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Abstract: Transonic compressors are widely used today in propulsion and industrial applications
thanks to their higher specific work compared to subsonic. In this work, the aerodynamic optimization
of a two-dimensional Computational Fluid Dynamics (CFD) model of the transonic cascade ARL-SL19
is described. The validated computational model is used for a multi-objective optimization of the
cascade at three different inlet Mach numbers using a genetic algorithm and an artificial neural
network, with the aim of reducing total pressure loss and increasing maximum pressure ratio. Finally,
the optimized shapes on the Pareto fronts are investigated, analyzing mechanisms responsible for
loss reduction and enhanced compression. Profiles having the lowest losses have flatter camberlines
and reduced acceleration of flow on the suction side, while geometries achieving the highest pressure
ratio values have a more cambered shape with a concave suction side.

Keywords: transonic compressor; ARL-SL19 cascade; turbomachinery optimization; genetic
algorithm; Computational Fluid Dynamics (CFD)

1. Introduction

Modern compressors and fans have tip sections of the blades typically operating at supersonic
relative inlet velocity and subsonic outlet velocity; ultimately, this leads to fewer compressor stages
and lighter, more compact propulsors. At supersonic inlet conditions, the flow field is characterized by
a complex shock wave system, whose strength and interaction with the boundary layer largely affects
pressure rise and entropy generation. Moreover, these phenomena strongly deteriorate the performance
at off-design conditions and reduce surge and rotating stall margins [1]. For these reasons, the design of
supersonic blades is critical, and new shapes are designed ad hoc for given operative conditions, rather
than chosen from a family of profiles. Nowadays, three-dimensional aerodynamic models, in which the
entire blade is simulated, are widely used; nevertheless, two-dimensional analysis is still fundamental
in blade design and can provide extremely accurate results, more difficultly matched by more complex
simulations. Computational Fluid Dynamics (CFD) in conjunction with automatic methods has been
widely used in numerical simulations and optimization of supersonic blades. In [2], a multi-objective
optimization of a 2D S-shaped supersonic profile, operating at a unique incidence condition, was
conducted using a Kriging-assisted evolutionary algorithm in order to minimize total pressure losses
and to maximize the pressure ratio. In [3,4], one-dimensional analytical shock-loss models were
developed to predict overall total pressure losses. Upon these models, optimizations were conducted
to reduce losses on two baseline geometries, acting on profile shape and thickness distribution. In [5],
an optimization based on differential evolution was carried out to reduce losses in a supersonic
blade, parametrizing the camberline only. A numerical investigation on potential improvement of the
transonic compressor by using tandem rotor blades was carried out in [6]. In [7], a 3D optimization
of tandem rotors, National Air and Space Administration (NASA) Stage 35 was carried out using
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the Non-dominated Sorting Genetic Algorithm (NSGA II) and the backpropagation Artificial Neural
Network (ANN) technique to maximize the total pressure ratio and reduce the total pressure loss
coefficient. Typical improvements achieved in various optimizations were around 20% for efficiency
and 3% regarding the pressure ratio. This paper presents a multi-objective multi-point aerodynamic
optimization of a two-dimensional supersonic cascade that minimizes the total pressure-loss coefficient
and maximizes the pressure ratio. The computational two-dimensional model was validated upon
experimental data collected on a linear cascade in supersonic wind tunnel tests. The optimization
framework comprised a genetic multi-objective algorithm and an iterative automatic procedure to
calculate fitness functions. An artificial neural network was used to conduct a meta-model-based
optimization to try and enlarge the Pareto fronts. Optimized profiles were investigated by the means
of isentropic Mach number, Mach contours, and total pressure contours.

2. Baseline Cascade Modeling and Validation

The ARL-SL19 cascade, investigated by Schreiber and Starken in [8] and by Liu in [3], is a
state-of-the-art geometry for supersonic cascade design. In the present study, it was taken as the
baseline to implement shape modification so as to enhance cascade performances. The selected cascade
belongs to the category of low-turning supersonic reaction cascades: it makes use of an S-shaped profile,
implementing the compression via oblique shock waves attached to the leading edge, and an external
pre-compression mechanism induced by the concave front portion of the suction side. In addition, it is
of particular interest since it was especially designed for investigation of strong Shock Wave–Boundary
Layer Interaction (SWBLI). This cascade typically operates at Unique Incidence (UI), a condition that
relates the inlet Mach number to the inlet flow angle, widely described in [9–11]. Such a design is
typical of tip sections of highly-loaded transonic fans with a nominal relative inlet Mach number of
1.61 and an axial Mach number of 0.87, providing a static pressure ratio of more than 2.4 with little flow
turning. Experimental data, upon which the validation of the numerical model was carried out, were
collected in a supersonic wind tunnel test at the Deutsche Zentrum für Luft und Raumfahrt (DLR) [8].
The object of the test was a statoric cascade consisting of five ARL-SL19 profiles with the geometrical
features reported in Table 1.

Table 1. Geometric features of the experimental setup for the ARL-SL19 cascade.

