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Abstract: Modern transport aircraft wings have reached near-peak levels of energy-efficiency and
there is still margin for further relevant improvements. A promising strategy for improving
aircraft efficiency is to change the shape of the aircraft wing in flight in order to maximize its
aerodynamic performance under all operative conditions. In the present work, this has been
developed in the framework of the Clean Sky 2 (REG-IADP) European research project, where
the authors focused on the design of a multifunctional twistable trailing-edge for a Natural Laminar
Flow (NLF) wing. A multifunctional wing trailing-edge is used to improve aircraft performance
during climb and off-design cruise conditions in response to variations in speed, altitude and
other flight parameters. The investigation domain of the novel full-scale device covers 5.15 m
along the wing span and the 10% of the local wing chord. Concerning the wing trailing-edge,
the preliminary structural and kinematic design process of the actuation system is completely
addressed: three rotary brushless motors (placed in root, central and tip sections) are required to
activate the inner mechanisms enabling different trailing-edge morphing modes. The structural
layout of the thin-walled closed-section composite trailing-edge represents a promising concept,
meeting both the conflicting requirements of load-carrying capability and shape adaptivity. Actuation
system performances and aeroelastic deformations, considering both operative aerodynamic and
limit load conditions, prove the potential of the proposed structural concept to be energy efficient
and lightweight for real aircraft implementation. Finally, the performance assessment of the outer
natural laminar flow (NLF) wing retrofitted with the multifunctional trailing-edge is performed
by high-fidelity aerodynamic analyses. For such an NLF wing, this device can improve airplane
aerodynamic efficiency during high speed climb conditions.

Keywords: twistable trailing-edge; Natural Laminar Flow wing; actuator torque; instant centre
analysis; regional aircraft

1. Introduction

Worldwide air passenger traffic is predicted to grow at an average 4–5% per annum over the next
few decades [1]. As the number of flights increases, environmental requirements, such as emissions
and noise, will impose significant challenges for next generation transport aircraft development.

According to Europe’s vision for aviation [1], technological breakthroughs are necessary to
accomplish a major step towards the environmental goals of a 75% reduction in CO2 emissions per
passenger/kilometre, a 90% cut in NOx emissions, a 65% reduction of perceived aircraft noise levels
(all percentages referred to the transport aircraft performances measured in 2000).
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Nowadays, modern transport aircraft wings have reached near-peak levels of energy-efficiency
and further improvements seem extremely difficult to obtain. Indeed, aircraft wings are still designed
with a fixed geometry fully optimized in only a few design points, which may not be so optimal for
the entire flight mission. Therefore, whereas an aircraft operates in off-design conditions, sub-optimal
performances lead to an increase of fuel burnt with impacts on air-pollution and aircraft operative
costs. Morphing the shape of the aircraft wing during flight represents a very promising strategy to
achieve some benefits throughout the entire aircraft mission [2].

During the very early days of aviation history, the possibility of changing the wing shape was
considered a crucial design factor in order to generate lift and maintain lateral equilibrium. In 1903,
the Wright Brothers achieved the first sustained, powered, heavier-than-air flight in a machine of their
own design and construction [3]. After some experiments with kites and gliders, they developed a
revolutionary wing design, enabling the lateral equilibrium of the aircraft: lateral control was indeed
realized by twisting the rear of their fabric-and-wood wings in opposite directions [4]. Soon after, as
aircraft became heavier and faster, engineers were forced to switch to stiff wings retrofitted with flaps
and ailerons to satisfy the need for higher wing loading; morphing of these surfaces was proven to be
impractical because of the higher structural stiffness required to withstand higher aerodynamic loads
due to increased performances.

Over the years, researchers and designers have conceived several promising concepts to enable
shape-changing morphing devices. All wing morphing concepts can be categorized into three
major types [5]: global plan form alteration (involving global aircraft characteristics such as span,
chord and sweep changes), out-of-plane transformation (twist, dihedral, span-wise bending) and
airfoil adjustment (camber and thickness). In each case, the design of smooth control-surface
geometry variation must strike a balance between proper structural stiffness to withstand the external
aerodynamic loads without appreciable deformations (or arising of aeroelastic instability issues) and
sufficient flexibility to make the shape change possible with a reasonable amount of actuation power.

