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Abstract: In the development of aircraft comfort, one of the main issues is the sound transmission
analysis to estimate the insulation capability of aeronautical panels. In this work, a higher-order
shell finite element is proposed for the passive noise insulation analysis of composite laminated
structures embedding viscoelastic layers. Starting from the Principle of Virtual Displacements, the
present Finite Elements are obtained by making use of higher-order Layer-Wise theories, employing
the Mixed Interpolated Tensorial Components (MITC) method to avoid the shear locking effect
and taking into account the frequency dependence of the viscoelastic material through the use of a
fractional derivative model. The Rayleigh integral method is considered for the evaluation of the
acoustic insulation of the panels. Numerical studies are carried out to demonstrate that the present
shell finite element is an efficient and accurate tool for the sound transmission analysis. Different
lamination sequences, different boundary conditions and various radius to thickness ratios are taken
into account.

Keywords: shell elements; noise reduction; viscoelasticity; composite; layer-wise

1. Introduction

In the study of the aircraft comfort, the sound radiated by vibrating structures and the
capability of insulation of aeronautical panels is of great practical importance. The increasing use
of layered structures in aerospace, automotive and ship vehicles, and the analysis of their vibration
characteristics is a fundamental topic at the early design stage. Anisotropy, complex phenomena, such
as trough-the-thickness elastic field distribution (i.e., zig-zag effects in the displacements), the couplings
between in and out of plane strains, are some of the issues to face. The solution requires the applications
of approximated computational methods in most of the practical problems. Displacement based refined
theories reviews for isotropic and anisotropic laminated shells are presented in References [1–4]. Shear
deformable shells are treated in the critical compendium of References [5,6]. Several computational
techniques for the analysis of laminated structures can be read in the review articles [7–10]. Several
works concerning free vibration analysis of shell can be found in the open literature. An overview
on the vibration of shells is given in References [11–13]. A comprehensive review on the dynamic
behaviour of composites shells is presented in Reference [14], organised according to the shell theories,
geometries, type of dynamic analysis, material and structural complexity. A more recent work on the
vibration study of composite and sandwich plates is presented in Reference [15]. The free-vibration
analysis of cylindrical shells is studied in Reference [16] with a three-dimensional layer-wise differential
quadrature method.

Typically, the vibration of a solid surfaces radiates sound energy upon the surrounding fluid.
Multilayered structures provide better acoustic insulation with respect to monolayered ones, as shown
in Reference [17]. The experimental sound transmission evaluation through single, double and

Aerospace 2019, 6, 69; doi:10.3390/aerospace6060069 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0003-4349-1092
http://www.mdpi.com/2226-4310/6/6/69?type=check_update&version=1
http://dx.doi.org/10.3390/aerospace6060069
http://www.mdpi.com/journal/aerospace


Aerospace 2019, 6, 69 2 of 20

triple glazing can be found in References [18,19]. The sound transmission through double walls
and multilayered structures is developed with different theoretical approaches in References [20,21].
Recently, multifunctional composite materials produced an increase interest for their advantage use
in many components of aircrafts and competition cars [22]. A parametric study on the effect of
orthotropicity on the sound transmission of cylindrical shells with analytical models based on classical
shell assumptions is given in Reference [23]. The acoustic transmission of multi-layered infinite
isotropic cylindrical shells with Kirchoff assumptions is given in Reference [24]. An analytical model
based on Goldenveizer-Novozhilov thin shell theory in conjunction with the minimization of the
vibrational energy is used for the active control of the sound transmission of a simplified aircraft
fuselage in Reference [25]. An innovative honeycomb core design has been used to increase the noise
transmission loss at low frequencies in Reference [26]. A statistical approach investigates the possible
evaluation of damping loss factor starting from the sound transmission analysis of flat laminates in
Reference [27]. The interaction of elastic panel vibro-acoustic behavior and the viscothermal fluid
effects is performed in Reference [28] by the use of Finite Element Method (FEM) formulation. In
Reference [29] the boundary element method is used for the study of multilayered sound barrier
structures. A comprehensive study on vibrating structure response, on the sound radiation and
transmission is given in Reference [30]. An improvement of the acoustic insulation can be obtained
with the introduction of thin viscoelastic interlayers within the panels. Commonly, viscoelastic
interlayers are effective for improve the vibration damping and as a consequence the noise control.
The main energy loss mechanism of these kind of multilayered structures is caused by the transverse
shear of the viscoelastic layer. The dynamic properties of viscoelastic material typically show a
frequency and temperature dependency, so an accurate modelling of multilayered structures with
viscoelastic layers is difficult in practice. In order to well describe the frequency-dependence of the
real viscoelastic materials a fractional derivative models has been developed in Reference [31]. Several
authors developed methods to accurately describe the frequency dependence effects of viscoelastic
damping mechanisms through analytical approaches [32], and finite element models [33,34].