Parameter Symbol Value

Number of blades n 5
Chord c (mm) 85
Pitch s (mm) 55.58

Solidity σ 1.5294
Stagger angle λ (deg) 56.93

Some tests were conducted with different Axial Velocity-Density Ratios (AVDR), assuring that
the cascade operated in unique incidence conditions. The Reynolds number was kept 1.12 × 106 in
all the experiments; total temperature and pressure were maintained constant upstream of the test
section, as well, with values ranging in the intervals T0 = 300 ÷ 312 K and p0 = 1 ÷ 1.3 atm. Typical
flow quantities are summarized in Table 2.
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Table 2. Flow quantities in the experimental tests.

Parameters Symbol A B C D

Inlet Mach number M1 1.58 1.58 1.59 1.59
Inlet flow angle β1 (deg) 57.9 57.9 57.9 57.9

Outlet Mach number M2 0.93 0.91 0.93 0.91
Outlet flow angle β2 (deg) 61.2 60.8 58 57.5

AVDR AVDR 0.99 1 1.12 1.14
Loss coefficient Ω 0.144 0.143 0.123 0.117
Pressure ratio πc 2.12 2.16 2.18 2.22

The test B in Table 2 with AVDR = 1 was chosen as the baseline case to be replicated in the
validation. In such a condition, the flow was stationary, and since all the relevant quantities were
measured on the simply-extruded central blade of the row, three-dimensional effects and sidewall
influence were minimized. The profile, generated using a Catmull–Rom curve and semi-circular arcs
for leading and trailing edges, has been inserted into a two-dimensional structured multi-block domain,
extending for 1 × cax upstream of the leading edge and 4 × cax downstream of the trailing edge, where
cax is the axial projection of the chord. Around the profile, an O-grid was extruded with the number of
inflation layers ranging from 100–150 depending on the grid refinement and an exponential growth
rate from 1.04–1.08. The first layer height was fixed in order to get an Y+ < 1, to ensure an adequate
resolution in the calculation of velocity profiles inside the boundary layer using wall functions. Three
different grid sizes were tested, ranging from 100k–600k cells. In Tables 3 and 4, and Figures 1 and 2,
the main features of the three grids and quality parameters are reported.

Table 3. Features of the mesh.

Entity Symbol Coarse Medium Fine

Inlet/outlet N1 113 165 328
Periodic inlet N2 50 75 100

Periodic middle N3 205 267 537
Periodic outlet N4 150 230 260

Inner O-grid tang N5 568 758 1347
Inner O-grid rad N6 100 100 150

Inner O-grid Layer 1 (mm) Y1 8.5 × 10−5 8.5 × 10−5 8.5 × 10−5

Outer O-grid rad N7 50 60 100
Y+ Y+ 0.05 0.05 0.05

Growth rate O-grid G 1.08 1.08 1.04
Cell number C 115,809 189,005 596,605

Table 4. Quality parameters of the mesh.

Quality Parameters Coarse Medium Fine

Max skewness equiangle 0.45798 0.4136 0.4152
Max area ratio 3.001 4.3937 2.7704

Min included angle (deg) 48.9 52.7 52.7
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Figure 1. Scheme of the multi-block grid.

Figure 2. Blade passage and detail of the leading edge of the three grid refinements.

Calculations were carried out using ANSYSTM Fluent v16 [12], in which the Reynolds Averaged
Navier-Stokes (RANS) equations coupled with a turbulence model were solved using a finite volume
method approach. The solver is pressure based with a coupled scheme of resolution and Green–Gauss
cell-based spatial discretization. As for the boundary conditions, a pressure far field at the inlet,
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with specifications of the turbulence intensity and viscosity ratio, was prescribed. Total temperature
and pressure at the inlet were fixed respectively at T0 = 310 K and p0 = 1 atm; in this way, the resulting
Reynolds number was Re = 1.17 × 106, close to the one obtained in the experiments. At the outlet,
the pressure outlet was imposed; in particular, p2 = 2.16 × p1 was set during the validation phase.
Blade walls were treated as walls with no slip; for the upper and lower bounds of the domain, periodic
translational was prescribed in order to simulate an infinite blade row. Convergence was established
when all residuals went under 10−5, and the oscillation of the inlet Mach number, inlet flow angle, and
loss coefficient were below a certain threshold. Five turbulence models were tested: k–ω Shear Stress
Transport (SST) [13], k–ε standard (STD) [14], k–ε realizable (REAL) [15], k–ε Re-Normalisation Group
(RNG) [16], and Spalart–Allmaras (SA) [17] with the 100k grid. For every simulation, conditions at
infinity were tuned in such a way that they could respect the experimental Mach number in the inlet
section. In fact, an arbitrary choice of the inlet flow angle at infinity will generally modify the couple
(M1, β1) at the inlet, according to the unique incidence. In Table 5, global quantities are reported as
the mass-weighted average in the section of interest for each simulated model of turbulence, while
Figure 3 shows the isentropic Mach distribution.

Table 5. Global quantities in the experimental test and calculated with different turbulence models.