In the mid 1980s, the Mission Adaptive Wing (MAW) research program demonstrated the concept
of changing the wing in flight. The U.S. Air Force Research Laboratory and Boeing designed and
tested adaptive wings that were installed on an F-111 aircraft [6]. Flight tests conducted on AFTI/F-111
aircraft confirmed the expected performance improvement: 20% range enhancement, 20% aerodynamic
efficiency growth, 15% increase of wing air load at constant bending moment [6].

At the end of 1990s, the DaimlerChrysler Aerospace Airbus and DLR launched the research
project ADIF (Adaptive Wing) and in this framework they proposed a concept to camber and twist
the wing trailing edge [7]. The structural layout was conceived to be used for the replacement and
enhancement of the flap trailing edge of the A340-300. Investigations of span-wise differential camber
variation confirmed 12–15% reduction of the root bending moments (RBM) through the redistribution
of the span-wise aerodynamic load.

Within SARISTU—an industrial oriented research project in the frame of the 7th European
framework Program (2011–2015)—different new concepts of morphing devices were developed and
experimented in large wind tunnel tests (WT) at TsAGI facilities [8].

Different studies showed how controlled wing twisting can be an effective alternative for ailerons
and that the amount of wing twist (washout) during the flight envelope can reduce he induced drag
thus resulting in higher efficiency and less amount of fuel burn [9,10]. For this reason, different concepts
were employed to induce wing twisting. Several works have been done on structural concepts for
aerodynamic surfaces with adjustable torsional stiffness by means of rigid-body mechanisms. Indeed,
the stiffness control for some selected components of the lifting surfaces was demonstrated to be a
promising idea for the implementation of smart roll control [11] and adaptive lift-to-drag vertical tail
ratio [12]. In such a case, the structural concept can change its own stiffness thanks to rotary wing
spars with a controllably rigid attachment that permits aeroelastic amplification [12]. The Adaptive
Torsion Wing (ATW) concept was based on the idea of a two-spar thin-walled closed section wing-box
with all-movable spar webs in chordwise direction [13].
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These first concepts for inducing twist in a conventional wing structure were developed to reduce
the torsion stiffness of the structure and, usually, high forces or moments were anyway required to
enable the predicted twisted shape [14]. In order to overcome the high-energy demand to control wing
torsion and therefore to avoid the adoption of heavy actuators, a concept relying on warping-induced
deformations to an open-section airfoil was designed and tested [15]. Within the EU FP7 CHANGE
project, a similar concept was investigated for a 25 kg UAV [16]. A very interesting way to implement
wing-twist morphing was finally addressed in Reference [17]. Here, the wing-twist was controlled by
working on the bending-twist coupling induced by changes of shear centre location; the prototype,
conceived for a glider of the FAI 15 m class, used smart material with controllable shear stiffness to
adaptively modify the shear centre positions of wing cross sections.

Most of the structural concepts conceived for wing twist are related to the trailing edge area where
high benefits could be proved to be exploited on subsonic transport aircraft. Optimization of wing
trailing-edge shape could assure significant drag reduction within the flight envelope. With respect to
a civil transport aircraft configuration using conventional trailing-edge control surfaces, the benefits
that might be brought by a morphing-camber system to the aircraft efficiency can approach more than
10 per cent, in off-design flight conditions and 1–3 per cent in cruise [18]. Estimated benefits for a
reference transport aircraft (L-1011) prove the positive effects of variable camber system based on
aileron-type trailing-edge surface deflections.

A competitive concept to enhance aircraft performances could be represented by a multifunctional
trailing edge, retrofitting a Fowler flap, implementing wing camber-morphing through rigid surface
deflections (for lift-to-drag ratio improvement [18]) and continuous span-wise twist control for
root bending moments (RBM) alleviation (through the redistribution of the span-wise aerodynamic
load [19]).

