y,2 + b2

z,2 = 1
r2

x,2 + r2
y,2 + r2

z,2 = 1

(3)
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In astronautical missions, the spacecraft is always equipped with a Sun sensor, magnetometer,
horizon sensor, etc. for attitude determination (see Figure 1). Wahba’s problem aims to find out the
optimal DCM of Equation (1) by the following least-square optimization.

arg min
C∈SO(3)

[
w‖b1 − Cr1‖2 + (1− w)‖b2 − Cr2‖2

]
(4)

where w is the weight belonging to the first vector observation pair. This optimization can be reduced
to finding the optimal eigenvector of the following matrix K [32,33],

K =

[
B + BT − tr(B)I z

zT tr(B)

]
(5)

such that
Kq = λmaxq (6)

where λmax is the largest eigenvalue of K while other parameters are given by

B = wb1rT
1 + (1− w)b2rT

2

z = wb1 × r1 + (1− w)b2 × r2
(7)

Figure 1. Satellite attitude determination system using observed Sun vector and geomagnetic sensing.

The characteristic polynomial of K can be computed by

det(K − λI) = 0 (8)

In fact, many closed-form formulations of this polynomial have been developed. For instance,
in ESOQ2, it has been given that [34,35]

λ4 + τ1λ2 + τ2λ + τ3 = 0 (9)
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where
τ1 = −2tr2(B) + tr

[
adj(B + BT)

]
− zTz

τ2 = −tr [adj(K)]

τ3 = det(K)

(10)

where adj denotes the adjoint matrix. In the following sections, we derive the analytical solution to λmax

while generating some internal perspectives on the relationship between body and reference vectors.

3. Proposed Theory

3.1. Dot Product-Equality Constraint

Theorem 1. Defining  Hx1 Hx2 Hx3

Hy1 Hy2 Hy3

Hz1 Hz2 Hz3

 = BT (11)

the following matrix [36],

W1,1 = Hx1 + Hy2 + Hz3 W1,2 = −Hy3 + Hz2

W1,3 = −Hz1 + Hx3 W1,4 = −Hx2 + Hy1

W2,1 = −Hy3 + Hz2 W2,2 = Hx1 − Hy2 − Hz3

W2,3 = Hx2 + Hy1 W2,4 = Hx3 + Hz1

W3,1 = −Hz1 + Hx3 W3,2 = Hx2 + Hy1

W3,3 = Hy2 − Hx1 − Hz3 W3,4 = Hy3 + Hz2

W4,1 = −Hx2 + Hy1 W4,2 = Hx3 + Hz1

W4,3 = Hy3 + Hz2 W4,4 = Hz3 − Hy2 − Hx1

(12)

where Wi,j denotes the matrix entry of W with row and column indices of i and j respectively, has the similar
structure with K and owns the same eigenvalues and associated eigenvectors.

Proof. We can directly obtain

B + BT − tr(B)I =

 Hx1 − Hy2 − Hz3 Hx2 + Hy1 Hx3 + Hz1

Hx2 + Hy1 Hy2 − Hx1 − Hz3 Hy3 + Hz2

Hx3 + Hz1 Hy3 + Hz2 Hz3 − Hy2 − Hx1


tr(B) = Hx1 + Hy2 + Hz3

z = (B2,3 − B3,2, B3,1 − B1,3, B1,2 − B2,1)
T =

(
−Hy3 + Hz2,−Hz1 + Hx3,−Hx2 + Hy1

)T

(13)

Comparing the above results with Equation (12), we have

W =

[
tr(B) zT

z B + BT − tr(B)I

]
(14)

It is evident that W and K has the similar structure. This completes the proof.

Lemma 1. τ2 = 0 holds for arbitrary two pairs of vector observations.
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Proof. The diagonal elements of K matrix can be given by

K1,1 =
(
bz,2rz,2 + by,2ry,2 − bx,2rx,2

)
(w− 1) +

(
bx,1rx,1 − by,1ry,1 − bz,1rz,1

)
w

K2,2 =
(
bz,2rz,2 − by,2ry,2 + bx,2rx,2

)
(w− 1) +

(
−bx,1rx,1 + by,1ry,1 − bz,1rz,1

)
w

K3,3 =
(
−bz,2rz,2 + by,2ry,2 + bx,2rx,2

)
(w− 1) +

(
−bx,1rx,1 − by,1ry,1 + bz,1rz,1

)
w

K4,4 =
(
−bz,2rz,2 − by,2ry,2 − bx,2rx,2

)
(w− 1) +

(
bx,1rx,1 + by,1ry,1 + bz,1rz,1

)
w

(15)

