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Abstract: Conventional fixed wing aircraft require a selection of certain thickness of skin material
that guarantees structural strength for aerodynamic loadings in various flight modes. However,
skin structures of morphing wings are expected to be flexible as well as stiff to structural and
coupled aerodynamic loadings from geometry change. Many works in the design of skin structures
for morphing wings consider only geometric compliance. Among many morphing classifications,
we consider camber rate change as airfoil morphing that changes its rate of the airfoil that induces
warping, twisting, and bending in multi-axial directions, which makes compliant skin design for
morphing a challenging task. It is desired to design a 3D skin structure for a morphing wing; however,
it is a computationally challenging task in the design stage to optimize the design parameters.
Therefore, it is of interest to establish the structure design process in rapid approaches. As a first step,
the main theme of this study is to numerically validate and suggest simplified 2D plate models that
fully represents multi-axial 3D camber morphing. In addition to that, the authors show the usage
of lattice structures for the 2D plate models’ skin that will lead to on-demand design of advanced
structure through the modification of selected structure.
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1. Introduction

Wing morphing is a concept wherein the shape of an aircraft’s wing is altered in a continuous
manner to suit the desired flight conditions. This change can occur in many ways: sweep angle, chord
length, span length, and airfoil [1–3]. Wing morphing mainly aims to minimize fuel consumption
by reducing drag forces in corresponding flight modes [4]. Recently, many researchers have moved
towards the study of using smart materials and their aerodynamic analysis to investigate shape
morphing [5,6]. Among morphing types, camber change in airfoil morphing has been widely studied
by many researchers [7–10], due to its effectiveness and simplicity in implementation.

However, the importance of skin material/structure in camber variable wings has been overlooked
due its complexity. Conventional and fixed wing aircraft use 1–2 mm thick aluminum skin in their
wings to endure aerodynamic loadings. Additionally, skin structure or material selection plays the role
of wrapper around the wing, allowing a maximum out-of-plane deformation of 1–1.5 mm. However,
when morphing or active geometry/shape changes in wings are considered, newly induced structural
stress to the wing, as well as the associated aerodynamic effects caused by shape changes should be also
considered. For example, in chord extension morphing, the skin around the wing is not only desired to
be flexible in chord direction, but is also required to maintain out-of-plane or span directional loadings,
which makes this design problem challenging.
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The advantages of flexible skins include their large deformation capability and low elastic modulus.
However, many works in the design of skins for morphing wings, which often use smart materials,
only consider geometric or static deformations but not dynamic ones [11,12]. State-of-the-art skin
design methodologies are comprehensively surveyed by two articles [13,14]. Kuder et al. [13] made an
extensive survey of skin morphing structures, indicating that an interdisciplinary approach is required
to bring morphing technology into maturity. Similarly, La et al. [14] conducted another comprehensive
survey of flexible skin using composite lattice structures. Three main themes based on the previously
mentioned two articles are (1) lattice structure for skin, (2) composite material analysis satisfying
requirements, and (3) the form of combinational work of (1) and (2).

First, lattice structures for morphing wing skin have recently gained much attention for
their material compliancy optimization in cellular structures. Single and double wall corrugated
structures [15–19] were studied to improve structural strength as well as to sustain aerodynamic loads.
Also, adding hierarchical sub-structures to these walls is suggested [20,21] to increase the material’s
compliancy and to reduce required tension loads for skin morphing. Another series of articles address
Chiral structures [22–25] that have gained special attention due to the bending response as compared
to other structures. However, most skin design approaches using lattice structures for morphing wings
are (1) limited to in-plane 2D, not taking into consideration the aerodynamic loadings in out-of-plane
direction, nor a certain shaped morphing (static) only.

Second, composite skin is one of the techniques expected to overcome this multi-axial design
challenge [26,27]. Exemplary works by the authors of [28–35] show extensive studies of the material’s
properties for skin such as elastic modulus, shear modulus, relative density, and Poisson’s ratio.
Another group of researchers have suggested using carbon nanotubes [36], which have the potential to
change the electrical conductivity that responds to structural properties.

However, the suggested skin materials and structures are also limited to 2D geometry only and
do not fully address multi-axial morphing. Furthermore, these approaches may solve a specific case
in a certain morphing type but are not considered a methodological solution. Alsaidi et al. [37] also
analyzed the behavior of conventional skin under multi-dimensional morphing and then showed the
anticipated stress, strain, and deformation in multi-axes for a skin structure design. However, this was
also not materialized into a model for design.