Model Experimental Data k–ω SST k–ε STD k–ε REAL k–ε RNG SA

M1 1.58 1.58 1.58 1.58 1.58 1.58
β1 (deg) 57.9 58.40 58.53 58.69 58.50 58.38

M2 0.91 0.912 0.897 0.900 0.902 0.906
β2 (deg) 60.8 61.56 61.07 61.31 61.22 61.31
AVDR 1 1 1 1 1 1

Ω 0.143 0.1342 0.1550 0.1511 0.1484 0.1406
πc 2.16 2.16 2.16 2.16 2.16 2.16
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Figure 3. Isentropic Mach number: experimental data and numerical calculations with different
turbulence models.

It can be noticed that the inlet flow angle calculated in the simulations was overestimated by about
0.5◦, and the same applies for the exit flow angle, probably because of the lack of accurate knowledge
of the leading edge geometry. However, the mean flow deflection was well captured by the SA model
and slightly less by k–ω SST and k–ε RNG. The loss coefficient was overestimated for k–ε variants,
while it was underestimated for the k–ω SST. The SA model was able to get closer to the experimental
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Ω, with a slight underestimation. k–ε and the SA model replicated with better accuracy the isentropic
Mach number distribution, with little anticipation of the point of incidence of the reflected shock on
the suction side, while the k–ω SST model was not able to catch the re-acceleration of the flow near the
trailing edge. k–ε RNG and the SA model seemed to provide better consistency with the experimental
calculated loss coefficient, the isentropic Mach number distribution, and flow angles, with a slightly
better agreement for the SA. In a previous work related to the same cascade [18], the authors found
that the SA model could provide an overall good match with experimental data, with similar results
for k–ε. However, for the current case, the k–ε RNG model was adopted for its closer prediction of
Ω at validation conditions and its high responsiveness to the effects of rapid strain and streamline
curvature [12], favorable attributes for the simulation of hooked configurations possibly arising during
optimization. A sensitivity analysis towards the grid size was also carried out: two levels of grid
refinement were tested, namely a 200k cell mesh and a 600k one. Results are summarized in Table 6
and Figure 4. It can be noted that global quantities remained substantially unchanged with respect
to grid refinement, with a slightly better agreement in the loss coefficient. However, the decrease
in the acceleration on the suction side near the trailing edge departed from experimental data. This
small sensitivity of numerical quantities towards grid refinement suggested that the coarse grid had
sufficient accuracy to ensure reliable results, with the remarkable advantage of a faster calculation
over finer grids. For these reasons, it was adopted for the optimization, given the large number of
simulations requested for each evaluation of the fitness functions.

Table 6. Global quantities with different grid refinements.

Quantities Experimental Data Coarse Medium Fine

M1 1.58 1.58 1.58 1.58
β1 (deg) 57.9 58.50 58.50 58.50

M2 0.91 0.902 0.902 0.902
β2 (deg) 60.8 61.31 61.24 61.22

Ω 0.144 0.1484 0.1479 0.1472
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Figure 4. Isentropic Mach number: experimental data and numerical calculations with different grid
refinements. k–ε RNG model.

3. Optimization Procedure

The aim of the multi-objective optimization problem was to minimize the two objective functions:
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f1 = Ω at p2max (1)

f2 =
1

p2max
(2)

where p2max is the maximum reachable back-pressure before the Spill Point (SP), and therefore
proportional to the maximum effective pressure ratio πc. The former objective is the loss coefficient in
UI calculated right before the unstarted condition. It is indubitably of major concern in a supersonic
cascade, given its ingrained ability to generate high pressure ratios thanks to the high kinetic load of
the flow. Nevertheless, the second objective maintains a certain relevance: First of all, by converting
part of the work exchanged by a rotor blade in pressure energy, losses due to high velocity diffusion in
the stator blade are reduced. Furthermore, a higher maximum back-pressure achievable in unique
incidence establishes a wider margin for SP. The spilled condition, described in [10], leads to detached
passage shocks, to a decrease in the effective pressure ratio, and to an increased loss coefficient. In [1],
numerical simulations investigated stall phenomena in rotor blades and showed how the spilled
condition can interfere with the tip clearance vortex, leading to the rotating stall insurgency.

3.1. Parameterization of the Profile

The parameterization was carried out using a Bézier curve, in view of its regularity. Only the first
half of the camberline was parameterized, while the thickness was kept unchanged, in order not to
alter the structural properties of the airfoil significantly. This choice was due to the limited influence of
the trailing fraction of the profile on performance, because in typical operating conditions, pressure
rise is strongly related to the wave pattern in the fore part of the profile, while the rear fraction is
subjected to highly turbulent flow. The work in [2], for example, showed that the difference between
full and half camberline parameterization was around 5% in the loss coefficient. In the present work,
six control points were employed for the Bézier curve, with the first four having fixed a X-coordinate
and a variable Y-coordinate and the fifth having a variable X-coordinate and the ordinate computed
according to:

y5 = y6 + (x5 − x6)× t (3)

where t is the tangent of the rear half of the camberline in the contact point with the front half,
ensuring C(1) continuity between the two portions. The thickness distribution, computed normal
to the camberline, was kept fixed. Figure 5 shows the parameterized profile and Bézier polygon.
No constraints were used, except for bounds on the control point displacement to provide the search
algorithm with the highest exploration freedom without generating excessively warped shapes.
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Figure 5. Parameterization of the baseline profile. Y-axis amplified for clarity.
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3.2. Genetic Algorithm