Therefore, it is obvious that the sum of the eigenvalues to K equals to K1,1 +K2,2 +K3,3 +K4,4 = 0.
This is why the coefficient of λ3 is zero. Note that τ2 is de facto in the form of [36]

τ2 = 8

(
Hx3Hy2Hz1 − Hx2Hy3Hz1 − Hx3Hy1Hz2+

Hx1Hy3Hz2 + Hx2Hy1Hz3 − Hx1Hy2Hz3

)
(16)

Actually, the right part can be represented by

τ2 = −8 det(B) (17)

In view of B for the two-vector case, we can see that it takes the following form

B = wb1rT
1 + (1− w)b2rT

2 ⇒ rank(B) ≤ rank
(
wb1rT

1
)
+ rank

[
(1− w)b2rT

2
]
= 2 (18)

indicating that B is rank-deficient. Therefore, we arrive at

τ2 = −8 det(B) = 0 (19)

which completes the proof.

With Lemma 1, we can see that the characteristic polynomial is essentially a quadratic equation
of λ2. Then the eigenvalues can be solved immediately via

λ = ±

√√√√−τ1 ±
√

τ2
1 − 4τ3

2
(20)

The maximum eigenvalue should be

λmax =

√√√√−τ1 +
√

τ2
1 − 4τ3

2
(21)

because [36]

τ1 = −2


H2

x1 + H2
x2 + H2

x3+

H2
y1 + H2

y2 + H2
y3+

H2
z1 + H2

z2 + H2
z3

 < 0 (22)

As the q-method is derived from the Lagrange multiplier, with increasing maximum eigenvalue,
the loss function becomes even smaller. The maximum eigenvalue has an upper bound, as proven by
Shuster that [12]

λmax 6
n

∑
i=1

wi = 1 (23)
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where wi is the weight of the i-th vector observation pair. Regarding λmax as a function of the vector
observations, we can seek its largest point. This is equivalent to figuring out the solution to the
following system,

∂(2λ2
max)

∂bx,1
= 0

∂(2λ2
max)

∂by,1
= 0

∂(2λ2
max)

∂bz,1
= 0

,


∂(2λ2

max)
∂bx,2

= 0
∂(2λ2

max)
∂by,2

= 0
∂(2λ2

max)
∂bz,2

= 0

,


∂(2λ2

max)
∂rx,1

= 0
∂(2λ2

max)
∂ry,1

= 0
∂(2λ2

max)
∂rz,1

= 0

,


∂(2λ2

max)
∂rx,2

= 0
∂(2λ2

max)
∂ry,2

= 0
∂(2λ2

max)
∂rz,2

= 0

(24)

which is rather difficult in detail. Let us write out the algebraic form of τ1 and τ3:

τ1 = −2 + 4w− 4w2+

4w(w− 1)
(
bx,1bx,2 + by,1by,2 + bz,1bz,2

) (
rx,1rx,2 + ry,1ry,2 + rz,1rz,2

) (25a)

τ3 = 1− 4w + 12w2 − 16w3 + 8w4−
4w(w− 1)

(
bx,1bx,2 + by,1by,2 + bz,1bz,2

) (
rx,1rx,2 + ry,1ry,2 + rz,1rz,2

)
+

8w2(w− 1)
(
bx,1bx,2 + by,1by,2 + bz,1bz,2

) (
rx,1rx,2 + ry,1ry,2 + rz,1rz,2

)
−

8w3(w− 1)
(
bx,1bx,2 + by,1by,2 + bz,1bz,2

) (
rx,1rx,2 + ry,1ry,2 + rz,1rz,2

)
−

4w2(w− 1)2



b2
y,1 − 2bx,1bx,2by,1by,2 + b2

y,2 − 2b2
y,1b2

y,2+

b2
z,1 − b2

y,2b2
z,1 − 2bx,1bx,2bz,1bz,2 − 2by,1by,2bz,1bz,2+

b2
z,2 − b2

y,1b2
z,2 − 2b2

z,1b2
z,2 + r2

y,1 − 2rx,1rx,2ry,1ry,2+

r2
y,2 − 2r2

y,1r2
y,2 + r2

z,1 − r2
y,2r2

z,1 − 2rx,1rx,2rz,1rz,2−

2ry,1ry,2rz,1rz,2 + r2
z,2 − r2

y,1r2
z,2 − 2r2

z,1r2
z,2



(25b)

