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Abstract: The application of morphing wing devices can bring several benefits in terms of aircraft
performance, as the current literature shows. Within the scope of Clean Sky 2 AirGreen 2 European
project, the authors provided a safety-driven design of an adaptive winglet, through the examination
of potential hazards resulting from operational faults, such as actuation chain jamming or links
structural fails. The main goal of this study was to verify whether the morphing winglet systems
could comply with the standard civil flight safety regulations and airworthiness requirements (EASA
CS25). Systems functions were firstly performed from a quality point of view at both aircraft and
subsystem levels to detect potential design, crew and maintenance faults, as well as risks due to the
external environment. The severity of the hazard effects was thus identified and then sorted in specific
classes, representative of the maximum acceptable probability of occurrence for a single event, in
association with safety design objectives. Fault trees were finally developed to assess the compliance
of the system structures to the quantitative safety requirements deriving from the Fault and Hazard
Analyses (FHAs). The same failure scenarios studied through FHAs have been simulated in flutter
analyses performed to verify the aeroelastic effects due to the loss of the actuators or structural links
at aircraft level. Obtained results were used to suggest a design solution to be implemented in the
next loop of design of the morphing winglet.

Keywords: morphing wing aeroelasticity; morphing winglets; fault hazard assessments

1. Introduction

Morphing wing devices are capable of adapting their geometry in order to achieve a wide range
of increased performance [1–4]. In the case of morphing aircraft, such goals include, among the
others, enhanced aerodynamic efficiency or alleviating gusts, with a beneficial impact on aircraft fuel
consumption and flight range.

Conventional aircraft structures are typically conceived in order to intrinsically exhibit specific
aeroelastic responses. The wing architecture derives, for instance, from well-defined aerodynamic
studies and aeroelastic predictions under several load cases. The parametric study of flutter is a crucial
step when dealing with the design of conventional A/C movable surfaces (flaps, ailerons, rudder, etc.),
in an attempt to avoid either bell-shaped or sharp flutter instabilities. In the case of morphing wings,
these aspects are even more critical due to the extremely complex and largely distributed architectures,
including much more elements than conventional counterparts. Due to the unconventional arrangement
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and their potential mutual interaction, especially in the case of malfunctioning or failure conditions,
their aeroelastic assessment appears to be a fundamental step since the preliminary design stages
of aircraft wings equipped with morphing systems. This inevitably influences mass and stiffness
properties of the morphing device along with the related actuation requirements.

Hinged mechanisms [5], an alternative to compliant systems [6], give rise to important design
challenges. The increased number and kind of parts and the smaller and more diffused components
introduce new needs and sometimes exasperate aspects that were until now, under control in the
design of conventional wing structures. In particular, the associated safety and reliability issues may
affect the aeroelastic response of the entire wing. A total loss of the morphing system due to kinematic
failures, for instance, may result in free unforced oscillations, which may potentially lead to flutter
phenomena involving the entire aircraft. It is then, not surprising that failure scenarios, such as the
rupture of primary hinges and/or actuation links of movable morphing parts, which may dramatically
impact the aircraft aeroelastic stability margins with catastrophic safety-related consequences, are
increasingly becoming a topic of interest for the purposes of increasing aircraft flight stability of aircraft
wings equipped with morphing technology.

In the literature, a way of solving these design complications is to reduce the main problem to
its constituent sub-components. These imply that the aircraft is structurally designed such that it
can be assured that the target morphing shapes are reached or can carry out the aerodynamic shape
optimization to identify the optimum configurations for the morphing of the wings [7]. An additional
aspect of interest concerns the aerodynamics and structure interaction, to prevent aeroelastic instability
during flight. The design strategy of partitioning the design problem into distinct subject areas leads
the way to the development of several morphing aircraft concepts. However, it should be noted that a
more comprehensive approach could emphasize the potential structural improvements in terms of
weight and number of components while maintaining the requested aerodynamic benefits.