The optimization procedure was set up in the MatlabTM (The MathWorks Inc., Matlab, Natick,
MA, USA) environment, interfacing the multi-objective optimization algorithm with the mesher and
the CFD solver. The loop was initialized with the initial population, Upper Bounds (UB) and Lower
Bounds (LB) of the decision variables (decvar). The genetic algorithm sent the decvar to the script
in charge of calculating the fitness functions, which in turn generated the profile, inserted it in the
structured grid via a journal file, saved the case file for the CFD solver, and sent it to the UI script and
maximum p2 script, respectively. These two scripts ran a series of simulations and used reports for
the quantities of interest to update the boundary conditions automatically via journal files; a more
thorough description will be given soon. Once all the simulations were carried out, the value of the
fitness functions were sent back to the genetic algorithm, and a new decision variable vector was
generated. For this optimization problem, a genetic multi-objective algorithm was found to be a
suitable option, given its ability to couple a broad exploration of variable space, thanks to its stochastic
nature, to deterministic aspects, apt at focusing on the global minima of the problem. The algorithm
was an NSGA-II, described in [19], employing tournament selection, scattered crossover, and Gaussian
mutation, with shrink and scale factors equal to one. The scheme of the optimization framework,
including fitness function blocks, is depicted in Figure 6.

Figure 6. Scheme of the optimization framework.

3.3. Unique Incidence Script

In a compressor cascade with thin, low cambered profiles, under the hypothesis of supersonic
inlet flow and subsonic axial velocity, the relation of unique incidence holds true, and the inlet Mach
number depends on the inlet flow angle. The imposition of an arbitrary couple (M∞, β∞) leads the
cascade to operate at different inlet conditions for both variables, on a point belonging to the unique
incidence curve. To obtain the desired M1target, an iterative procedure (inspired by [2] and described in
Figure 7) was adopted, in which a low back-pressure was firstly imposed, in order to not influence
the inlet flow, along with a tentative initial value for β1 and the target inlet Mach number M1target.
The β1sim calculated by the CFD solver was set for the next simulation: it was observed that the β1sim
was always closer to the unique incidence value than the arbitrarily-chosen β1. After the first two
iterations, the update algorithm changed: since the inlet parameters returned by the simulations lay on
the unique incidence curve, which is linear in the plane M1–β1 with very good approximation, the last
two points were used to calculate the slope of the UI line and to set the β1 for the next simulation
according to a linear model. The procedure was repeated until convergence on the control parameter Ω
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was reached. On average, 3–4 simulations were requested by this algorithm for reaching convergence,
against the five using simple substitution, with a tolerance toll on Ω equal to 5 × 10−4.

Figure 7. Loop for searching for unique incidence conditions.

3.4. Maximum Pressure Ratio Script

Once the unique incidence condition was found (i.e., the β1 corresponding to the fixed M1target),
a new procedure to find the maximum reachable pressure ratio before the spill point was launched.
The concept is to bring back-pressure as close to the unstart value as possible: as soon as the spill point
is reached, the influence of p2 extends up until the inlet region (i.e., varying all relevant quantities in
this section, decreasing pressure ratio and dramatically deteriorating the loss coefficient). This variation
was exploited to detect the UI/unstarted status of the cascade. The algorithm is described in Figure 8:
first, a back-pressure, higher than the value in the unique incidence script, was set, and then, it was
verified whether inlet quantities returned by the simulation remained unchanged or not; in particular,
the angle β1 must stay within a narrow range centered in β1 UI . If that holds true, the cascade is still
in unique incidence and the back-pressure is raised by one step; otherwise, the variation of the inlet
flow angle is interpreted as a spill point operating condition, and the pressure is lowered by the same
step. In the next simulation, the step was halved and the procedure repeated for a fixed number of
iterations niter. The main advantage of this algorithm is robustness: the searching procedure is based
on numerical simulation and a proper choice of the number of iterations, and the initial step size is
the key to explore the back-pressure range adequately. A disadvantage is that, given the number
of iterations (linked to the computational time), the accuracy in calculating the objective function is
inversely proportional to the explorable range amplitude. To provide the procedure with a better
accuracy in the determination of the effective unstart back-pressure, a new scheme was implemented.
At Mach 1.3, the scheme uses the linear trend of inlet flow angle with respect to p2 beyond the spill
point: the p2 found at the intersection between this line and the line of UI in the p2–β1 space is used
as a starting point for two iterations more using the bisection method, with a lower tolerance on the
control parameter. At higher Mach numbers, a discontinuity in the trend of β1 with respect to p2
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beyond the SP makes this linear method unusable. In these cases, the bisection method is carried on
for three iterations more.

Figure 8. Maximum pressure ratio searching procedure.