The sound transmission of a laminated glass with viscoelastic interlayers through a numerical
and experimental campaign is presented in Reference [35]. The transfer matrix method is developed in
Reference [36] for a comparison with experimental sound transmission factor results of multilayered
structures. A classical finite element formulation is presented for the vibroacoustic analysis of sandwich
panels embedding viscoelastic core in Reference [37]. The innovation and novelty of the present paper
is focused to the developement of an advanced finite element formulation for the sound transmission
analysis of composite shell structures embedding viscoelastic layers modeled by means of fractional
derivative approach. To the best Authors knowledge, very few results on finite element models of
plate structures embedding viscoelastic layers with constant damping [35,37], and cylindrical shell
isotropic structure [23–25] are present in literature. For the reason stated above, an advanced finite
element formulation for the sound transmission analysis of viscoelastic composite shell structures
has been addressed in the present work, presenting a more comprehensive investigation campaign
that can be used as benchmark and takes into account the damping fractional derivatives behavior,
the boundary condition effects and the influence of the curvature. The presented results are obtained
with an in-house code, developed by Authors, for the efficient passive sound transmission analysis
of shell structures. The governing equations are derived from the Principle of Virtual Displacement
(PVD) and solving them by the use of the Finite element method and the Mixed Interpolation of
Tensorial Components (MITC) method [38–41] to contrast the shear locking effect. Several numerical
investigations are presented to demonstrate the accuracy of the present finite shell element for the
sound transmission analysis, taking into account different lamination sequences, different boundary
conditions and various radius to thickness ratios.
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2. Shell Elements for Dynamic Problems

2.1. Preliminaries for Viscoelastic Shells

Let us consider a shell structure with constant curvature radius, the reference system and the
geometry are indicated in Figure 1.

Figure 1. Reference system and geometry of the multilayered viscoelastic shell.

The mechanical stresses σ =
[
σαα, σββ, σαβ, σαz, σβz, σzz

]
and the mechanical strains

ε =
[
εαα, εββ, εαβ, εαz, εβz, εzz

]
can be related through the constitutive equations, for each layer k,

as follows:
σk = Ckεk (1)

where the material stiffness coefficients matrix is denoted as C. For shells with constant curvature,
the relation between the mechanical strains ε and the mechanical displacements u = [u, v, w] is
obtained as follows:
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where the shell metrics parameters are defined as: Hα =

(
1 +

z
Rα

)
, Hβ =

(
1 +

z
Rβ

)
, the shell mean

radii Rα and Rβ are defined in the α and β directions, respectively. Considering orthotropic materials,
the material stiffness coefficients matrix is defined as follows:

Ck =



C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C36

0 0 0 C55 C45 0
0 0 0 C45 C44 0

C13 C23 C36 0 0 C33



k

(3)

For more details about the expressions of material coefficients Cij and their relations with respect
to Ei (the Young’s moduli), Gij (the shear moduli) and νij (the Poisson ratios), the interested reader can
refer to Reference [42].

The description in the frequency domain of the damping materials properties are based on the
complex modulus approach. The definition of the complex shear modulus is:

G (jω) =
σ̂ (jω)

ε̂ (jω)
= Gd (ω) [1 + jη (ω)] (4)

where ε̂ (jω) and σ̂ (jω) are the stress and strain Fourier transforms. Moreover, ω = 2π f , f is the
frequency (Hz), j =

√
−1 is the imaginary unit, Gd is the dynamic shear modulus and η is the loss

factor. An example of the damping dynamic properties for a polymeric material (EAR C-1002) is given
in Figure 2, material data taken from the work of Pritz [31]. After some experimental investigations
on polymeric materials, Pritz concluded that, in a wide frequency range, the loss factor peak η (ω)

should be considered asymmetrical and it approaches to a limit value, conversely a monotonic increase
characterizes the dynamic modulus behaviour at high frequencies.

Figure 2. Shear dynamic properties of damping material EAR C-1002.
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Pritz states that the accurate damping dynamic properties modeling, through the fractional
derivative approach, of real materials have been proved to be effective for sound and vibration
control [31].

The complex modulus definition of a fractional derivative model with five-parameter is:

G (jω) = G0 + G0 (d− 1)
(jωτ)A

1 + (jωτ)B (5)

where d = G∞/G0, τ is the relaxation time, A and B are the fractional exponents. More details and
data are given in Reference [31].