In order to check the validity of these considerations, the authors chose, as a reference application,
the aeroelastic model of a regional aircraft equipped with morphing winglets, Figure 1 [8,9]. A suitable
aerodynamic model based on 3D flat panels was implemented for the evaluation of the unsteady
aerodynamic influence coefficients through doublet lattice method. Linear and surface spline functions
were used to interpolate modal displacements along the normal of the aerodynamic panels and to
evaluate the generalized aerodynamic forces.
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lattice (blue), structural model elements and grids (red).
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The winglet conceptual design is based on the “finger-like” mechanism that the same authors
conceived and validated on full-scale aileron devices [10,11] and morphing wing trailing edge [12–14].
Ref. [15–17] presents the enhanced (estimated about 3%) aerodynamic performance assured by the
physical integration of morphing winglets on a next-generation regional aircraft.

2. Morphing Winglet Concept

2.1. Scope and Reference Geometries

Research on morphing aircraft structures aims to wing design optimization by considering
co-factors involving both aerodynamics and structures. Morphing devices applications can bring
several benefits in terms of aircraft performance, as the current literature shows. Among such
applications, shape-changing winglets can enhance the lift-on-drag ratio in off-design conditions and
reduce aerodynamic wing loads by providing adapted geometry and wing lift distribution throughout
the A/C flight envelope. This can potentially lead the way toward the adaptive winglets application
to next-generation aircraft. For that purpose, the architectural design concept of a multi-modal
morphing winglet is collocated within the scope of Clean Sky 2 Regional Aircraft IADP (Innovative
Aircraft Demonstrator Platform), made in compliance with the pertinent requirements proposed by
the airworthiness regulations.

In the adaptive winglet conceptual design, it is assumed that:

• Morphing winglet system chord is equal to the 40% of the mean winglet chord (MWC);
• Deflection is within the range [−15◦, +10◦] (where deflections are considered negative if reduce

root bending moment).

Morphing is ensured by a dedicated mechanism composed by movable surfaces (namely, upper
and lower tabs), whose deflection is driven by dedicated actuators [15–17]. By rotating respectively
and independently upper and lower tabs, two possible configurations of the adaptive winglet can be
achieved, as shown in Figure 2.

Aerospace 2019, 6, x FOR PEER REVIEW 3 of 27 

 

2. Morphing Winglet Concept 

2.1. Scope and Reference Geometries 

Research on morphing aircraft structures aims to wing design optimization by considering co-
factors involving both aerodynamics and structures. Morphing devices applications can bring several 
benefits in terms of aircraft performance, as the current literature shows. Among such applications, 
shape-changing winglets can enhance the lift-on-drag ratio in off-design conditions and reduce 
aerodynamic wing loads by providing adapted geometry and wing lift distribution throughout the 
A/C flight envelope. This can potentially lead the way toward the adaptive winglets application to 
next-generation aircraft. For that purpose, the architectural design concept of a multi-modal 
morphing winglet is collocated within the scope of Clean Sky 2 Regional Aircraft IADP (Innovative 
Aircraft Demonstrator Platform), made in compliance with the pertinent requirements proposed by 
the airworthiness regulations. 

In the adaptive winglet conceptual design, it is assumed that: 

• Morphing winglet system chord is equal to the 40% of the mean winglet chord (MWC); 
• Deflection is within the range [−15°, +10°] (where deflections are considered negative if reduce 

root bending moment). 

Morphing is ensured by a dedicated mechanism composed by movable surfaces (namely, upper 
and lower tabs), whose deflection is driven by dedicated actuators ([15]-[17]). By rotating respectively 
and independently upper and lower tabs, two possible configurations of the adaptive winglet can be 
achieved, as shown in Figure 2. 

 
Figure 2. Morphing winglet concept with upper and lower control surfaces [18]. 

The separate control of the downward deflections of the control surfaces during climb and cruise 
phases improves the lift-on-drag ratio. On the other hand, aerodynamic assessments showed that 
changing the angles between inner and outer winglet may potentially bring many other aerodynamic 
benefits [19]. 

2.2. Morphing Winglet Architecture 

The main structure of the winglet fully embeds the adaptive architecture, and was conceived to 
reduce the induced drag by modulating the distribution of span-wise aerodynamic loads. Moreover, 
such architecture allows also for load alleviation functions, by means of negative deflections of the 

Figure 2. Morphing winglet concept with upper and lower control surfaces [18].