3.5. Artificial Neural Network

To provide a further exploration of the solution space, at the end of every optimization, an
ANN was used to create a meta-model upon which a novel optimization was launched. The dataset
comprised all individuals simulated along with 40 individuals from a Design Of Experiments (DOE)
for each optimization. The network had 10 hidden neurons, and the Bayesian-regularization training
algorithm was adopted. The dataset was divided into 70% for training, 15% for validation, and 15%
for testing. A new optimization was carried out using a genetic algorithm, with the same parameters
described in the previous section and evaluation of the fitness functions via the above mentioned
meta-model; 80 individuals were evolved for 80 generations. Profiles with the best fitness were
simulated via CFD to verify predicted performance and are plotted along the Pareto fronts for each
inlet Mach number in Figure 9. It can be noted that ANN was able to further enlarge the Pareto front
only at Mach 1.3, probably for the insufficient size of the training dataset.

4. Results and Discussion

Three optimizations were conducted using three different inlet Mach numbers, namely 1.3, 1.45,
and 1.58; other quantities of interest were kept unchanged in order to simulate flows with different
inlet velocities, but constant inlet pressure and temperature. Each optimization used a selection of
individuals from a Halton distribution as the initial population; 20 individuals for eight generations
for the first M1, 10 generations for the others, were simulated. Using an Intel Xeon CPU E5-2650 @
2.00 GHz (Intel Corporation, Santa Clara, CA, USA) , every generation took a mean of 14 hours to be
completed. The best individuals obtained for a given operative Mach number were simulated at the
other two Mach numbers as well in order to test the actual need for a variable geometry to achieve
better performance at different operative conditions. At the end of each optimization, a new procedure
was launched, where the calculation of fitness functions was performed via ANN as stated in the
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previous section. The best individuals were simulated using CFD to ensure that meta-model prediction
was accurate: the overall results are clustered in Figure 9 and in Table 7.
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Figure 9. Pareto front of the optimizations, best individuals at other M1 (Best Opt) and best individuals
obtained via ANN (Best ANN).

Table 7. Performances of the optimized profiles. LLC, Low Loss Coefficient; OPT, Optimized profile;
HPR, High Pressure Ratio; norm., normalized to baseline.

Optimized Profiles Ω πc Ω Norm. (%) πc norm. (%)

LLC M1.3 0.0527 1.733 70.1 96.0
LLC M1.45 0.0749 2.158 73.6 98.3
OPT M1.58 0.1013 2.582 76.5 102.2
HPR M1.3 0.0793 1.911 105.6 105.9
HPR M1.45 0.0965 2.237 94.9 102.0

4.1. General Considerations

A significant improvement in the efficiency was achieved in every optimization, with up to
a 29.9% reduction of the baseline’s Ω, while the increment in the static pressure ratio was smaller,
reaching a maximum gain of 5.9%. The best individuals followed a peculiar trend, moving from
Low Loss Coefficient (LLC) shapes to High Pressure Ratio (HPR) ones, as described in detail in the
following. In the optimization at Mach 1.58, the Pareto front shrank to only two individuals featuring
similar geometrical properties and flow fields. The efficiency rise could be explained using three main
arguments: reduction of the pre-shock Mach number, increased slope of the lower branch of the bow
shock, and mitigation of the strong boundary layer–shock interaction. Enhancements of the pressure
ratio at lower speed regimes were due to increased positive camber and flow deflection, along with
stronger bow shock intensity. Optimized shapes were investigated by means of the isentropic Mach
number distribution, Mach number contours, and total pressure contours. Two optimal shapes were



Aerospace 2019, 6, 64 12 of 20

taken into account for comparison for the first two optimizations, only one for the third, given the
similarities between fittest individuals on the Pareto front at Mach 1.58.

4.2. Analysis of Profiles with the Low Loss Coefficient

A closer look at the optimized shapes at M1 = 1.3 and M1 = 1.45 in Figure 10 reveals a
flatter camberline in comparison to the baseline, with higher Y-coordinates for the leading edges
and reduced concavity between 10% and 50% of the chord. These geometrical features become less
pronounced with the increase of M1, leading to more concave shapes similar to the baseline, but with
the point of maximum curvature shifted progressively from the leading fraction towards the centerline.
The optimized shape at Mach 1.58 followed this trend, keeping the efficiency high, while retaining
a good pressure ratio. Looking at the Mach number contours in Figure 11, it can be noted that the
baseline profile was not optimized for the operation at an inlet Mach number of 1.3. The inlet section
of the flow field was characterized by a curved bow shock, slightly detached from the leading edge
even in unique incidence. At all operative conditions, the local positive slope of the first 10% of the
chord induced an intense flow acceleration on the suction side, with a Prandtl–Meyer expansion fan
propagating up until the upper branch of the next profile’s bow shock (see Figures 11–13). High
efficiency profiles had a flatter camberline, reducing on the one hand the intensity of the expansion fan
and increasing the obliquity of lower branch of bow shock, with lower shock losses on the other. Less
sloped frontal portions of the camberline are consistent with generally lower UI angles: this aspect
is particularly relevant at lower supersonic speeds, because the fraction of losses due to shocks is
slight in comparison to viscous dissipation (see Figures 14 and 15), and a lower incidence reduces
separation phenomena and, in the last analysis, overall losses. Reduced incidence also implies a higher
mass-flow-ratio for the given inlet Mach number, but with maximum differences <6%. The flow field
was divided into three zones for a more accurate analysis.