2.2. Variational Formulation

For the Principle of Virtual Displacements (PVD), the sum of the virtual variation of the internal
strain energy plus the inertial energy is equal to the virtual variation of the external load energy:∫

Ω

∫
A

δεT σ dΩdz +
∫
Ω

∫
A

ρ δuT ü dΩdz =
∫
Ω

∫
A

δuT t dΩdz (6)

The double integrals are defined on the reference surface domain Ω, and on the thickness domain
A, moreover ρ is the material density, ü is the accelerations vector, t is the surface traction vector.
Introducing the constitutive equations Equation (1) into Equation (6) it is obtained:∫

Ω

∫
A

δεT C ε dΩdz +
∫
Ω

∫
A

ρ δuT ü dΩdz =
∫
Ω

∫
A

δuT t dΩdz (7)

Introducing harmonic solutions u = û ejωt into the Equation (7) [14,42,43], thus assuming that
the external load is harmonic as well t = t0 ejωt, and substituting the complex modulus relationship
Equation (4) in the material constant definition, the following equation is obtained:∫

Ω

∫
A

δεT C∗ ε dΩdz +
∫
Ω

∫
A

δεT jC∗η ε dΩdz−ω2
∫
Ω

∫
A

ρ δûT û dΩdz =
∫
Ω

∫
A

δûT t0 dΩdz (8)

where C = C∗(1 + jη), η (z, ω) is the matrix of damping loss factors, that is dependent on frequency
and on stacking sequence position z. It means that it is possible to have for some layers η = 0 and for
other layers η 6= 0. Substituting the geometrical relations, the governing equations are obtained, see
for examples [44–46]. The following system of linear algebraic equations are derived in compact form:

(K − ω2 M )û = P0 (9)

where the complex stiffness matrix K includes the damping contributions, M is the mass matrix and
P0 is the external load vector.

2.3. Shell Kinematic Field

For the analysis of multilayered shell structures two families of approaches can be found in
literature: the Layer-Wise (LW) and the Equivalent-Single-Layer (ESL) models. The ESL models
permit to express the variables independently from the number of layers. Conversely, for the LW
models different sets of variables are considered per each layer. As a consequence considering the
computational cost, the ESL theories are cheaper with respect to LW ones. Moreover, it is proven that
LW models are more accurate than ESL models. Typically, in order to obtain more accurate results,
a detailed 2D model description is needed. In literature, to overcome the limits of the classical theories,
a number of higher-order shell theories has been proposed. In this work, the present results are based
only on the LW approach.
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Concerning the LW approach, the primary variables are defined for each layer. Typically,
the Legendre polynomials are employed to express the mechanical displacements as functions of the
layer top and bottom positions. In this way it is possible to automatically impose the displacement
continuity at the layer interface as follows:

uk
t = uk+1

b ; vk
t = vk+1

b ; wk
t = wk+1

b (10)

where t and b refer to top and bottom position of the kth layer, respectively. The variational principle and
its application to many branches of mechanics has a long history of development, and its importance
has been high-lighted in many works in the last decades. This mathematical tool has often showed
a leading role for the development of the major part of the analytical and numerical formulation.
This approach was elegantly described in 1968 by Washizu in [47]. Washizu called this approximated
approach the generalized Galerkin method. The method is based on the principle of virtual work,
and on the assumption that the three-dimensional displacement components (u, v, w) are expressed
as follows:

u(α, β, z)ds = u0(α, β)F0(z) +
m

∑
d=1

ud(α, β)
N

∑
s=1

Fs(z)

v(α, β, z)ds = v0(α, β)F0(z) +
m

∑
d=1

vd(α, β)
N

∑
s=1

Fs(z)

w(α, β, z)ds = w0(α, β)F0(z) +
m

∑
d=1

wd(α, β)
N

∑
s=1

Fs(z)

(11)

The generalization of the Galerkin method requires that approximated displacements of
Equation (11) have to satisfy not only the geometrical boundary conditions, but also the stress-strain
relations for the mechanical boundary conditions. Moreover, Washizu said that the number of terms
under the three summation signs does not need to be equal to each other. In other words, some terms
among ud(α, β), vd(α, β), wd(α, β) may be neglected. By a proper choice of the functions ud(α, β),
vd(α, β), wd(α, β), Fs(z) and the number of terms m and N, it is possible to obtain a good solution
approximation for the deformation of the structure. To obtain an increase of the solution accuracy,
the number of terms m and N are to be increased as well. However, according to Washizu [47],
experience and intuition allow to obtain an accurate approximation taking into account only a small
number of term m. Concerning through-the-thickness functions Fs(z), if a fourth-order expansion is
adopted, LW4, and the in-plane expansion terms are m = 1, it writes:
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in which the thickness functions are the Legendre polynomials, expressed in the local ζ-domain: −1 ≤
ζ ≤ 1, the interested reader can refer to Reference [48]. For example, to consider a linear expansion LW1

the terms
[
uk

4(α, β), vk
4(α, β), wk

4(α, β)
]
,
[
uk

3(α, β), vk
3(α, β), wk

3(α, β)
]

and
[
uk

2(α, β), vk
2(α, β), wk

2(α, β)
]

are set to zero.