Note that we have the following simplification.

b2
y,1 + b2

z,1 + b2
y,2 + b2

z,2 − b2
y,1b2

y,2 − b2
y,2b2

z,1 − b2
y,1b2

z,2 − b2
z,1b2

z,2

= b2
y,1 + b2

z,1 + b2
y,2 + b2

z,2 −
(

b2
y,1 + b2

z,1

) (
b2

y,2 + b2
z,2

)
= 2− b2

x,1 − b2
x,2 −

(
1− b2

x,1

) (
1− b2

x,2

)
= 2− b2

x,1 − b2
x,2 − 1− b2

x,1b2
x,2 + b2

x,1 + b2
x,2

= 1− b2
x,1b2

x,2

(26)

With
p = b1 · b2 = bx,1bx,2 + by,1by,2 + bz,1bz,2

q = r1 · r2 = rx,1rx,2 + ry,1ry,2 + rz,1rz,2
(27)

τ1 and τ3 are simplified to

τ1 = −2 + 4w− 4w2 + 4w(w− 1)pq

τ3 = 1− 4w + 12w2 − 16w3 + 8w4−

4w
(

1− 2w + 2w2
)
(w− 1)pq− 4w2(w− 1)2

(
2− p2 − q2

) (28)

Therefore, it is shown that the eigenvalue is actually the function of p and q, with parameters
ranging from

p = b1 · b2 ∈ [−1, 1]

q = r1 · r2 ∈ [−1, 1]

w ∈ (0, 1)

(29)
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The figures of the maximum eigenvalue Equation (21) with w = 0.5 are depicted as follows in
Figure 2.

Figure 2. The plot of eigenvalue with p, q varying from −1 to 1, where w = 0.5.

With different w, the maximum eigenvalues are drawn in Figure 3.

Figure 3. The plot of eigenvalue with p, q varying from −1 to 1, where w varies from 0.0001 to 0.99.
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From the above figures, we see that the maximum eigenvalue is a convex function with respect to
p and q no matter how w changes. Based on this point, the global optimum-seeking procedure is then
reduced to solve the following system.

∂
(
2λ2

max
)

∂p
= 0

∂
(
2λ2

max
)

∂q
= 0

(30)

The partial differentiation can be computed by

∂
(
2λ2

max
)

∂r
= −∂τ1

∂r
+

1

2
√

τ2
1 − 4τ3

(
2τ1

∂τ1

∂r
− 4

∂τ3

∂r

)
(31)

where r is the differentiation independent variables:

r = p, q (32)

By which the specific derivatives are obtained by{
∂τ1
∂p = 4w(w− 1)q
∂τ1
∂q = 4w(w− 1)p

,

{
∂τ3
∂p = 4w

(
1− 2w + 2w2) (w− 1)q + 8w2(w− 1)2 p

∂τ3
∂q = 4w

(
1− 2w + 2w2) (w− 1)p + 8w2(w− 1)2q

(33)

Inserting these equalities into Equation (30) and invoking

∂
(
2λ2

max
)

∂r
= 0

⇒ ∂τ1

∂r
=

1√
τ2

1 − 4τ3

(
τ1

∂τ1

∂r
− 2

∂τ3

∂r

)

⇒


√

τ2
1 − 4τ3

2
− τ1

2

 ∂τ1

∂r
=

∂τ3

∂r

(34)

we obtain
p = q (35)

at which, we also have √
τ2

1 − 4τ3 = 4w− 4w2 + 4w(w− 1)pq (36)

leading to
λmax = 1 (37)

Reconsidering the forms of p and q, we find out

p = q⇒ b1 · b2 = r1 · r2 (38)

which can actually be derived from another aspect by

b1 · b2 = bT
1 b2 = rT

1 CTCr2 = rT
1 r2 = r1 · r2 (39)
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This finding reflects that the equality constraint Equation (38) can achieve least value of Wahba’s
loss function, such that [32]

L(C) = w‖b1 − Cr1‖2 + (1− w)‖b2 − Cr2‖2

= 1− tr(CBT)

= 1− qTKq

= 1− qTλmaxq

= 0

(40)

The occurrence of λmax = 1 has in fact been shown by Markley [26]. However, we need to note
that the attitude matrix employed for attitude representation in the work by the authors of [26] is not
as flexible as the quaternion used in this paper, as a quaternion only requires normalization rather than
orthonormalization for an attitude matrix [37].