In summary, a simple geometry-structured material for skin in conventional aircraft is not
compliant for multi-axial 3D morphing motions such as warping, twisting, and bending from camber
morphing. Most of the works in their approaches are limited to 2D in-plane resolution or out-of-plane
improvement, using either smart materials or composite lattice structures, as it is challenging to fit
multi-axial 3D morphing into a simple model for design modification.

As a result, the goal of this study is to suggest a simple yet effective approach to designing a
compliant 3D skin structure for camber morphing wings. To achieve this, we suggest an approach to
simplify the skin design process by establishing the relation between 3D structural characteristics of
multi-axial morphing and a simplified 2D plate lattice model, since the lattice structure of a material
is designable and parameterizable to meet skin design criteria such as strength, Young’s modulus,
Poisson’s ratio, stress/strain, and so on [10–12] for future development. In this paper, we aim to clarify
the effectiveness of the 2D lattice plate model through structural analysis of a real-scale 3D camber
morphing model, structural analysis of various lattice structures, and relation between 3D and 2D
stress and strain analysis.

2. Camber Morphing Wing Aircraft

2.1. Aircraft Model

A retired UAV (Unmanned Air Vehicle) model, RQ-7, is selected for this study shown in Figure 1.
Dimensions of the wings are 1.828 m in span and 0.54 m in chord direction. However, we now assume
wings morph their camber rates up to 6%, with base airfoil NACA2410 as shown in Figure 2. For the
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purpose of skin design, skin requirement in a conventional fixed wing aircraft is 4.6 kg/m2 with an
aluminum sheet that is stiff enough in the out-of-plane direction. The spar is located at 40% from the
leading edge (i.e., 216 mm). These specifications are summarized in Table 1.
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Figure 2. Computational model of camber morphing wing: actuators 1–6 show the position of the
morphable ribs and the fixed spar location.

Table 1. Detail Specifications of RQ-7, Aircraft Model for Study.

Parameters Value Parameters Value

Wing span 1.828 m Wing chord 0.54 m
Wing skin thickness 4.6 kg/m2 Spar location 40% from leading edge

Morphing range Fixed wing Takeoff weight 1452 N
Empty weight 823.8 N Gross weight 1646.8 N

In our computational model of the wing, evenly spaced ribs, as shown in Figure 2, are positioned
and hollow in-between. Each rib can morph up to 6% to realize seamless and conformal camber
morphing as expected.

2.2. Wing Model

The prototype of the wing for this study is a fixed wing shown below; the wing is fixed at
the fuselage side and free at the other end. The camber of the model is capable of deforming to its
maximum value (NACA8410 profile) at the free end, while remaining undeformed (NACA2410) at the
fixed side. The linearity of displacement is to ensure that the wing remains undeformed in the fixed
side (NACA2410) while it achieves the maximum deformation (NACA8410) at the free side.

The attained optimal NACA8410 chamber profile was found when we applied 30.6 mm in the
bottom edge leading side and 32.3 mm in the bottom edge trailing side at the free end of wing. ANSYS
structural modeler [39] is used in this study. The initial structure was created by forming a wing of
NACA2410 profile, which means the wing was free of stresses. Camber can morph at any rate from
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2410 to 8410. NACA8410 takes place at the free end, while the fixed end maintains NACA2410. For
computational simplicity, a section of two actuators were modeled, as shown in Figure 3a.

Aerospace 2019, 6, x FOR PEER REVIEW 4 of 18 

 

2.3. Camber Morphing Model 

Skin morphing, as it is known, is the continuous shape changing. In order to achieve such 

continuity, we need to initially create the internal structure that would be capable of supporting the 

external skin layer. Therefore, creating the original structure by firstly forming a wing of NACA2410 

profile. Then, the wing structure is wrapped by 5 mm of seamless skin composite layer. The material 

of the designed wing and skin layer are required to be flexible enough to comply with any 

deformation that it could undergo, without fracture, i.e., Polyethylene or Acrylonitrile Butadiene 

Styrene copolymer (ABS) composite. Here, the material ABS is selected as one of the 3D printable 

materials and the mechanical property of the ABS could be found in [39]. The spar is located at 40% 

from the leading edge and is the only fixed part of the wing. Figure 3b shows the comparisons of the 

2D airfoil profiles of NACA2410 and NACA8410. 

 

Figure 3. (a) Wing model with some important design parameters and (b) 2D airfoils comparison 

between NACA2410 and NACA8410. 

In the actual systems, the linear DC actuators are positioned where the ribs are, and by adjusting 

the actuating power, the variable camber wing could have different camber morphing rates in the 

range up to 6% camber morphing from 2% to 8%. However, in general, the number of actuators 

depends on the size of the wing and the percentage of camber change. Thus, the challenge to achieve 

such a profile is because of the reaction of the internal structure of the wing against the applied 

displacement. The boundary conditions and their perspective coordinates for our model are 

tabulated in Table 2. 