2.4. Finite Element Approximation

The Finite Element Method (FEM) is here employed to approximate the primary unknowns within
the structure’s midsurface, independently of the choice of the shell model kinematics. FEM permits to
express the generalized displacements as a linear combinations of the shape functions as follows:

u(α, β) =
m

∑
d=1

Nd(α, β)ud δu(α, β) =
m

∑
c=1

Nc(α, β)δuc (13)

where δ stands for the virtual variation while the Lagrangian shape functions, Nd and Nc, and the
nodal displacements, ud and uc, are defined in the shell element domain. The Lagrangian shape
functions for a 9-node finite element (m = 9) are defined as:

N1 =
1
4

(
ξ2 − ξ

) (
η2 − η

)
; N2 =

1
2

(
1− ξ2

) (
η2 − η

)
; N3 =

1
4

(
ξ2 + ξ

) (
η2 − η

)
N4 =

1
2

(
ξ2 + ξ

) (
1− η2

)
; N5 =

1
4

(
ξ2 + ξ

) (
η2 + η

)
; N6 =

1
2

(
1− ξ2

) (
η2 + η

)
N7 =

1
4

(
ξ2 − ξ

) (
η2 + η

)
; N8 =

1
2

(
ξ2 − ξ

) (
1− η2

)
; N9 =

(
1− ξ2

) (
1− η2

) (14)

where ξ and η are the local finite element domain: −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1. It is now to be recalled
that the FEM solution shows some accuracy deficiency due to severe locking phenomena as the shell
slenderness increases. Many solutions can be found in the previous literature to overcome these
numerical problems; for example, reduced integration, selective integration [49,50], and the mixed
interpolation of tensorial components (MITC) [38,51–53]. For the present work, the Authors have
implemented a MITC technique in their in-house code. For more details about the present MITC
implementation, the reader can refer to References [54–56].

3. Sound Radiation by Vibrating Shells

In this work, the transmitted acoustic pressure p, from the vibrating shell surface into a semi
infinite fluid, is calculated using the Rayleigh Integral [30]:

p (α, β, z, ω) =
ρair jω

2π

∫
Ω

vn
(
α′, β′, 0, ω

) e−jκR

R
dΩ (15)

where κ is the wave number (κ = ω/cair), ρair and cair are the air mass density and the acoustic speed
of sound, vn (α′, β′, 0, ω) is the normal vibrating velocity of the external shell surface, and R is the
distance between the point where the sound pressure is estimated (α, β, z) and the vibrating surface

element at (α′, β′, 0), defined as R =
√
(α− α′)2 + (β− β′)2 + (z− 0)2.

Moreover, the transmitted sound power Πt is obtained as follows:

Πt (ω) =
1
2
<

∫
Ω

p (α, β, 0, ω) vn (α, β, 0, ω) dΩ

 (16)

where Πt, radiated by the shell surface Ω at z = 0, is calculated taking into account only the real part
< of the surface integral while vn is the complex conjugate of the normal vibrating shell velocity. It has
to be noticed that in order to evaluate the transmitted sound power, two nested surface integrals have
to be calculated.
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A different method that allow to reduce the computational cost of Equation (16), called the
elementary radiators approach [30,56], is presented below. The structural surface is divided into a grid
of equally-spaced N rectangular elements. The transverse vibrations are calculated only in the element
center positions. Compared to the structural and the acoustic wavelength, the element dimensions are
assumed to be small. The total radiated sound power, Equation (16), is obtained summing the powers
radiated by each element, so that:

Πt (ω) =
Se

2
<
(

vH
n (ω) p (ω)

)
(17)

where Se is the element area, H states for the hermitian transpose, vH
n is the complex vector of the

normal surface velocity and p is the complex vector of the acoustic pressure.
The pressure on each element is calculated taking into account the pressure contribution of all

elements as follows:

p (ω) =

[
Seρair jω

2π

e−jκrij

rij

]
vn (ω) (18)

where the distance rij is obtained from the centers of the ith and jth elements. Moreover,
the radiated sound power is calculated substituing Equation (18) into Equation (17) as follows,
(for details see References [30,56]):

Πt (ω) = vH
n R vn (19)

The “radiation resistance matrix” R is defined as:

R =
S2

e ω2ρair
4πcair



1
sin (κr12)

κr12
· · · sin (κr1N)

κr1N

sin (κr21)

κr21
1 · · · sin (κr2N)

κr2N

...
...