3.2. Quaternion Solution

As the loss function is zero, we can regard the optimization as a properly solved one. That is,
at this time, the information from each sensor has been maximumly extracted to reduce the loss
function value; and, geometrically, every sensor has fully contributed to all those angles that they can
observe. This means the optimal quaternion is finally computed via

(K − I) q = 0 (41)

generating the following row-echelon form

K − I ⇒


1 α/N

1 β/N
1 γ/N

0

 (42)

The symbolic solutions to this function can be obtained by

N = 1− by,1ry,1 − by,2ry,2 + bz,1rz,1 + bz,2rz,2

+
(
bx,1ry,1 − bx,1rx,1

)
r2

y,2 + q2

rx,2ry,1
(
by,2rx,1 − bx,2ry,1 + bx,2by,1 − bx,1by,2

)
+

ry,2ry,1
(
−bx,1ry,2 + bx,1rx,2 + by,2ry,1 + by,1ry,2

)
+

rx,1ry,2
(
by,1rx,2 + bx,2ry,1 − bx,2by,1 + bx,1by,2

)
+

rx,2rz,1 (−bz,2rx,1 − bx,2rz,1 − bx,2bz,1 + bx,1bz,2) +

rx,1rz,2 (−bz,1rx,2 − bx,1rz,2 + bx,2bz,1 − bx,1bz,2) +

rz,1rz,2 (bx,2rx,1 + bx,1rx,2 − bz,2rz,1 − bz,1rz,2) +

ry,1rz,2
(
−bz,1ry,2 + by,2rz,1 + by,2bz,1 − by,1bz,2

)
+

ry,2rz,1
(
−bz,2ry,1 + by,1rz,2 − by,2bz,1 + by,1bz,2

)

(43a)
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α = bz,2rx,1rx,2ry,1 + bx,2by,1rx,2rz,1 − by,2rx,1rx,2rz,1 − bx,2by,1rx,1rz,2−
by,1rx,1rx,2rz,2 + bx,1

(
bz,2rx,2ry,1 − bz,2rx,1ry,2 − by,2rx,2rz,1 + by,2rx,1rz,2

)
+

bz,1

[
ry,2 (bx,2rx,1 + rx,2rx,1 + rz,1rz,2) + ry,1

(
−bx,2rx,2 + r2

y,2 − 1
)]

+

bz,2ry,2r2
y,1 − by,2ry,2ry,1rz,1 − by,1ry,2ry,1rz,2 + bz,2ry,1rz,1rz,2−

by,1rz,1r2
z,2 − bz,2ry,2 + by,1rz,1 − by,2r2

z,1rz,2 + by,2rz,2

(43b)

β = bz,2rx,2r2
y,1 − bz,2rx,1ry,2ry,1 − bz,1rx,2ry,2ry,1 + bx,2ry,2ry,1rz,1+

bx,1ry,2ry,1rz,2 + bz,1rx,1r2
y,2+

by,2
(
−bz,1rx,2ry,1 + bx,1ry,1rz,2 + bz,1rx,1ry,2 − bx,1ry,2rz,1

)
+

by,1
(
bz,2rx,2ry,1 − bx,2ry,1rz,2 − bz,2rx,1ry,2 + bx,2ry,2rz,1

)
+

bz,2rx,2r2
z,1 + bz,1rx,1r2

z,2 + bx,1rz,1r2
z,2 − bx,1rz,1 + bx,2rx,1rx,2rz,1+

bx,2r2
z,1rz,2 − bx,2rz,2 + bx,1rx,1rx,2rz,2 − bz,2rx,1rz,1rz,2 − bz,1rx,2rz,1rz,2

(43c)

γ = −



by,2rx,2r2
z,1 + by,1rx,1r2

z,2 + by,2bz,1rx,2rz,1 − by,1bz,2rx,2rz,1−
by,2bz,1rx,1rz,2 + by,1bz,2rx,1rz,2 − by,2rx,1rz,1rz,2 − by,1rx,2rz,1rz,2+

bx,2

[
ry,1rz,2 (bz,1 + rz,1) + ry,2

(
−bz,1rz,1 + r2

y,1 − 1
)
+ rx,1rx,2ry,1

]
+

bx,1

[
ry,2 (rz,1bz,2 + rz,1rz,2 + rx,1rx,2) + ry,1

(
−bz,2rz,2 + r2

y,2 − 1
)]