Table 2. Wing boundary conditions and their perspective coordinates. 

Parts X Coordinate (mm) Y Coordinate (mm) Z Coordinate (mm) 

Spar 216 0–1828.78 0 

Fuselage (fixed end) 0–540 0–40 0 

Actuator 1 0–540 298.13–338.13 0 

Actuator 2 0–540 596.26–636.26 0 

Actuator 3 0–540 894.39–934.39 0 

Actuator 4 0–540 1192.52–1232.52 0 

Actuator 5 0–540 1490.65–153.65 0 

Actuator 6 (free end) 0–540 1788.78–1828.78 0 

2.4. Internal and External Skin Models 

Internal and external skins of FE (finite element) two-layered model are shown in Figure 4. The 

internal skins (the brown colored region in Figure 4a) will be replaced with the lattice structure for 

future development that could be customized and optimized at the designers’ discretion. The outer 

layer, external skin (green colored region in Figure 4a) is the actual skin structure vulnerable to 

structural and aerodynamic loadings. Both skins were modeled using shell element that has a 

thickness of 5 mm (internal skin) and 1 mm (external skin). Approximately 1,600,000 elements have 

used to model these layers. Mechanical properties of external and internal skin were assumed to be 

homogeneous with no-separation contact. The internal skin is modeled as ABS bulk material to 
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2.3. Camber Morphing Model

Skin morphing, as it is known, is the continuous shape changing. In order to achieve such
continuity, we need to initially create the internal structure that would be capable of supporting the
external skin layer. Therefore, creating the original structure by firstly forming a wing of NACA2410
profile. Then, the wing structure is wrapped by 5 mm of seamless skin composite layer. The material
of the designed wing and skin layer are required to be flexible enough to comply with any deformation
that it could undergo, without fracture, i.e., Polyethylene or Acrylonitrile Butadiene Styrene copolymer
(ABS) composite. Here, the material ABS is selected as one of the 3D printable materials and the
mechanical property of the ABS could be found in [39]. The spar is located at 40% from the leading
edge and is the only fixed part of the wing. Figure 3b shows the comparisons of the 2D airfoil profiles
of NACA2410 and NACA8410.

In the actual systems, the linear DC actuators are positioned where the ribs are, and by adjusting
the actuating power, the variable camber wing could have different camber morphing rates in the range
up to 6% camber morphing from 2% to 8%. However, in general, the number of actuators depends on
the size of the wing and the percentage of camber change. Thus, the challenge to achieve such a profile
is because of the reaction of the internal structure of the wing against the applied displacement. The
boundary conditions and their perspective coordinates for our model are tabulated in Table 2.

Table 2. Wing boundary conditions and their perspective coordinates.

Parts X Coordinate (mm) Y Coordinate (mm) Z Coordinate (mm)

Spar 216 0–1828.78 0
Fuselage (fixed end) 0–540 0–40 0

Actuator 1 0–540 298.13–338.13 0
Actuator 2 0–540 596.26–636.26 0
Actuator 3 0–540 894.39–934.39 0
Actuator 4 0–540 1192.52–1232.52 0
Actuator 5 0–540 1490.65–153.65 0

Actuator 6 (free end) 0–540 1788.78–1828.78 0

2.4. Internal and External Skin Models

Internal and external skins of FE (finite element) two-layered model are shown in Figure 4. The
internal skins (the brown colored region in Figure 4a) will be replaced with the lattice structure
for future development that could be customized and optimized at the designers’ discretion. The
outer layer, external skin (green colored region in Figure 4a) is the actual skin structure vulnerable
to structural and aerodynamic loadings. Both skins were modeled using shell element that has a
thickness of 5 mm (internal skin) and 1 mm (external skin). Approximately 1,600,000 elements have
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used to model these layers. Mechanical properties of external and internal skin were assumed to
be homogeneous with no-separation contact. The internal skin is modeled as ABS bulk material to
understand its behavior during the morphing process. This material has significant properties that
makes it a great option, such as its high strength at low density, high flexibility that complies with
the desired input of deformation, and longer life compared to some other plastics. This step is an
important benchmark in modeling to develop skin design criteria, which will be discussed in a different
study. External skin is assumed to have a stiffness of approximately 1/10 that of the internal skin to
passively follow the internal structure. The nature of the morphed wing, which should not undergo
any permanent deformation, is assumed to have linear elastic material properties. Note that the gray
color area in Figure 4a represents one of the actuators shown in Figure 2.
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3. Numerical Analysis

As shown above in Figures 2 and 3, each individual rib is free to morph up to 6%, but they are
attached in order to formulate the wing through the spar and skin structure. We picked the first section
of a wing from the fuselage, as shown in Figure 3a, with the maximum morphing rate, 6%, to consider
the worst case of structural loading where one side is firmly attached to the fuselage with no motion
(NACA2410), while the other side is assumed to be at NACA8410. The main interests of analysis were
(1) deformation, (2) stress, and (3) strain in all x, y, z directions and x–y, y–z, and z–x planes. First,
we used (1) ABS bulk material skin on a real 3D wing model and analyzed correspondences. Then
we did the same with (2) the 2D ABS bulk material plate model and (3) the 2D ABS lattice model for
computational analysis.