The separate control of the downward deflections of the control surfaces during climb and cruise
phases improves the lift-on-drag ratio. On the other hand, aerodynamic assessments showed that
changing the angles between inner and outer winglet may potentially bring many other aerodynamic
benefits [19].
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2.2. Morphing Winglet Architecture

The main structure of the winglet fully embeds the adaptive architecture, and was conceived to
reduce the induced drag by modulating the distribution of span-wise aerodynamic loads. Moreover,
such architecture allows also for load alleviation functions, by means of negative deflections of the
movable parts. Winglet morphing capabilities are ensured by the relative rotations of three adjacent
blocks, namely B0, B1, and B2, connected to each other by means of relative hinges, Figures 3 and 4.
The term “block” refers to the structural part including two segments connected by a spar box. Both
lower and upper electromechanical linear actuators are in B1; in order to activate morphing, each
actuator induces B1 rotation around its hinge axis through a rigid rod. A large part of the incoming
loads places stress on such a structural element, making its design very crucial, Figure 5 shows the
electro mechanical actuators (EMA) chosen for the morphing activation.
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The system, conceived in such a way, results in a single degree of freedom—the rotation of
consecutive blocks occurs according to a proper gear ratio. B0 is also defined as “dead box” since it
is rigidly connected to the winglet rear spar (unmorphing box). The shape-changing ability of the
morphing winglet is ensured by a segmented skin arrangement covering both the upper and the
lower trailing edge. More in detail, two panels of skin are properly connected to the ribs edges and
spars underneath it. The materials considered for movable and non-movable parts were different; in
particular:

• Carbon-fiber, for the non-movable part;
• Aluminum alloy, for the movable parts.

Material mechanical properties are reported in Table 1:

Table 1. Materials properties of the winglet.

Mechanical Property Carbon-Fiber Aluminum Alloy

Young Modulus, E (MPa) 33,000 70,000
Poisson Coefficient, ν 0.32 0.30
Density, ρ (Ton/mm3) 1.7 × 10−9 2.8 × 10−9

The overall weight of the device was estimated below 50 Kg.
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3. Fault and Hazard Assessment of the Morphing Winglet

3.1. Safety Analysis: General Approach

Typically, the safety analysis of aircraft devices consists of three major phases, i.e., fault and
hazard assessment (FHA), preliminary system safety assessment (PSSA), and system safety assessment
(SSA). In the FHA, a qualitative examination of the faults is carried out to identify the associated risks.
The severity of these hazards is classified to determine the maximum tolerable probability of occurrence.
As a consequence of the probabilities assigned to each identified failure, safety requirements of the
basic components are thus calculated. Such quantitative analysis is usually referred to as a fault tree
(FT) analysis.

A morphing winglet device is generally classified as a “safety-critical” structure. This means that
any loss of the system function could potentially result in “catastrophic” events for the aircraft. Flutter
is surely the most important risk and requires dedicated assessments since the preliminary design
stages [21]. As a result, its probability of occurrence must be proved below the threshold value of
<10−9 per flight hour.

The main drivers in the safety-driven design of morphing systems are the already-mentioned
CS-25 regulations as well as the Aerospace Recommended Practices SAE ARP 4754a [22] and SAE
ARP4761 [23]. The CS-25 safety regulation requires the general safety assessment process shown in
Figure 6.
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An inverse relationship exists between the average probability per flight hour and the severity of
failure condition effects, as shown in Figure 7. Catastrophic events shall be extremely improbable and
shall not derive from a single failure [24]. An approximate probability value for the term “extremely
improbable” is 10−9 corresponding to the average probability per flight hour for catastrophic failures.
On the contrary, failure conditions that have less severe effects could be relatively more likely to occur
and may have an upper average probability of 10−7 (hazardous) and 10−5 (major) per flight hour.
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3.2. Morphing Winglet FHA

A safety-driven design of an adaptive winglet requires an accurate examination of the potential
hazards associated with its faults. Table 2 shows the potential system failures resulting from the FHA.

Table 2. Potential failures identified in morphing winglet preliminary fault and hazard assessment
(FHA).