+

by,2rx,2r2
y,1 − by,2rx,1ry,2ry,1 − by,1rx,2ry,2ry,1 + by,1rx,1r2

y,2


(43d)

The final quaternion solution is obtained by

q =
1√

α2 + β2 + γ2 + N2
(α, β, γ,−N)T (44)

We can see that the obtained quaternion is weight-free. A well-known two-vector quaternion
solution is given by Markley [25], such that

q =


1

2
√

γ(γ+α)(1+b3·r3)

[
(γ + α) (b3 × r3) + β (b3 + r3)

(γ + α) (1 + b3 · r3)

]
1

2
√

γ(γ−α)(1+b3·r3)

[
β (b3 × r3) + (γ− α) (b3 + r3)

β (1 + b3 · r3)

] f or α > 0
f or α 6 0

(45)

where
b3 =

b1 × b2

‖b1 × b2‖
, r3 =

r1 × r2

‖r1 × r2‖
α = (1 + b3 · r3) [wb1 · r1 + (1− w)b2 · r2] +

(b3 × r3) · [wb1 × r1 + (1− w)b2 × r2]

β = (b3 + r3) · [wb1 × r1 + (1− w)b2 × r2]

γ =
√

α2 + β2

(46)

Markley’s solution has the same accuracy as QUEST. However, if we put the proposed equality
p = q into this solution, it is difficult to draw the conclusion that the quaternion is independent of
w. The is because Markley’s solution relies on the normalized cross products b3 and r3. It is the
nonlinearity of the normalization that makes the further simplification harder. The above results can
also be computed by introducing the Lagrange multiplier [38] and in combination with the GDA [18];
as, in such an optimization, there will be two constraints: (1) quaternion unity and (2) dot product
equality, and because the solving process will belong to the type of interior-point solvers for nonlinear
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programming [39], deriving the closed-form solution for such a problem seems much harder than the
presented approach.

3.3. Error and Covariance Anlysis

Equation (1) is an ideal model for two-vector attitude determination without noises.
The noise-corrupted model is expressed as follows

b1 + e1 = C(r1 + ε1)

b2 + e2 = C(r2 + ε2)
(47)

where e1, e2, ε1, and ε2 are independent white Gaussian noise items with covariances of Σb1 , Σb2 , Σr1 ,
and Σr2 , respectively. Assume that for the true value K we have a corresponding true quaternion q
with eigenvalue 1, such that

Kq = q (48)

With noise perturbation, K is interfered with by δK, also generating an eigenvector perturbation
δq, say

(K + δK) (q + δq) = q + δq (49)

Expanding it yields
Kq + δKq + Kδq + δKδq = q + δq

⇒ δKq + Kδq + δKδq = δq

⇒ −δKq = (K + δK − I)δq

(50)

As we also have det(K + δK − I) = 0, the quaternion perturbation is derived by

− (K + δK − I)†δKq = δq (51)

which produces the following quaternion difference [40],

δq = (I − K)† δKq (52)

with

δK =

[
δκ δzT

δz δB + δBT − δκI

]
δB = w

(
b1εT

1 + e1rT
1

)
+ (1− w)

(
b2εT

2 + e2rT
2

)
δz = w (b1 × ε1 + e1 × r1) + (1− w) (b2 × ε2 + e2 × r2)

δκ = w
(

εT
1 b1 + rT

1 e1

)
+ (1− w)

(
εT

2 b2 + rT
2 e2

)
(53)

The above error analysis is the standard approach for the Wahba’s solution using Davenport
q-method. This error-analysis approach is presented to cope with the restriction of the unknown
eigenvalues associated with the Davenport q-method. However, such results are also related to the
selection of the weight w. Apparently, seen from Solution Equation (43), one may easily see that the
obtained quaternion is free of w. This type of quaternion owns closed forms without high-order or highly
nonlinear terms. Therefore for the proposed method, the error analysis can be performed easily using