4.2.1. From 0–20% of Chord

Optimized shapes have a flatter leading fraction of the camberline, as can be noted in Figure 10:
this aspect reduces dramatically the acceleration of supersonic flow on the suction side right behind the
leading edge, related to the strong deviation imposed by the positive slope of the profile. The geometry
called a “bowl shape” (i.e., the camberline had a positive slope from 0%–15% of chord, then decreased
towards negative values) is linked to the need for a concave front portion of the chord, essential to
actuate the external precompression mechanism of S-shaped profiles, reducing shock losses at high
inlet Mach numbers; but at lower speeds, it becomes detrimental. The containment of this acceleration
reduces the Prandtl–Meyer expansion fan, which is responsible for the increase in the pre-shock Mach
number of the upper bow shock branch, as can be noted in Mach number contours in Figures 11–13.
In optimized profiles, a flatter camberline yielded an attached and more sloped oblique shock at all
operative conditions: in the baseline at Mach 1.3, it was curved and slightly detached even in unique
incidence. At higher speeds, the increased slope led to reduced total pressure losses, as can be noted in
the total pressure contours in Figures 15 and 16.
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Figure 10. Front fraction shapes (a–c) and isentropic Mach number (d–f) of LLC profiles.

Figure 11. Mach contours of profiles with LLC at Mach 1.3.
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Figure 12. Mach contours of profiles with LLC at Mach 1.45.

Figure 13. Mach contours of optimized profile at Mach 1.58.

Figure 14. Total pressure contours (kPa) of profiles with LLC at Mach 1.3.

Figure 15. Total pressure contours (kPa) of profiles with LLC at Mach 1.45.
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Figure 16. Total pressure contours (kPa) of optimized profile at Mach 1.58.

4.2.2. From 20% of Chord to Passage Shock

In LLC shapes, this fraction of chord was concave, generating additional Mach lines and thus
reducing the flow speed further, while the baseline had a flatter suction side and kept the isentropic
Mach number almost constant until the intersection of the passage shock (see Figure 10). Those Mach
lines covered a wide area in front of the passage shock, reducing the pre-shock Mach number up
until 0.18 (see Figure 13). The impinging point between the wave and the Suction Side (SS) was
located at a higher fraction of chord in optimized shapes thanks to the increased slope of the passage
shock. The baseline profile presented a change in curvature, from concave to convex, at 30% of chord,
responsible for the re-acceleration of the flow before passage shock incidence, that was mitigated in
the LLC shapes. Total pressure losses on the suction side decreased thanks to the reduced bow shock
intensity. On the pressure side, the mean isentropic Mach number was slightly higher compared to
the baseline for the convex curvature, and could exceed unity, but it was turned subsonic without
shocks. This aspect was due to the constancy of thickness, forcing the Pressure Side (PS) to follow
modifications of SS, which had greater influence on the cascade performance.

4.2.3. From Passage Shock to Trailing Edge

The most evident distinctive feature in this zone was the reduced intensity of SWBLI, giving rise
to less prominent separation phenomena. This aspect was related to both the weaker oblique shocks
and the reduced incidence and deviation imposed on the flow by the optimized shapes, and it is of
utmost importance in containing profile losses, especially at Mach 1.58, where the lambda interaction
gives rise to strong separation phenomena in the baseline profile (Figures 13 and 16). Out of this, flow
fields were very similar for both the baseline and optimized profile, given the unchanged shape of the
rear part.

4.3. Analysis of Profiles with a High Pressure Ratio

Profiles optimized for higher pressure ratios in the first two optimizations had overall higher
camber compared to the baseline, their leading edges being shifted below. They had a peculiar shape
featuring two inflection points (see Figure 17): the first one located at 10% of the camberline, the second
at half chord, similar to the baseline. The first 10% of the camberline had a negative slope and a
convex curvature, and the following development of the mean line presented a strong concavity until
the centerline, where the second inflection point was located. This solution may be considered a
hybrid between typical supersonic geometries like the S-shapes and more conventional moderately
supersonic profiles like the Multiple Circular Arc (MCA). It allowed for a considerable turning of
the flow for a supersonic profile, while retaining the precompression mechanism for minimizing
losses even below the baseline level. Just as already observed for LLC profiles, the optimized shapes
became more similar to the baseline profile while shifting towards higher Mach numbers. Yet, it
is worth noting that an individual on the front of the first optimization lied on the Pareto front of
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second optimization as well. This peculiar shape disappeared in the Pareto front at Mach 1.58, being
dominated by more conventional designs for both objectives, probably because of an insufficient
precompression. The higher difference in isentropic Mach number between the Suction Side (SS) and
Pressure Side (PS) in HPR shapes gave evidence of the higher loading, while peak values remained
substantially lower compared to the baseline (see Figure 17). Profiles with two inflection points showed
a higher unique incidence angle and, thus, a reduced mass flow ratio, with a maximum variation of
10% compared to the baseline.
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Figure 17. Front fraction shapes (a,b) and isentropic Mach number (c,d) of HPR profiles at Mach 1.3
and 1.45.