. . .
...

sin (κrN1)

κrN1

sin (κrN2)

κrN2
· · · 1


(20)

This approach is general, it can be applied to shell structures assumed to be in a semi infinite fluid,
without restrictions on the boundary conditions applied, knowing only the emitting surface geometry
and its velocity field distribution and the external fluid characteristics. In the first numerical section
the accuracy of the full quadruple integral, see Equation (16), and the elementary radiators approach,
see Equation (18), are compared. In the other numerical sections the elementary radiators approach is
used because of its faster computational capabilities with respect to the full quadruple integral.

4. Numerical Results

In order to assess the accuracy of the present shell elements and the modelling of the sound
pressure field, a number of problem with various lamination and different boundary conditions
have been considered. The presented models are compared with other Higher-Order FEM solutions,
when available.

4.1. Simple Metallic Shell Panel

As first case, a simple rectangular cylindrical elastic shell is considered, see Figure 3, to verify the
accuracy of the present sound transmission analysis procedure.
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Figure 3. Cylindrical shell reference system, its geometry, the external load sound pressure wave
and the transmitted sound pressure field.

The geometry and materials are taken from the work of Valvano et al. [56], and they are
summarized in Table 1. For this numerical case, the complex shear modulus is defined in its general
form: G = G0 (1 + jη).

Table 1. Geometrical and material data for the simple cylindrical panel.

a Rα b h E ν ρ G0 η ρair cair
(mm) (m) (mm) (mm) (GPa) (-) (kg/m3) (GPa) (-) (kg/m3) (m/s)

350 1 220 1 71 0.33 2814 26.69173 0.01 1.21 340

The cylindrical structure is analyzed with simply-supported boundary conditions for all
the edges. The external load, defined as a plane wave, is applied at the bottom shell surface
Pz (α, β, z) = P0 (α, β,−h/2) = 1 N/m2. The normal incidence sound transmission level (nSTL),
varying on the frequency, is evaluated at the top shell surface, see Figures 4a,b and 5. The nSTL
parameter is defined as:

nSTL = 10× log10

(
Πi
Πt

)
Πi =

|Pinc|2Sb
2ρaircair

(21)

where Pinc is the normal sound pressure of the Incident external wave, Πi is the Acoustic Power
due to the external wave, Sb is the cylindrical shell bottom surface. First of all three different
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preliminary analysis have to be conducted. For the sake of brevity, the mesh convergence is omitted.
In accordance with the reference solution given in [56], and in order to sufficiently well describe the
sound transmission through the simple shell panel in the considered frequency range, a mesh of 8× 8
equally-spaced elements is employed. Using the converged mesh, a convergence study on the thickness
expansion order is depicted in Figure 4a. The nSTL parameter obtained with a layer-wise parabolic
model LW2 get the same accuracy with respect to higher-order kinematics (LW3, LW4). Moreover,
using 8× 8 elements with a parabolic LW2 kinematic field, the efficiency of the full quadruple Rayleigh
Integral and of the approximated Elementary Radiator Approach is compared. It has to be noticed
that, for all the considered frequency range, the two methods have a very similar solution accuracy,
see Figure 4b.
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(a) LW theory convergence
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(b) Elementary radiators vs Full quadruple integral

Figure 4. Simply-supported rectangular cylindrical shell with Rα = 1 m. Normal incidence sound
transmission levels (nSTL). Study of the layer-wise expansion order convergence, and comparison of
the full quadruple integral and elementary radiators approach.

It is well known that when the shell curvature tends to zero, as a consequence, the structural
kinematic tends to the flat plate model. In Figure 5, the nSTL is evaluated for different shell radii. Two
flat plate reference solutions are given, an higher-order layer-wise plate finite element model taken
from Valvano et al. [56] and a linear discrete plate model, with Kirchoff assumptions, FEM solution
from Larbi et al. [37]. It has to be noticed that the present shell solution tends to the flat plate layer-wise
one [56] for a radius value Rα = 50 m. For lower frequencies the radius convergence is slow, conversely
for higher frequencies the normal sound transmission levels become similar regardless of the curvature
radius. Moreover, the authors suppose that the different mechanical surface velocity approximation of
the linear discrete Kirchoff plate FEM solution from Larbi et al. [37] is responsible on this difference of
the sound transmission levels. This has been showed in the work of Valvano et al. [56].
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Figure 5. Simply-supported rectangular cylindrical shell. Normal incidence sound transmission
levels (nSTL). Study of the radius convergence with respect to the flat plate reference solution.