δq =
1√

α2 + β2 + γ2 + N2
(δα, δβ, δγ,−δN)T + δ

(
1√

α2 + β2 + γ2 + N2

)
(α, β, γ,−N)T (54)
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with

δ

(
1√

α2 + β2 + γ2 + N2

)
= −

(
α2 + β2 + γ2 + N2

)− 3
2
(αδα + βδβ + γδγ + NδN) (55)

and δα, δβ, δγ, and δN can be computed directly from Equation (43).
Then, the covariance of the derived quaternion using first-order approximation is also

straightforward, given by

Σq = J


Σb1

Σb2

Σr1

Σr2

 JT (56)

where the Jacobian J is

J =
∂q

∂
(
bT

1 , bT
2 , rT

1 , rT
2
)T (57)

4. Applications: Attitude Determination from Horizon Sensor and Another Generalized Sensor

The derived theory can be applied to those problems in which some of the reference vectors are
hard to be determined. In this section, we choose the system configuration with a horizon sensor and
another generalized sensor for two-vector attitude determination. The horizon sensor can be either an
infrared Nadir detector [41] or a camera-based horizon finder [42]. It estimates the horizontal Euler
angles of the mounting object by tracking Nadir or analyzes the geometry of the camera-captured
horizon. Also, we need to note that in near-ground static applications, accelerometers can be used for
reconstruction of roll and pitch information and can also be treated as a kind of horizon sensor.

There are many other types of sensors for a horizon sensor to accompany. For instance, the attitude
determination by means of accelerometer and magnetometer can be used for pedestrian navigation.
The infrared Nadir detector together with Sun sensor or magnetometer can also provide accurate
enough attitude determination results. Take the accelerometer–magnetometer case for example,
the magnetic reference vector is usually time-varying with the position of the rigid body. This is
because the Earth geomagnetic field can be described by the following potential [43].

U = A
k

∑
n=1

n

∑
m=1

(
Re

A

)n+1
Pm

n (cos θ)(gm
n cos mϕ + hm

n sin mϕ) (58)

where A denotes the distance of the object to the Earth center; Re is the Earth radius; θ and ϕ are
co-latitude and longitude, respectively; Pm

n is the associated Legendre function of degree m and order
n; and gm

n and hm
n are Gaussian coefficients from global satellite geomagnetic measurements and are

released in annual IGRF models. Then, the magnetic vector in the geodetic frame is the function of
A, θ, and ϕ. The most common way to obtain such reference information is by looking up the table
or directly computing the vector by spheric harmonic functions. However, when there is no source
of position measurements (such as low-cost indoor smart wearables), it is very hard to obtain such
information. A compromising way is to use the magnetic north rather than the true north provided by
IGRF. Assuming that the accelerometer and magnetometer have their normalized vector measurements
pairs as follows, {

Ab =
(
ax, ay, az

)T

Ar = (0, 0, 1)T ,

{
Mb =

(
mx, my, mz

)T

Mr = (mN , 0, mD)
T (59)

we can directly construct the magnetic reference vector by

Ab ·Mb = Ar ·Mr ⇒ mD = axmx + aymy + azmz (60)



Aerospace 2019, 6, 102 13 of 21

whereas another component can be determined by

mN = cos κ =
√

1−m2
D (61)

where κ is the local dip angle [44]. From the derived results shown in last section, the quaternion
calculated now only obtains roll, pitch from accelerometer, and yaw from magnetometer, respectively.
The magnetometer does not influence the estimation of other two angles and neither does the
accelerometer [28].

A record of accelerometer/magnetometer data along with reference angles are logged from the
3DM-GX3-25 attitude and heading reference system (AHRS). This AHRS module is attached to the
data collection computer via the serial port with baudrate of 921600. The sampling frequency is set to
500 Hz. The motion has been generated using a human-operated inertial stabilized gimbal so that the
motion in all axes will be produced. The motivation of using the accelerometer and magnetometer
as an experimental object is that we would like to theoretically explain why attitude estimation can
be conducted in a reference-free manner as presented in previous literatures [21,28,45–47]. Using
MATLAB r2016b, we evaluate the attitude determination results in Figure 4. The related loss functions
are plotted in Figure 5. The results in Figure 5 magnify the nonintuitive errors presented in Figure 4.

Figure 4. Attitude determination results using the FLAE and proposed dot equality constrained method.