4.3.1. From 0–20% of Chord

Looking at Figures 18 and 19, it can be noticed that the bow shock had a shape comparable
to the baseline, the main difference downstream being the disappearance of the strong expansion
fan due to the negative slope of the front fraction of the chord, which followed the streamlines and
caused reduced deviation of flow on the suction side. This negative slope allowed the shock to remain
attached with increased incidence and deviation, incrementing the profile loading without affecting
the losses much. The passage oblique shock was more normal in profile with HPR, with higher losses,
but also a reduced sensitivity on back-pressure variation [2], allowing for a greater margin before spill
point insurgency. Two expansion fans radiated from both the SS and the PS near the leading edge,
but with peaks below the baseline values. The latter could reduce the sensitivity of the passage shock
to back-pressure rising, as suggested in [2]. The upper band of the passage shock was subjected to
lower pre-shock Mach numbers, thanks to the pre-compression mechanism, reducing shock losses.
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Figure 18. Mach contours of the profiles with HPR at Mach 1.3.

Figure 19. Mach contours of profiles with HPR at Mach 1.45.

4.3.2. From 20% of Chord to Passage Shock

Concavity subsisted on the suction side for a longer fraction of chord compared to the baseline,
bringing about a higher deceleration and the propagation of a wide left-running characteristics fan,
propagating in front of the next profile’s passage shock. The very large radius of curvature prevented
the fan from coalescing into a single wave, reducing the production of entropy. The following
rapid change of curvature accelerated the flow again, leading to a higher pre-shock Mach number
compared to the baseline and to a more intense shock, but only in the terminal band, as one can
see in Figures 18–21. The adverse pressure gradient on the suction side thickened the boundary
layer, but without detachment. On the pressure side, the divergence of area brought about a further
deceleration of the subsonic flow maintaining lower speeds than the baseline.

Figure 20. Total pressure contours (kPa) of profiles with HPR at Mach 1.3.
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Figure 21. Total pressure contours (kPa) of profiles with HPR at Mach 1.45.

4.3.3. From Passage Shock to Trailing Edge

The interaction between shock and boundary layer was slightly more intense, giving rise to a
stronger detachment on optimized shapes. Mean velocities until the trailing edge were lower because
of the higher back-pressure.

5. Conclusions

The multi-objective, multi-point optimization showed that there is a substantial margin of
improvement for efficiency (up to 29%) and a lower one for pressure ratio (up to 5.9%) at all operative
Mach numbers, including the closest to nominal operative condition. The improvement in the loss
coefficient at Mach 1.45 of 26.4% exceeded 25% (obtained by [2]) for the DLR-PAV-1.5 cascade at
the same inlet Mach number, despite the higher computational cost of the algorithm adopted in [2].
A greater enhancement (25.5%) was recorded at Mach 1.58 compared to the 20% achieved by [3]
at the same Mach number with the ARL-SL19 cascade. The profile was parametrized only for the
first half of the camberline without limiting the performance enhancement, confirming its primary
relevance in supersonic compressor profiles. It was observed that optimized shapes for a specific
Mach number differed significantly from optimal at different conditions, proving the high sensitivity
to the off-design of supersonic cascades. Two families of optimized geometries were discovered: the
first one achieved greater efficiency, reducing the bowl shape near the leading edge and the related
expansion fan, increasing passage shock slope and reducing interaction between the boundary layer
and shock wave. The concave curvature on the suction side became more prominent in designs
optimized for higher speeds, where the precompression mechanism was more relevant, but it was
shifted towards aft compared to the baseline. All the LLC profiles featured lower incidence compared
to the baseline, and thus lower separation and losses. At lower Mach numbers, a flatter camberline
seemed to be responsible for the reduced inlet flow angle, while at higher speeds, the reduction was
achieved by more complex shapes with higher concavity near the centerline: further investigations are
requested to better understand the mechanism involved. The second geometry investigated reached
better pressure ratios and increased deviation, while keeping the efficiency at the baseline level.
It presented a more cambered shape, providing higher loading, and retained a good loss coefficient by
reducing the acceleration of flow before the passage shock with a negative slope near the leading edge
followed by a concave portion of the suction side. This geometry featured a more “normal” passage
shock structure, less susceptible to back-pressure rising, but its performance worsened at Mach 1.58,
where it was dominated in both the objectives by more conventional designs. This work proved the
relevant enhancement in cascade performance achievable with a relatively low computational effort
and a stochastic algorithm. The results obtained lead the way to more complex analyses towards
expanding Pareto fronts, searching for actual global minima and, potentially, to the evaluation of
variable-geometry cascade advantages and feasibility.
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Abbreviations

1 Inlet section of the cascade

2 Exit section of the cascade
M Mach number
β Flow angle relative to the X-axis
p Static pressure
p0 Total pressure
T Static temperature
T0 Total temperature
Ω Total pressure loss coefficient
πc Static pressure ratio
Mis Isentropic Mach number
c Chord length
cax Axial chord length
ANN Artificial Neural Network
AVDR Axial Velocity Density Ratio
decvar Decision Variables
DLR Deutsche Zentrum für Luft und Raumfahrt
HPR High Pressure Ratio
LB Lower Bounds
LLC Low Loss Coefficient
MCA Multiple Circular Arc
NASA National Air and Space Administration
NSGA Non-dominated Sorting Genetic Algorithm
OPT Optimized profile
PS Pressure Side
RANS Reynolds Averaged Navier–Stokes
REAL Realizable
RNG Re-Normalized Group
SA Spalart–Allmaras
SP Spill Point
SS Suction Side
SST Shear Stress Transport
STD Standard
SWBLI Shock Wave–Boundary Layer Interaction
UI Unique Incidence
UB Upper Bounds