Hazard Description Potential Impact Performed and Planned Actions
to Tackle the Hazard

Uncontrolled dynamic motion

Morphing tabs moving undamped
in airflow (control surfaces flutter)
which may cause structural
damages of the A/C wing

Flutter simulations and trade-off
analyses on control surfaces.
Immediate A/C speed reduction

Detected jamming of one adaptive
winglet (either left or right)

Aircraft drag increase associated
with increased loads

Reduce speed and avoid severe
turbulence to prevent ultimate
loads. Estimation of the A/C block
fuel

Undetected loss of control of one
adaptive winglet (either left or
right)

Increased fuel consumption and
reduced controllability

Reduce speed and avoid severe
turbulence to prevent ultimate
loads.
Estimation of the A/C block fuel

A more detailed description of the morphing winglet (MWL) FHA is given in Table 3.
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Table 3. Morphing winglet FHA. Catastrophic (CAT), Major (MAJ), Hazardous (HAZ) events.

A/C Function Phase Failure
Scenarios Failure Effects Failure

Condition Severity Justification for
Classification

Crew
Detection Recovery Action Design

Parameters

Load control/
Load
alleviation

Climb/Cruise
and others

Uncontrolled
dynamic
motion

MWL tab1 and/or
tab2 moving
undamped in airflow
(control surfaces
flutter)

Possible
structural
damage of the
A/C wing.

CAT

Loss of A/C,
emergency pilot
actions such as
immediate speed
reduction to safe
aircraft

strong
vibrations,
A/C
uncontrollable

Immediate speed
reduction,
emergency
landing

MWL flutter
simulations and
trade-off analyses
on control
surfaces

Load control/
Load
alleviation

Climb/Cruise
and others

Jamming of
one MWL
(either left or
right)

Uncontrolled MWL
static deflections;
increased drag and/or
increased loads

Drag increase
and increased
loads

MAJ Physical discomfort
for passengers Warning

Reduce speed and
avoid severe
turbulence to
prevent ultimate
loads. Estimation
of the A/C block
fuel

Sizing loads shall
include jamming
conditions

Load control/
Load
alleviation

Climb/Cruise
and others

Undetected
Runaway of
left AND right
MWLs

Uncontrolled
deflection of both
surfaces causing a
dramatic drag
increase. Significant
reduction in aircraft
safety margins.

Significant
drag increase
and aircraft
performance
reduction

HAZ Pilot’s workload
increase

Increased fuel
consumption
and reduced
controllability

Emergency
landing

Not further
investigated

Load control/
Load
alleviation

Climb/Cruise
and others

Undetected
inaccurate
deflection of
the tab

Inaccurate tab
deflections and
aerodynamic
efficiency
degradation

Degraded A/C
performance MAJ Limited pilot’s

workload increase
Increased fuel
consumption

Automatic
recomputation of
A/C block fuel

Not further
investigated
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The “Actuator runaway” results in free-floating or excessive backlash for the actuator. This event
may occur when either the actuator is mechanically detached from the surface or it has lost its
functionality or moves in an incorrect position.

The first row of Table 3 deals with a failure scenario developed in terms of FHA and is verified
in the integrated safety aeroelastic analysis (described in the following Section 5). All other rows,
instead, regard failure scenarios not related to the aeroelastic behavior; for this reason, they were
only mentioned.

Basically, the morphing winglet can impact load control/load alleviation aircraft function.
The failure scenario investigated is the uncontrolled dynamic motion of the left OR right
morphing winglet.

For each side, the “main actors” of the latter event identified are:

• Kinematic rupture of upper tabs;
• Kinematic rupture of lower tabs.

Figure 8 shows the fault tree developed only for the kinematic rupture of the upper tabs, identifying
the lower tabs one as “undeveloped event” with the same failure rate. The further explosion of the gates
involved occurs by OR logic, considering the potential loss of the actuator connection, the rupture of
three hinges along the first hinge line and the rupture of three hinges/links of the morphing kinematics
along the second hinge line.
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Moreover, for the sake of completeness, the destruction of the wing was considered as the top
event of a new fault tree analysis (Figure 9) aiming to verify its compliance with the catastrophic target
(Failure probability < 10−9).
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Figure 9. Destruction of wing—fault tree analysis.

In Figure 9, the same failure rate was assigned to both the uncontrolled dynamic motion of right
and left events, linked each other by an OR logic gate. The top event results with a failure rate of
the order of 10−8: this outcome reveals a light incompliance with respect to the CAT target (10−9),
to overcome which the use of proper damping devices on actuators or between consecutive tabs is
highly suggested.