Finally, a 3D-view of the Sound Pressure evaluated at different frequencies f = 200 Hz and
f = 400 Hz is given in Figures 6a,b. For the sake of clarity, the sound pressure volume is shifted with
respect to the top shell surface, starting the representation from the near field (at z = ztop) and ending
to a distance of 0.5 m, where the sound pressure tends to be constant. The colored shell structures are
unrelated with respect to the color bar.

(a) f = 200 Hz (b) f = 400 Hz

Figure 6. Cylindrical panel with simply-supported boundary-conditions. 3D-view of the Sound
Pressure (Pa) evaluated at different frequencies from the top surface to a radial distance of 0.5 m.
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4.2. Isotropic Multilayered Shells with Viscoelastic Core

Cylindrical and spherical sandwich shell panels are considered. The lamination consists in a
metallic layer at top and bottom position and a frequency-dependent polymer viscoelastic core, see
Figure 7. The geometry and material properties are taken from the work of Valvano et al. [56], and they
are summarized in Table 2. For this numerical case, the used complex shear modulus is defined
in Equation (4). The external load, defined as a plane wave, is applied at the bottom shell surface
Pz (α, β, z) = P0 (α, β,−h/2) = 1 N/m2.

Figure 7. Reference system and geometry of the spherical sandwich viscoelastic shell with metal skins
and the transmitted sound pressure field.

Table 2. Geometrical and material data for the isotropic sandwich shells.

Eskin νskin ρskin G0core dcore Acore Bcore τcore νcore ρcore
(GPa) (-) (kg/m3) (MPa) (-) (-) (-) (s) (-) (kg/m3)

71 0.33 2814 0.8 1570 0.566 0.558 7.23× 10−10 0.49 1300

a Rα b Rβ hskin hcore ρair cair
(mm) (m) (mm) (m) (mm) (mm) (kg/m3) (m/s)

300 1 200 1 1.25 2.5 1.21 340

The results are given in terms of the transmitted sound power level (SPL), defined as follows:

SPL = 10× log10

(
Πt

10−12

)
(22)
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A mesh convergence has been conducted in the frequency range f = (0÷ 1500) Hz. A mesh
of 16× 12 is sufficient to get the convergence. The mesh study is not here reported for the sake of
brevity. The SPL parameter obtained with a layer-wise parabolic model LW2 get the same accuracy
with respect to third and fourth order kinematics (LW3, LW4).

The SPL of the cylindrical shell panels with Rα = 1 m and of the spherical shell panels with
Rα = Rβ = 1 m is depicted in Figure 8a,b respectively, for different boundary conditions: SSSS, CCCC,
SFSF and CFCF. They state for fully simply-supported, fully clamped, the two short opposite edges
simply-supported and the other two free, the two short opposite edges clamped and the other two
free. For both cylindrical and spherical panels, if the boundary conditions become more rigid, the SPL
highest peaks shift to higher frequencies, that is, the fully clamped solutions show the main peaks
with the highest frequency. Regarding cylindrical shells it has to be noticed in Figure 8a that, despite
the different boundary conditions, the SPL values tend to the same level for frequencies higher than
1200 Hz. Considering spherical panels in Figure 8b, the SPL values tend, similarly, to the same level for
frequencies higher than 1200 Hz, except for the fully clamped case which shows a different behaviour.
The SPL of the rectangular cylindrical and spherical shell panels with fully simply-supported boundary
conditions is depicted in Figure 9a,b respectively, for different mean radii R. For both cylindrical
and spherical panels, if higher values of the mean radius are considered, the transmitted sound
power levels are comparable and they tend to the same plate solution. Considering different mean
radii greater than 0.5 m, the SPL values tend to the same level for frequencies higher than 1000 Hz,
as depicted for cylindrical shells in Figure 9a, and for frequencies higher than 1200 Hz, as drawn for
spherical shells in Figure 9b. Moreover for mean radii smaller than 50 m, the double curvature of
the spherical shells leads to a shift of the SPL peaks to higher frequencies with respect to the single
curvature of the cylindrical shell panels.
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Figure 8. Transmitted sound power level (SPL) of the rectangular cylindrical and spherical shells with
Rα = Rβ = 1 m, for different boundary conditions.
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Figure 9. Transmitted sound power level (SPL) of the rectangular cylindrical and spherical shells with
simply-supported boundary conditions for all the edges, for different mean radii.