3.1. Wing Model Structural Analysis

The series of figures in Figure 5 demonstrate all of the important mechanical properties of internal
skin (a) and external skin (b) related to bulk material at 6% camber rate. Figures are shown for one
section of the wing only, as mentioned above, and deformation is applied at the first section (rib to
rib) from the fuselage. This result is tabulated in Table 3. Shear stress and shear strain of both skins
were examined to avoid structural failure because of the excessive amount of shear that skins undergo
during morphing. As expected, the internal skin experiences much higher shear stress than external
skin. The reason is the internal skin has a larger thickness and Young’s modulus of elasticity compared
to the external skin as well as for the elastic shear strain, which is larger for the internal skin than the
external. This indicates that the external skin passively follows the internal skin’s movement. This
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means that, at 6% camber rate, the maximum shear strain is 0.066 and the minimum is −0.068 on the
internal skin.
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Figure 5. Wing model bulk material elastic stresses (MPa) and elastic strains for 6% camber rate (a–h)
internal skin, (i–p) external skin.

Table 3. Bulk material mechanical properties related to wing model 6% camber change.

Internal Skin External Skin

Parameters Max. Val. Min. Val. Parameters Max. Val. Min. Val.

In-plane shear
stress (MPa) 24.6 −25.3 In-plane shear

stress (MPa) 9.6 −10.2

In-plane shear
strain 0.066 −0.068 In-plane shear

strain 0.029 −0.028

Normal
stress-X (MPa) 95 −96 Normal

stress-X (MPa) 64 −67

Normal
strain-X 0.066 −0.067 Normal

strain-X 0.049 −0.051

Normal
stress-Z (MPa) 102 −100 Normal

stress-Z (MPa) 52 −50

Normal
strain-Z 0.04 −0.04 Normal

strain-Z 0.01 −0.01

Equivalent
Stress (MPa) 136 0 Equivalent

Stress (MPa) 58.6 0

Equivalent
Strain 0.135 0 Equivalent

Strain 0.121 0

Another point is both maximum shear stress and strain are located at the trailing edges of the
wing, right at the NACA8410 profile. The expected skin failure is at the actuator’s location, based on
this analysis. Furthermore, the internal skin’s normal stresses are twice that of the external skin, as
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shown in Table 3. Equivalent elastic stress and strain also agree with other stresses, that the material
experiences a large amount of stress, way beyond the material’s ability to sustain it at this camber rate.

3.2. 3D Wing Model Aerodynamic Analysis

It is important to study the effect of aerodynamic load on the surface of the wing, so that we can
identify two things: first, the amount and nature of expected wrinkles on the surface of the wing, and
second, examine if the material has the capability to sustain aerodynamic loads. Linear morphing, or a
1% camber rate, is the case that we believe has the largest influence on the skin for aerodynamic study.
The reason for such a claim is because the material experiences the least amount of stretch, at a 1%
rate, than it does at any other rates. Based on the collected RQ-7 specifications, the empty weight is
approximated to be around 823.8 N, while the gross weight is about 1646.8 N. If it is assumed that the
top surface of the wing carries 5 times the gross weight (i.e., 5 g load) and the bottom surface carries one
time the gross weight (i.e., 1 g load), then pressures on the top and bottom surfaces would be 4171.93 Pa
and 834.386 Pa, respectively. Influence of a 5 g load factor on the wing model is shown in Figure 6.
The choice of aerodynamic loading 5 g is based on harsh flight conditions in take-off or landing [14].
A wavy pattern is visible, which represents compression and expansion within a short space. During
the morphing process, wrinkles on the skin surface emerge. Known as the bulge effect, the wrinkle
on the surface has also been observed from previous studies of the morphing wing skin [40]. This is
caused by rapid changes in the surface area. The airfoil profile changes from NACA2410 to NACA8410,
resulting in about 10% area change on the top surface of the wing skin and about 1% change on the
bottom surface. This change in the surface area causes wrinkles on the top surface of the morphing
wing skin, as shown in Figure 6. However, the emergence of wrinkles has negative effects in terms of
aerodynamic efficiency and aircraft stability. These wrinkles will be discussed in another study.
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Figure 6. Wing model bulk material out-of-plane deformation for 1% camber rate. (a) Entire wing’s
out-of-plane deformation, (b) Zoomed wing-tip deformation, (c) X-axial deformation, (d) Y-axial
deformation, and (e) Z-axial deformation respectively.