3.3. Aeroelastic Impact of the Morphing Winglet on FHA

The failures of the morphing winglet subsystems already described in the previous sections in
terms of fault tree analyses may have a detrimental impact in terms of aircraft aeroelastic stability.
For that purpose, the following conditions have been identified (Table 4), as basis for the advanced
aeroelastic simulations. For each morphing tab under nominal operative condition, the first hinge
line stiffness equals to 1500 Nm/rad, corresponding to the lumped torsional stiffness of the related
actuation chain.

Table 4. Potential failures identified in morphing winglet preliminary FHA.

# Case Lower Tab
Actuation Line

Upper Tab
Actuation Line Lower Tab Link Upper Tab Link

1 Operative in
nominal conditions

Operative in
nominal conditions

Operative in
nominal conditions Failure

2 Operative in
nominal conditions

Operative in
nominal conditions Failure Operative in

nominal conditions

3 Operative in
nominal conditions Failure Operative in

nominal conditions
Operative in

nominal conditions

4 Failure Operative in
nominal conditions

Operative in
nominal conditions

Operative in
nominal conditions

All the failure scenarios are schematically shown in Figure 10.
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It is expected that the structural failure of the link (upper/lower) would give catastrophic effects in
terms of flutter behavior, since it would avoid the load alleviation function of the morphing winglet at
high speed being activated. All these cases will be widely aeroelastically analyzed and discussed in
the next paragraphs.

4. Structural Model

For the purpose of performing quick trade-off analyses on the whole aircraft equipped with
the adaptive winglets, the structural model of the reference aircraft, already presented in [21], was
combined with a stick-beam model of the adaptive winglet. Starting from a complete finite element
model of the winglet, shown in Figure 11, the equivalent stick-beam model was generated by firstly
computing the position of the elastic axis and then by assuming a reasonable stiffness distribution
along the winglet span.
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Figure 11. Left hand side (LH) morphing winglet preliminary finite element model.

Such a distribution was determined by iteratively performing several Nastran runs by constraining
the first node of the (assessed) elastic/hinge axis and by imposing a known load value at the tip (last
node of the elastic/hinge axis). Then, a torque Mx, about the elastic/hinge axis, yielded rotations of
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master nodes around x-axis (elastic/hinge axis). The derivative of these rotations with respect to x
coordinate was evaluated to determine the torsional stiffness GJ(x). A Bending moment, about y (and
z) axis, yielded rotations of master nodes around y (and z)-axis. The derivative of these rotations with
respect to y (and z) coordinate was evaluated to determine the bending stiffness EI(x). A Normal force,
aligned to the elastic axis, produced displacements of master nodes along x-axis (elastic/hinge axis).
The derivative of these displacements with respect to x coordinate was evaluated to determine the
axial stiffness EA(x). The relative equations are summarized in Table 5.

Table 5. Logical Flow for the stiffness properties evaluation.

Applied Nodal Force Analysis Result (NASTRAN®) Stiffness Property Evaluation

Mx Rx(x) GJ(x) = Mx/ dRx(x)
dx

My Ry(x) EImin(x) = My/
dRy(x)

dx

Mz Rz(x) EImax(x) = Mz/ dRz(x)
dx

Nx Tx(x) EA(x) = Nx/ dTx(x)
dx

where:

• x is the generic coordinate along the x-axis;
• GJ(x) is the torsional stiffness distribution;
• EImin(x) is the vertical bending stiffness distribution (stiffness to bending across XY plane, Y being

in the winglet middle plane, normal to the elastic axis and rearward oriented);
• EImax(x) is the lateral (fore & aft) bending stiffness distribution (stiffness to bending across XZ

plane, z-axis oriented so that XYZ is a counterclockwise coordinate system);
• EA(x) is the distribution of the stiffness exhibited with respect to forces acting along the elastic

axis (normal-to-sections solicitations);
• Mx is an arbitrary torque moment acting around the elastic axis (x-axis) at its free-end and Rx(x) is

the rotation around the x-axis of the cross-section at span-wise location x;
• My is an arbitrary torque moment acting around the y-axis at its free-end and Ry(x) is the rotation

around the x-axis of the cross-section at span-wise location x;
• Mz is an arbitrary bending moment acting around z-axis at elastic axis free-end and Rz(x) is the

rotation around the z-axis of the cross-section at span-wise location x;
• Nx is an arbitrary force acting along the elastic axis (x-axis) at its free-end and Tx(x) is the

displacement along the x-axis of the cross-section at span-wise location x.