Finally, the 3D-view of the Sound Pressure transmitted at f = 300 Hz by clamped-free cylindrical
and spherical shells is given in Figure 10a,b respectively. For the sake of clarity, the sound pressure
volume is shifted with respect to the top shell surface, starting the representation from the near field
(at z = ztop) and ending at a distance of 0.5 m, as done previously. The colored shell structures do not
refer to the color bar.

(a) Cylindrical panel
(b) Spherical panel

Figure 10. Clamped-free rectangular cylindrical and spherical shells with Rα = Rβ = 1 m.
Three-dimensional representation of the Sound Pressure (Pa) transmitted by the shell panels at
f = 300 Hz from the top shell surface to a radial distance of 0.5 m.

4.3. Composite Shells Embedding Viscoelastic Layers

Cylindrical and spherical composite shell panels are considered taking into account
frequency-dependent interlamina viscoelastic layers. The material properties of the composite layers
are taken from the work of Araújo et al. [57], and they are summarized in Table 3 with the geometrical
dimensions. The total thickness is fixed for all the considered analysis. The properties of the viscoelastic
sheets are taken from Table 2. For this numerical case, the used complex shear modulus is defined
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in Equation (4). The external load, defined as a plane wave, is applied at the top shell surface
Pz (α, β, z) = P0 (α, β,−h/2) = 1 N/m2.

Table 3. Geometrical and material data for the composite shells.

E1 E2 = E3 ν12 = ν13 = ν23 G12 G13 G23 ρcomp
(GPa) (GPa) (-) (GPa) (GPa) (GPa) (kg/m3)

130.8 10.6 0.36 5.6 4.2 3 1543

a Rα b Rβ htotal ρair cair
(m) (m) (m) (m) (m) (kg/m3) (m/s)

1.5 3 0.66 3 0.05 1.21 340

The shell panels are analyzed with all edges simply-supported. The results are given in terms of
the SPL, evaluated at the shell bottom and defined as follows:

SPL = 10× log10

(
Πt

10−12

)
(23)

A mesh convergence has been conducted in the frequency range f = (0÷ 1000) Hz. A mesh
of 12× 8 is sufficient to get the convergence. The mesh study is not here reported for the sake of
brevity. The SPL parameter obtained with a layer-wise cubic model LW3 gets the same accuracy with
respect to fourth order kinematics (LW4). The SPL of the rectangular cylindrical and spherical shell
panels with viscoelastic core is depicted in Figure 11a,b respectively, for different lamination schemes:
[0◦/visco]S, [0◦/90◦/visco]S, [0◦/45◦/90◦/visco]S and [0◦/30◦/60◦/90◦/visco]S. The thickness data
of the laminations, referred to half thickness, are the following: the thickness of the viscoelastic core is
fixed to hvisco = 0.005 m, the total composite thickness is fixed hcomposite = 0.02 m; each composite layer
has constant thickness set to hcomposite/n, being n the number of composite plies. For both cylindrical
and spherical panels, the first SPL peak is located around f = 200 Hz for all the considered laminations.
Regarding cylindrical shells it has to be noticed in Figure 11a that, the SPL peak values are present for
lower frequencies with respect to the spherical SPL peaks, depicted in Figure 11b. For both cylindrical
and spherical panels, the increasing of the composite lamination subdivisions lead to a shift of the SPL
peak values to higher frequencies, that is, the two peaks around f = 600 Hz of the case [0◦/visco]S
are shifted around f = 800 Hz for the other lamination cases. Moreover concerning the first peaks,
the frequency shift is given in tabular form for the considered lamination schemes, see Table 4.

Table 4. Frequency at the first peak (Hz) for the transmitted sound power level (SPL) of the composite
cylindrical and spherical shells with different lamination schemes.

Lamination Cylindrical Spherical

[0◦/visco]S 196.8 229.7
[0◦/90◦/visco]S 198.8 228.8

[0◦/45◦/90◦/visco]S 236.7 272.7
[0◦/30◦/60◦/90◦/visco]S 232.8 270.7

[0◦/45◦/90◦/visco]S 236.7 272.7
[0◦/45◦/visco/90◦/visco]S 210.8 248.7
[0◦/visco/45◦/90◦/visco]S 193.8 224.3
[0◦/visco/45◦/visco/90◦]S 186.8 214.2