Figure 5. Loss function values from the FLAE and proposed dot equality constrained method.
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In this experiment, the weights between accelerometer and magnetometer are both 0.5. The local
magnetic reference vector of FLAE is set to Mr = (0.9800, 0,−0.1989)T in the Northern Hemisphere.
It is noticed from the figure that the roll and pitch angle determination has more observable differences
than that of the proposed method between the true angles. This is because the roll and pitch angles used
herein are not fully determined by the accelerometer but influenced by magnetometer as well. For the
conventional Wahba’s problem, the two sensors both contribute to the observabilities of three Euler
angles roll, pitch, and yaw. However, using the proposed method, we can separate these observabilities.
Apart from the errors in the local magnetic reference vector during movement, the AHRS has been
somewhat distorted by outer unknown electromagnetic disturbances. In such occasion, the non-yaw
angles would contain evident differences with the reference values. If the proposed method behaves,
the angles fit those from the reference instrument very well. The internal reason has been introduced
before i.e., the roll and pitch angles are fully measured from the accelerometer while the yaw is
only determined by the magnetometer. The loss function results also reflect this point. Coinciding
with previous findings, the loss function values from the proposed method vary at the basic scale of
1× 10−27 which is tiny enough to be considered as zero.

While for the more general case in which there are one horizon sensor and another sensor, using the
results in Equation (43), we can give the analytical solution to such attitude determination problem by

q =
1√

q̃2
0 + q̃2

1 + q̃2
2 + q̃2

3

(q̃0, q̃1, q̃2, q̃3)
T

q̃0 = fx
(

gyhx − gxhy
)
+ fy (gz − fzhz) +

(
f 2
z − 1

)
hy

q̃1 = fx (gxhz − gzhx) + fy
(

gzhy − gyhz
)
− fxgx + fygy + fz

(
fxhx − fyhy

)
+
(

f 2
z − 1

)
(1− hz)

q̃2 = fy [hx (gz − fz)− gx (hz − 1)] + fx
[
hy (gz − fz)− gy (hz − 1)

]
q̃3 = hx

(
fygy + f 2

z − 1
)
− fygxhy + fx ( fzhz − gz)

(62)

where
hb = (hx, hy, hz)

T

hr = (0, 0, 1)T

gb = (gx, gy, gz)
T

gr = ( fx, fy, fz)
T

(63)

and hb and hr are vector observation pair for the horizon sensor in b and r frames, respectively, whereas
gb and gr represent the same meaning for another generalized sensor.

Now, we simulate a mission for a satellite. Four sensors, including a star tracker, a horizon sensor,
a Sun sensor, and a magnetometer, are employed (see Figure 6). Only the horizon sensor and Sun
sensor are employed to compute the attitude in this section; the other sensors are used for generating
high-resolution attitude reference information. All of the sensors presented in this simulation study
are transformed into the J2000 Earth-Centered Interval (ECI) frame for attitude computation. The Sun
vector can be computed straightforward according to historical astronomy ephemeris [48]. Given the
Julian time TJD [49]:

TJD = 367year−
7

year +

⌊
month+9

12

⌋
4

+

⌊
275month

9

⌋

+day + 1721013.5 +
hour

24
+

minute
1440

+
second
86400


(64)
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where b· · · c is the downward floor operator, thus the normalized Sun vector gr can be determined by

UT1 =
TJD − 2451545

36525
Msun = 357.5277233 + 35999.05034UT1

γecliptic = 280.4606184 + 36000.77005361UT1+

1.914666471 sin
(

πMsun

180

)
+ 0.918994643 sin

(
2πMsun

180

)
esun = 23.439291− 0.0130042UT1

sx = cos(
πγecliptic

180
)

sy = cos(
πesun

180
) sin(

πγecliptic

180
)

sz = sin(
πesun

180
) sin(

πγecliptic

180
)

gr =
1√

s2
x + s2

y + s2
x

(sx, sy, sz)
T

(65)

where Msun denotes the Sun mean anomaly, γecliptic is the ecliptic longitude of the Sun, and esun stands
for the eccentricity of the Sun orbit.

Figure 6. The simulated spacecraft mission with horizon detector, Sun sensor, star tracker, and
magnetometer. The magnetometer is installed in the interior part of the satellite and is invisible in the
current image.