References

1. Chen, J.-P.; Hathaway, M.D.; Herrick, G.P. Prestall Behavior of a Transonic Axial Compressor Stage via
Time-Accurate Numerical Simulation. J. Turbomach. 2008, 130, 041014. [CrossRef]

2. Venturelli, G.; Benini, E. Kriging-assisted Design Optimization of S-shape Supersonic Compressor Cascades.
Aerosp. Sci. Technol. 2016, 58, 275–297. [CrossRef]

3. Liu, B.; Shi, H.; Yu, X. A New Method for Rapid Shock Loss Evaluation and Reduction for the Optimization
Design of a Supersonic Compressor Cascade. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 232,
2458–2476. [CrossRef]

http://dx.doi.org/10.1115/1.2812968
http://dx.doi.org/10.1016/j.ast.2016.08.021
http://dx.doi.org/10.1177/0954410017715277


Aerospace 2019, 6, 64 20 of 20

4. Sun, X.; Yang, S.; Zhao, Q. Shock loss model and blade profile optimization design of a supersonic cascade.
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 1325–1329. [CrossRef]

5. Aissa, M.H.; Verstraete, T.; Vuik, C. Aerodynamic optimization of supersonic compressor cascade using
differential evolution on GPU. AIP Conf. Proc. 2016, 1738, 480077.

6. Mohsen, M.; Owis, F.M.; Hashim, A.A. The Impact of Tandem Rotor Blades on the Performance of Transonic
Axial Compressors. Aerosp. Sci. Technol. 2017, 67, 237–248. [CrossRef]

7. Yue, S.; Wang, Y.; Wang, H. Design and Optimization of Tandem Arranged Cascade in a Transonic
Compressor. J. Therm. Sci. 2018, 27, 349–358. [CrossRef]

8. Tweedt, D.L.; Schreiber, H.A.; Starken, H. Experimental Investigation of the Performance of a Supersonic
Compressor Cascade. ASME J. Turbomach. 1988, 110, 456–466. [CrossRef]

9. Levine, P. The Two Dimensional Inflow Conditions for a Supersonic Compressor with Curved Blades.
ASME J. Appl. Mech. 1957, 24, 165–169.

10. Cumpsty, N.A. Compressor Aerodynamics; Longman Group: London, UK, 1984.
11. Lichtfuss, H.J.; Starken, H. Supersonic Cascade Flow. Prog. Aerosp. 1974, 15, 37–149. [CrossRef]
12. ANSYS Fluent User Guide; Ansys Inc.: Canonsburg, PA, USA, 2006.
13. Menter, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32,

1598–1605. [CrossRef]
14. Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl.

Mech. Eng. 1974, 3, 269–289. [CrossRef]
15. Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A New κ–ε Eddy Viscosity Model for High Reynolds

Number Turbulent Flows. Comput. Fluids 1995, 24, 227–238. [CrossRef]
16. Yakhot, V.; Orszag, S.A. Renormalization Group Analysis of Turbulence. I. Basic Theory. J. Sci. Comput.

1986, 1, 3–51. [CrossRef]
17. Spalart, P.; Allmaras, S. A One-Equation Turbulence Model for Aerodynamic Flows. In Proceedings of the

30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; doi:10.2514/6.1992-439.
[CrossRef]

18. Piovesan, T.; Magrini, A.; Benini, E. Accurate 2-D Modeling of Transonic Compressor Cascade Aerodynamics.
Aerospace 2019, 6, 57. [CrossRef]

19. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial.
Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0954410014550050
http://dx.doi.org/10.1016/j.ast.2017.04.019
http://dx.doi.org/10.1007/s11630-018-1013-4
http://dx.doi.org/10.1115/1.3262219
http://dx.doi.org/10.1016/0376-0421(74)90004-9
http://dx.doi.org/10.2514/3.12149
http://dx.doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/10.1016/0045-7930(94)00032-T
http://dx.doi.org/10.1007/BF01061452
http://dx.doi.org/10.2514/6.1992-439
http://dx.doi.org/10.3390/aerospace6050057
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Baseline Cascade Modeling and Validation
	Optimization Procedure
	Parameterization of the Profile
	Genetic Algorithm
	Unique Incidence Script
	Maximum Pressure Ratio Script
	Artificial Neural Network

	Results and Discussion
	General Considerations
	Analysis of Profiles with the Low Loss Coefficient
	From 0–20% of Chord
	From 20% of Chord to Passage Shock
	From Passage Shock to Trailing Edge

	Analysis of Profiles with a High Pressure Ratio
	From 0–20% of Chord
	From 20% of Chord to Passage Shock
	From Passage Shock to Trailing Edge


	Conclusions
	References