It is clear from the tabulated result in Table 4 that the external structure undergoes some
out-of-plane deformation. According to these results, deformation of the skin is dominant on the y-axis
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at 5.6 mm (i.e., airfoil thickness direction). Moreover, this deformation is mainly concentrated at the
center of the larger area of the wing, which is on the trailing edge side.

Table 4. Wing model bulk material directional deformation for 1% camber rate.

Parameters Max. Val. Min. Val.

Directional deformation-X (mm) 0.692 −0.287
Directional deformation-Y (mm) 0.584 −5.619
Directional deformation-Z (mm) 0.214 −0.171

In Figure 7a, the out-of-plane deformation is plotted for the external skin in order to show how
the deformation profile is distributed along the surface. As it is expected according to our assumption,
the top surface of the skin deforms more than the bottom surface, since it experiences a larger amount
of aerodynamic load. However, the top surface deformed a little less than five times that of the bottom
surface. Another point to mention, if we look at Figure 7b, is that the external skin can sustain this
aerodynamic force with a small amount of twisting, approximately 3/560, or 0.5%. This means with a
5 g load factor, the skin will be twisted clockwise, approximately 0.5%, i.e., 0.1% for each load factor.
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Some of the mechanical properties related to wing morphing have been tested for different input
of NACA profiles, i.e., 1% to 6% camber change as shown in Figure 8. When the wing morphs to 6%,
the shear stress of ABS bulk material is at 24.6 MPa while the shear strain at 0.066. When the camber
rate changes from 2 to 6%, then the shear stress changes from 7 to 24 MPa, normal stress in x-direction
from 18 to 97 MPa, and normal stress in z-direction from 18 to 102 MPa, respectively. Furthermore,
when the camber rate changes from 2 to 6%, then the normal directional strains in both x and z are
from 0.01 to around 0.07. It is noted that the stress and strain are linear to the camber change rate and
that the normal stress/strain in x and z are very similar to each other.
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3.3. 2D-Plate Bulk Material Structure

The same material, ABS in the previous model but in a 2D-plate model, will be discussed in this
section. The dimensions of the model are the same as a real wing model, which are 540 mm and
260 mm in C and L respectfully shown in Figure 9. The boundary conditions of this model are attached
to the fuselage at one side, free at the other side, and an in-plane variable input displacement is applied
along parameter L to resemble the applied shear deformation in the x–z plane. Note that the thickness
of both 3D wing and 2D plate models are 5 mm.
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Figure 9. (a) Acrylonitrile Butadiene Styrene (ABS) 2D-plate model and (b) NACA profiles.

The mechanical properties in 2D-plate model has been studied under 6% morphing as shown in
Figure 9b. Results are shown in Figure 10. These results clearly indicate that, when the wing morphs
at 6% the shear stress in the 2D plate model is 32.5 MPa, while the shear strain is 0.088.
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3.4. Lattice Structure for 2D-Plate Model

Five lattice structures were selected as basis for design modification and optimization in the
future application for skin design. The selected lattice structures are (1) honeycomb, (2) auxetic,
(3) chiral, (4) zero-Poisson’s ratio honeycomb, and (5) square lattices, as shown in Figure 11. Each
lattice behaves differently in deformation, stress, and strain depending on directions, amount, and
boundary conditions of forced input values.
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Figure 11. A sample lattice structures, unit cell of (a) honeycomb, (b) auxetic, (c) chiral, (d) zero
Poisson’s ratio honeycomb, and (e) square lattices.

No bulk material has yet been discovered satisfying contradictory requirements of the morphing
wing skin based on the variable camber wing. So, the approach authors take here is to design a
parameterizable structure such as the lattice structure to satisfy the desired mechanical properties while
a fixed material is selected. Therefore, in this section, we demonstrate the behaviors of various lattice
structures in their stress/strain. This study plays an important role in selecting the most appropriate
lattice structure as a base for future optimization. In total, 5 lattice structures were used: (1) honeycomb,
(2) auxetic, (3) chiral, (4) zero-Poisson ratio, and (5) square namely. Dimensions are the same as 2D-plate
bulk material. All structures were modeled with the same relative mass density of approximately 0.38.