Moreover, the winglet tabs actuators were modelled by means of grounded spring elements
connected to the end grid of each movable table.

Dedicated direct input matrices condensed at grids (DMIG) were then derived to properly account
stiffness and inertial properties of the interface region between the described morphing winglet and
the wing. Auxiliary (not structural) grids were used to assure high-quality interpolation of modal
displacements along the aerodynamic lattice; auxiliary grids were linked to structural grids by means
of RBE elements.

Dynamic Model

The evaluation of the inertial properties of the winglet tabs was obtained through a system of
lumped masses, each of them having weight equal to the one of the intersection structural area between
the tab blocks and the bays. Such masses were thus condensed at the gravity center of each tab,
and then rigidly linked to the closest structural grid of the beam-equivalent model of the pertaining
item. This is possible thanks to the hypothesis of considering all the lifting surfaces chordwise
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deformations negligible with respect to the spanwise ones. In this way, the inertial effect of each
trunk can be represented through a node located at the gravity center, with its weight and barycentric
inertial moments.

The dynamic model of the morphing winglet is depicted in Figure 12.
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5. Aeroelastic Analyses in Failure Conditions

The aeroelastic stability equation was solved in frequency domain and by referring to
well-consolidated methodologies (PK-English method) for the evaluation of critical speeds under the
following general assumptions:

• association of the theoretical elastic modes up to 30 Hz; natural frequencies and shapes evaluated
by means of Lanczos method applied to the dynamic model described in the manuscript;

• modal damping conservatively set to 1.5% for all the elastic modes;
• all moveable surfaces locked;
• sea-level flight altitude;
• flight speed range: [0:1.15 V Dive] as for certification requirements.

Several flutter analyses were carried out by considering the failure scenarios detailed in Table 4.
Figure 13 shows the resulting trends of modes frequencies and damping versus speed, evaluated for
the four failure cases shown in Figure 10.
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The results of the flutter analyses can be summarized as follows in Table 6.

Table 6. Flutter analyses results in failure scenarios investigated for morphing winglet.

# Case
Lower Tab
Actuation

Line

Upper Tab
Actuation

Line

Lower Tab
Link

Upper Tab
Link

V Flutter
(m/s)

Frequency
of Flutter

(Hz)

1 Nominal Nominal Nominal Failure 89.84 25.71
2 Nominal Nominal Failure Nominal 92.51 22.92
3 Nominal Failure Nominal Nominal 213.819 21.71
4 Failure Nominal Nominal Nominal 208.03 21.83

It follows that the isolated link rupture (Cases 1 and 2) appears more critical than the isolated
actuator loss (Cases 3 and 4) whereas the upper link rupture (Case 1) is more critical than the lower
one (Case 2). The only aeroelastically safe events were classified in Cases 3 and 4. Additionally, in
order to increase the safety margins in compliance with the FHA severity, actuators and tabs damping
shall be further increased [25].

6. Conclusions

This paper provides a safety-driven design of a morphing winglet device integrated into a 90-seat
turboprop (TP90) regional transportation aircraft, in combination with aeroelastic assessments.

Experience teaches that due to the augmented degree of freedoms (DOF), morphing wings
are more prone to aeroelastic instabilities than more conventional architectures integrating passive
counterparts. Non-classical effects may arise in terms of flutter-instabilities due to the unconventional
systems arrangement and their mutual interaction, especially in malfunctioning or failure conditions.
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Fault tree analyses were performed on winglet as isolated devices to quantify the probability of
failure scenarios and to verify their eventual compliance with the airworthiness requirements. Such
studies drove the combined aeroelastic assessments by considering several failure cases (isolated
link/actuator rupture). Gained results showed that actuator failure is more critical than link rupture,
and the aeroelastic instabilities can be overcome by using proper damping devices.
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