Let us consider the effect of the viscoelastic damping far from the reference shell mid-surface.
The SPL of the rectangular cylindrical and spherical shell panels with [0◦/45◦/90◦/visco]S
configuration, are depicted in Figure 12a,b respectively, with different viscoelastic intralamina layers:
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[0◦/45◦/visco/90◦/visco]S, [0◦/visco/45◦/90◦/visco]S, [0◦/visco/45◦/visco/90◦]S. The thickness
data of the laminations, referred to half thickness, are the following: the thickness of each viscoelastic
layer is hvisco = 0.0025 m, the total composite thickness is fixed to hcomposite = 0.02 m. For both
cylindrical and spherical panels, the first SPL peak is located around f = 200 Hz for all the considered
laminations. Regarding cylindrical shells it has to be noticed in Figure 12a that, the SPL peak values are
present for lower frequencies with respect to the spherical SPL peaks, depicted in Figure 12b. For both
cylindrical and spherical panels, the redistribution of the viscoelastic thickness from the midsurface to
the external layer positions leads to a shift of the SPL peak values to lower frequencies, this is evident
for the first peaks, see Table 4. In addition if the second peak at f = 400 Hz of the configuration
[0◦/45◦/90◦/visco]S is taken into account, for the other considered configurations it is anticipated
around f = 300 Hz and it is more damped. The same considerations can be easily drawn for the third
and fourth peaks. Concluding, the use of interlaminar viscoelastic layers far from the reference shell
mid-surface leads to more damped SPL peak values at lower frequencies with respect to composite
multilayered structures with viscoealstic cores.

Finally, 3D-view of the Sound Pressure transmitted at f = 200 Hz by cylindrical shell and
at f = 400 Hz by spherical shells are given in Figure 13a,b respectively, for the configuration
[0◦/45◦/90◦/visco]S. For the sake of clarity, the sound pressure volume is shifted with respect to the
bottom shell surface, starting the representation from the near field (at z = zbottom) and ending to a
distance of 1 m. The colored shell structures do not refer to the color bar. It has to be noticed the
correlation of the sound pressure distribution with respect to the mode shape vibration of the shells.
In particular, for the cylindrical panel of Figure 13a at f = 200 Hz the both the mode shape vibration
and the sound pressure distribution are symmetrical in the in-plane shell directions. Conversely,
for the spherical panel of Figure 13b at f = 400 Hz the mode shape vibration is not symmetrical in the
in-plane shell directions (this is due to composite layers with lamination [45◦]), and as a consequence
the sound pressure distribution is properly asymmetric.
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Figure 11. Transmitted sound power level (SPL) of the composite cylindrical and spherical shells with
viscoelastic core, for different lamination schemes.
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Figure 12. Transmitted sound power level (SPL) of the composite cylindrical and spherical shells with
different viscoelastic layer sequences.

(a) Cylindrical panel
f = 200 Hz

(b) Spherical panel
f = 400 Hz

Figure 13. Composite rectangular cylindrical and spherical shells with Rα = Rβ = 3 m and lamination
[0◦/45◦/90◦/visco]S. Three-dimensional representation of the Sound Pressure (Pa) emitted by the shell
panels from the bottom shell surface to a radial distance of 1 m.

5. Conclusions

In this study, an accurate shell finite element model for the passive sound insulation analysis of
composite laminated structures embedding viscoelastic layers was developed. A shell finite element
with advanced layer-wise higher-order kinematic field is proposed by taking into account the effects
of frequency-dependent viscoelastic materials through the use of fractional derivative models. The
soundness of the proposed model has been assessed through various numerical examples, including
isotropic simple metallic cylindrical shell panels, isotropic multilayered cylindrical and spherical shells
with viscoelastic core for different boundary conditions and radius to thickness ratios. Moreover,
composite cylindrical and spherical shells with different lamination sequences embedding viscoelastic



Aerospace 2019, 6, 69 18 of 20

layers have been considered. The results have been compared with those from the literature and
higher-order FEM solutions and the following conclusions can be drawn:

• The radiated sound power results are in good agreement with the other FEM results taken from
the literature.

• As expected, the transmitted sound power of shell panels tend to the plate solution with the
increase of the mean shell radius.

• In general, the spherical panels are more stiff with respect to the cylindrical panels, as a
consequence the SPL peaks value of spherical shells shift to higher frequencies with respect
to the cylindrical shells ones.

• The increasing of the shell mean radius leads to SPL peaks at lower frequencies with respect to
small mean radius values.

• The boundary conditions and the lamination sequences influence the acoustic radiation, if the
structure becomes more stiff than the SPL peaks values shift to higher frequencies.

• The use of interlaminar viscoelastic layers far from the reference shell surface leads to more
damped SPL peak values at lower frequencies with respect to composite multilayered structures
with viscoealstic cores.

• The presented shell finite element is revealed as an accurate and efficient tool for sound
transmission analysis.
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