Shear stress and shear strain are very important for two reasons. According to the FE analysis of
the wing skin, the shear stress/strain level of the wing skin is dominant compared to the principal strain.
This implies that the morphing process is a shearing process. Shear stress often leads to a structural
failure on the skin structure of the wing. Therefore, the elastoplastic response of the lattice structures
under shear loading was investigated. Here, shear stress is not the shear stress at any point in the lattice
structure, but rather, the sum of the reaction forces of the top surface of the lattice structure divided by
the area of the top surface when the simple shear loading condition is given to the lattice structure.

a. Honeycomb lattice structure: Figure 12 demonstrates the honeycomb lattice 2D-plate model.
The achieved result shows that the maximum elastic shear is 0.045, as shown in Figure 12a. If
we consider a design safety factor to be two then, the desired elastic shear strain is 0.0225. This
means that the expected morphing rate using this type of skin will be 2.87% (Figure 12b). In
other words, if we use the honeycomb lattice as a wing cover, then we should not morph a wing
more than 2.87%.

b. Auxetic lattice structure: an auxetic 2D-plate model is shown in Figure 13. This model performs
a more suitable shear elastic strain compared to other models. The achieved result shows that the
maximum elastic shear is 0.09, as shown in Figure 13a. Thus, the desired elastic shear strain will
be 0.045. This means that the expected morphing rate using this model will be 5.76% (Figure 13b).
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c. Chiral lattice structure: a 2D-plate model for this model is shown in Figure 14. The maximum
elastic shear strain is found to be 0.075. This means that the desired shear strain is 0.0375 when
considering a 2 factor of safety. This result means that the maximum expected camber change
using this type of structure will be 3.57% as shown in Figure 14b. The structure consumes a large
amount of power to perform the morphing, as compared to other structures based on this result.

d. Zero-Poisson ratio lattice: Figure 15 demonstrates the 2D-plate model for the zero-Poisson ratio
lattice. The achieved result shows that the maximum elastic shear is 0.078 as shown in Figure 15a.
Therefore, the desired elastic shear strain will be 0.039 which means that the expected morphing
rate using this model will be 2.6% as shown in Figure 15b.

e. Square lattice: a square 2D-plate model is shown in Figure 16. This model gives good shear
elastic strain which is 0.062, as shown in Figure 16a. Thus, the desired elastic shear strain will be
0.031 which means that the expected morphing rate using this model will be 2.28% (Figure 16b).
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corresponding strain.

Aerospace 2019, 6, x FOR PEER REVIEW 12 of 18 

 

 

 

(a) (b) 

Figure 12. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

b. Auxetic lattice structure: an auxetic 2D-plate model is shown in Figure 13. This model performs 

a more suitable shear elastic strain compared to other models. The achieved result shows that 

the maximum elastic shear is 0.09, as shown in Figure 13a. Thus, the desired elastic shear strain 

will be 0.045. This means that the expected morphing rate using this model will be 5.76% (Figure 

13b). 

 

 

(a) (b) 

Figure 13. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

c. Chiral lattice structure: a 2D-plate model for this model is shown in Figure 14. The maximum 

elastic shear strain is found to be 0.075. This means that the desired shear strain is 0.0375 when 

considering a 2 factor of safety. This result means that the maximum expected camber change 

using this type of structure will be 3.57% as shown in Figure 14b. The structure consumes a large 

amount of power to perform the morphing, as compared to other structures based on this result. 

  

(a) (b) 

Figure 14. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

d. Zero-Poisson ratio lattice: Figure 15 demonstrates the 2D-plate model for the zero-Poisson ratio 

lattice. The achieved result shows that the maximum elastic shear is 0.078 as shown in Figure 

15a. Therefore, the desired elastic shear strain will be 0.039 which means that the expected 

morphing rate using this model will be 2.6% as shown in Figure 15b. 

 

 

 
0.045 

 

 

  

0.09 

 

 
 

0.075 

Figure 13. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs.
corresponding strain.

Aerospace 2019, 6, x FOR PEER REVIEW 12 of 18 

 

 

 

(a) (b) 

Figure 12. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

b. Auxetic lattice structure: an auxetic 2D-plate model is shown in Figure 13. This model performs 

a more suitable shear elastic strain compared to other models. The achieved result shows that 

the maximum elastic shear is 0.09, as shown in Figure 13a. Thus, the desired elastic shear strain 

will be 0.045. This means that the expected morphing rate using this model will be 5.76% (Figure 

13b). 

 

 

(a) (b) 

Figure 13. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

c. Chiral lattice structure: a 2D-plate model for this model is shown in Figure 14. The maximum 

elastic shear strain is found to be 0.075. This means that the desired shear strain is 0.0375 when 

considering a 2 factor of safety. This result means that the maximum expected camber change 

using this type of structure will be 3.57% as shown in Figure 14b. The structure consumes a large 

amount of power to perform the morphing, as compared to other structures based on this result. 