The satellite motion is simulated by creating an orbit around the Earth with eccentricity of 0.15
and semimajor axis of 9966.14 km. The satellite attitude is generated with Nadir alignment subject to
orbit normal constraint of 3 deg. The spacecraft attitude has been simulated through the following
equation of angular momentum,

Iω̇ + ḣ + ω× (Iω + h) = u (66)

where I denotes the inertia of spacecraft, ω is the angular rate, and h stands for the angular
momentum driven by the control input u. The attitude model has been constructed via the 4-th
Runge–Kutta method, and the control method used herein is a Propotional-Derivative (PD)-type
control algorithm. The star tracker in this simulation points exactly to the Hipparcos 2 24608 star.
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The outer geomagnetic environment has the perturbation based on the Olson-Pfitzer field. The IGRF
model for the magnetometer measurement in the local geodetic frame is expressed as follows.(

BA, Bθ , Bϕ

)T
= −∇U

BA =
k

∑
n=1

(
Re

A

)n+2
(n + 1)

n

∑
m=0

(gm
n cos mϕ + hm

n sin mϕ) Pm
n (cos θ)

Bθ = −
k

∑
n=1

(
Re

A

)n+2 n

∑
m=0

(gm
n cos mϕ + hm

n sin mϕ)
∂Pm

n (cos θ)

∂θ

Bϕ = − 1
sin θ

k

∑
n=1

(
Re

A

)n+2 n

∑
m=0

m (−gm
n sin mϕ + hm

n cos mϕ) Pm
n (cos θ)

(67)

The Sun sensor not always work, as there may be an area of shade due to the Earth’s positioning
during flight that prohibits Sun detection. The simulation is run for 1 single day from 1 March 2019
04:00:00.000 to 2 March 2019 04:00:00.000. The available solar luminance is indicated in Figure 7.
The Sun sensor has accuracy of 20 arcsec and for horizon sensor that would be 1.5 arcmin. The sensor
noises are simulated to be additive and subject to the Gaussian distribution. When the spacecraft is in
the Earth shade area, we do not compute the attitude since only one vector observation pair does not
have enough observability for three-axis attitude determination.

Figure 7. The Sun luminance indicator.

The raw measurements of the four attitude sensors are presented in Figure 8 where the measured
values of Sun sensor, star tracker, and the horizon sensor are presented in the normalized form.

Figure 8. Raw measurements from various sensors.
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Using the representative QUEST solver for conventional Wahba’s problem, we show the
comparison with the proposed method. Figures 9 and 10 show the results from QUEST and the
proposed algorithm, respectively.

Figure 9. The quaternion determination from QUEST.

Figure 10. The quaternion determination from the proposed method.
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The results show that both methods are efficient for attitude determination. However, since
the proposed method separates the effects of the horizon sensor and Sun sensor, the attitude error
covariance has a smaller scale than QUEST. The quaternion error responses of QUEST and the proposed
algorithm are shown in Figure 11. In Figure 11, the 3σ bounds are also presented using the square roots
of the diagonal elements of the computed quaternion error covariances. Corresponding Euler angle
errors are shown in Figure 12. The QUEST has the root-mean-squared error (RMSE) attitude accuracy
of 5.12 deg on roll, 2.34 deg on pitch, and 4.06 deg on yaw. The proposed method has advantages on
roll and pitch and has RMSE attitude accuracy of 2.93 deg on roll, 1.01 deg on pitch, and 3.82 deg on
yaw. The proposed method can make the attitude propagation from sensors independently and thus
when emergency occurs the engineers may be also easier to separate the faults and will find out the
sensor failures much faster; that is, if the horizon sensor has exceptions, only roll and pitch will be
affected, whereas the Sun sensor encounters faults only if yaw can be influenced.

Figure 11. The quaternion accuracy comparison subject to input noises.

Figure 12. The attitude accuracy comparison subject to input noises.

5. Conclusions

In this paper, we revisit the problem of two-vector attitude determination, which is based on
the theory of Markley [25]. A novel dot product equality constraint is proposed to further support
the conventional optimization. The quaternion solutions and covariance analysis are also obtained
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for implementation on chips. By virtue of the equality constraint, the derived quaternion result can
separate sensor effects for independent attitude angle observabilities. The derived quaternion solution
is not as neat as that provided in the work by the authors of [26], but it provides another perspective
without matrix orthonormalization. An application on the attitude determination from the horizon
sensor and another generalized sensor illustrates that the proposed method is effective and accurate.
It has also been tested smaller covariance scales in the presented simulation study for spacecraft
attitude determination. Future works should be devoted to invoke more vector observation pairs
for generalized attitude determination tasks. Also, according to the independent angle separation
functionality of the proposed work, it may be used for flexible sensor calibration in further studies.
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