  

(a) (b) 

Figure 14. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

d. Zero-Poisson ratio lattice: Figure 15 demonstrates the 2D-plate model for the zero-Poisson ratio 

lattice. The achieved result shows that the maximum elastic shear is 0.078 as shown in Figure 

15a. Therefore, the desired elastic shear strain will be 0.039 which means that the expected 

morphing rate using this model will be 2.6% as shown in Figure 15b. 

 

 

 
0.045 

 

 

  

0.09 

 

 
 

0.075 

Figure 14. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs.
corresponding strain.



Aerospace 2019, 6, 90 13 of 19

Aerospace 2019, 6, x FOR PEER REVIEW 13 of 18 

 

  

(a) (b) 

Figure 15. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

e. Square lattice: a square 2D-plate model is shown in Figure 16. This model gives good shear elastic 

strain which is 0.062, as shown in Figure 16a. Thus, the desired elastic shear strain will be 0.031 

which means that the expected morphing rate using this model will be 2.28% (Figure 16b). 

  

(a) (b) 

Figure 16. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

Each lattice structure of the same dimension and density has been studied for their s–s curve 

(stress vs. strain). 

The most appropriate lattice structure is auxetic, allowing morphing up to nearly 6% while still 

considering a safety factor 2 in the design perspectives. The series of figures in Figure 17 show the 

stress vs. percentage of the camber change in the 5 different lattice structures. 

 

(a) 

 

(b) 

 

 

 
 

0.078 

 

 

 
 

0.062 

Figure 15. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs.
corresponding strain.

Aerospace 2019, 6, x FOR PEER REVIEW 13 of 18 

 

  

(a) (b) 

Figure 15. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

e. Square lattice: a square 2D-plate model is shown in Figure 16. This model gives good shear elastic 

strain which is 0.062, as shown in Figure 16a. Thus, the desired elastic shear strain will be 0.031 

which means that the expected morphing rate using this model will be 2.28% (Figure 16b). 

  

(a) (b) 

Figure 16. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs. 

corresponding strain. 

Each lattice structure of the same dimension and density has been studied for their s–s curve 

(stress vs. strain). 

The most appropriate lattice structure is auxetic, allowing morphing up to nearly 6% while still 

considering a safety factor 2 in the design perspectives. The series of figures in Figure 17 show the 

stress vs. percentage of the camber change in the 5 different lattice structures. 

 

(a) 

 

(b) 

 

 

 
 

0.078 

 

 

 
 

0.062 

Figure 16. (a) In-plane shear stress/strain curve and (b) percentage of camber change vs.
corresponding strain.

Each lattice structure of the same dimension and density has been studied for their s–s curve
(stress vs. strain).

The most appropriate lattice structure is auxetic, allowing morphing up to nearly 6% while still
considering a safety factor 2 in the design perspectives. The series of figures in Figure 17 show the
stress vs. percentage of the camber change in the 5 different lattice structures.
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4. Comparison between 2D and 3D Models in Bulk and Lattice Structures

In this section, we clarify the relation between the 3D morphing wing model and the 2D plate
lattice model in their stress and strain, so as to suggest a simplified lattice model for future modification.
Normal stress in x and z directions, shear stress in x–z plane, and equivalent stress are discussed here
for comparison.

a. Normal stress along x-direction (chord): the trendline for the 2D-plate model is y = 1036.9x or,
mplate = 1036.9, while the wing is y = 1448.8x, or mwing = 1448.8. This means that the ratio, r,
which is the result of dividing these trendlines with each other, will be 1.39. This translates when
the normal strain-x of plate model is 0.0493, which is the case a 2% camber change, then the
expected equivalent normal stress-x for 3D wing model will be r ×mplae × x, or 1.39 × 1036.9 ×
0.0493, which is 71.1 MPa for morphing a wing model.

b. In-plane shear stress: the trendline for 2D-plate is the same for the wing, which is y = 370.36x or,
mplate = 370.36. This means that the ratio r will be 1.0. This could be translated that when the
in-plane shear strain of the plate model is 0.038, which is the case for a 2% camber change, then
the expected equivalent in-plane shear stress for the wing model will be r ×mplae × x, or 1.0 ×
370.36 × 0.038, which is 14.1 MPa for morphing a wing model.

c. Normal stress along z-direction (span): the trendline for 2D-plate model is y = 1187.3x or, mplate
= 1187.3, while for the wing is y = 1706x, or mwing = 1706. This means that the ratio r will be 1.43.
This could be translated that when the normal strain-z of the plate model is 0.042, which is the
case for a 2% camber change, then the expected equivalent normal stress-z for the wing model
will be r ×mplae × x, or 1.43 × 1187.3 × 0.042, which is 102.5 MPa for morphing a wing model.

d. Equivalent stress: the trendline for 2D-plate model is y = 1009.7x or, mplate = 1009.7, while for
the wing is y = 1037x, or mwing = 1037. This means that the ratio r will be 1.03. This could be
translated that when the equivalent strain of the plate model is 0.091, which is the case for a 2%
camber change, then the expected equivalent stress for the wing model will be r ×mplae × x, or
1.03 × 1009.7 × 0.091, which is 71.3 MPa for morphing a wing model.
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This analysis could be repeated on the same manner for each one of the collected lattice structures.
The results are plotted in Figure 18 and tabulated in Table 5.   
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Figure 18. Relationship between 3D wing model and 2D-plate models (comparison result). (a) Actual
3D wing result vs. 2D plate model in corresponding stress and strains, (b) Auxetic lattice structure
and its S-S curve, (c) Zero-Poisson ratio lattice structure and its S-S curve, (d) Honeycomb lattice
structure and its S-S curve, (e) Chiral lattice structure and its S-S curve, (f) Square lattice structure and
its S-S curve.
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Table 5. Relation between 3D wing model and 2D plate models.

Type of Skin

Trendline: Plate Model Trendline: Wing Model Ratio (r)

Shear
Stress

Normal
Stress-x

Normal
Stress-z Eq. Stress Shear

Stress
Normal
Stress-x

Normal
Stress-z Eq. Stress r1 r2 r3 r4

Bulk y = 370.36x y = 1036.9x y = 1187.3x y = 1009.7x y = 370.36x y = 1448.8x y = 1706x y = 1037x 1.0 1.39 1.43 1.03
Honeycomb y = 370.36x y = 1093.6x y = 990.3x y = 1037x y = 389.52x y = 1123.5x y = 1211.5x y = 1101.8x 1.05 1.03 1.22 1.06

Auxetic y = 370.36x y = 1044x y = 1041.1x y = 1036x y = 370.36x y = 1448.6x y = 1487.3x y = 1026.1x 1.0 1.39 1.43 0.99
Chiral y = 370.36x y = 1021x y = 1469.2x y = 1037x y = 746.74x y = 1217.3x y = 1151.5x y = 1097.8x 2.01 1.19 0.78 1.06

Zero-Poisson y = 387.32x y = 1128.6x y = 1592.7x y = 912.18x y = 370.36x y = 1099.4x y = 1259.7x y = 1024.7x 0.96 0.97 0.79 1.12
Square y = 370.36x y = 1035.8x y = 1076.4x y = 1036.7x y = 370.36x y = 1101x y = 1972.2x y = 1023.2x 1.0 1.06 1.83 0.99
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5. Summary

We first modeled the two-layered ABS bulk material 3D skin and analyzed the effect under
morphing. Then, we modeled a 2D-plate model that had the same dimensions, with 3D skin. After
that, we applied the same NACA profile displacements to both models. Finally, we compared some of
the mechanical properties for both models.

The relation between the actual 3D model and a simplified 2D plate lattice model is summarized
in Table 5, x- and z-directional normal stresses, x–z (in-plane) shear stress, and equivalent stress
respectively. The ratio r in Table 5 clarifies the functional relation of each lattice structure (2D model)
for the actual 3D wing model under a morphing of up to 6%.

6. Conclusions and Discussion

Skin is the most vulnerable to structural and aerodynamic loadings in flight. While conventional
fixed wing aircraft use 1–2 mm thick aluminum skin stiff enough to endure aerodynamic loadings,
morphing wing skins are under additional structural stress from geometry change and induced
reactions to aerodynamic loadings. Many related works are only limited to 2D in-plane analysis
for design modification, not taking into consideration aerodynamic loadings. Furthermore, most
of the works aim to remedy a certain structural stress through a material selection, which is not a
methodological solution. Therefore, we set out to design advanced skin structure in camber morphing
wing aircraft that is flexible in targeted axes but stiff enough in other directional loadings. As a first step,
within the scope of camber morphing that warp, twist, and bend in 3D, we show the comprehensive
numerical studies of deformation, stress, and strain of skin models in camber morphing wings, and
suggest an effective methodology using 2D plate lattice structures.

The validated 3D and 2D models are almost identical in their behaviors of in-plane (x–z plane)
shear stress/strain. This implies that the 2D plate models are good representations of the actual 3D
camber morphing wing model to the extent of design optimization.
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