Reporting about the research activities developed in the framework of the Airgreen2 project
(running within the “Clean Sky 2” Regional Integrated Development Platform), this paper is focused on
the preliminary design of a full-scale composite multifunctional and twistable trailing-edge retrofitting
the outboard morphing Fowler flap of a turboprop regional aircraft. The investigation domain of the
novel device (Figure 1) covers 5.15 m in wing span direction and the 10% of the wing local chord.
The two functionalities of the flap tab (/trailing edge) device are activated when the fowler flap is
stowed in the wing during cruise, climb and off-design flight conditions:

• Mode A: Rigid deflections of the Fowler flap tip segment (from the 90% to 100% of the local wing
chord) within the angles range [+10◦/−10◦] (downwards/upwards),

• Mode B: “Continuous” span-wise twist with a maximum differential twist-angle of 10◦ between
the tip and root sections of the flap (up to ±5◦ at the root and tip sections respectively).
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Figure 1. Multifunctional Twistable Wing TE: (a) Outboard wing TE, (/flap tab) investigation region for
the structural concept; (b) Explanation of the outboard wing TE functionalities, (upper) rigid deflection
of the Fowler flap tip segment, (lower) continuous span-wise twist along the outboard wing span.

Continuous span-wise twist is achieved by elastic torsional deformation of the flap tab via
distributed actuators. The conceived structural concept deals with issues related to real implementation
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on large aircraft and is based on a reasonable number of subcomponents integrating lightweight and
energy efficient actuation systems.

2. Aerodynamic Design of the Multifunctional Twistable Trailing-Edge

The study presented in this section had the objective to define the optimal morphed shapes to be
implemented for the wing trailing-edge (/flap tab) in order to improve the aircraft performance in
high speed (climb) conditions.

Retrofitting the segment of the AG2-NLF wing flap system (designed in cruise condition) with a
multifunctional trailing-edge (/tab), the span load distribution could be optimized aiming at improve
the global aircraft aerodynamic performance.

The 3D computations of the aerodynamic flow around the airplane configurations have been
carried out, referring to the ONERA elsA code [20]. This high fidelity CFD software solves the
RANS equations on structured multi-block grids by a cell-centred finite volume technique. Spatial
discretization uses the second order centred scheme of Jameson with 2nd and 4th order artificial
dissipation. Convergence to steady flow solution is carried out thanks to a backward Euler technique
with robust LU-SSOR implicit scheme method. The convergence is accelerated by the use of
multigrid techniques for steady flows. Different turbulence models are available in elsA and in
this work the Spalart-Allmaras turbulence model was used with the QCR modification [21]. In the
RANS computations, the ONERA elsA software has the capability to compute laminar flow regions
and to determine the transition location, by using the so-called AHD compressible criterion for
Tollmien-Schlichting instabilities [22] and the so-called C1 criterion for crossflow instabilities [23],
within the iterative convergence process.

The generation of the wing shapes with morphed elements is done through the use of a grid
deformation technique that has been used also in SARISTU project ([24]). The surface grid is firstly
deformed according to the requested shape. Then, a displacement field of the grid nodes is derived for
a volumetric transfinite deformation technic applied to the initial grid. The advantage of this method
is that the same scripts can be used for the different computations, as the topological information is
kept. The drawback is that it is based on the initial topology and some local grid inversion can be
found if deformation is too large.

Trailing-Edge Aerodynamic Performance

For the AG2-NLF regional airplane, multifunctional twistable trailing-edge could help to recover
the laminar extent by an adaptation of pressure gradient in off-design condition. Considering the CL
related to high speed climb condition, free transition computations show that laminar flow on the
upper surface starts to be lost.

Figure 2 presents the different configurations considered for the multifunctional twistable
trailing-edge: a rigid trailing-edge deflection (mode A) equal to 2.5◦ is presented in Figure 2a, while
a discretely increasing distribution of deflection angles along the span (mode B, angles 4◦/3◦/2◦) is
sketched in Figure 2b. Figure 3 compares the computed Lift over Drag ratio (L/D) evolution versus CL
in climb conditions for both the mentioned configurations. The L/D for the baseline configuration
(no morphing) is also reported in Figure 3. As expected, the efficiency of the trailing-edge morphing
concept for the AG2-NLF airplane is visible for high CL, where an increase of about 0.4 in Lift over
Drag ratio is found. More in detail, according to Figure 3, the increase of Lift-over-Drag ratio (L/D) is
up to +2% considering the CL evolution at climb condition (M∞ = 0.36 at 4372 m). This value resulted
fully compliant with the industrial expectations in terms of benefits brought by the new technology;
although marginal at aircraft level, the 2% increase of L/D was indeed considered very relevant at
fleet level in force of the very positive impacts on large scale operations.
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3. Concept Description

The concept of multifunctional twistable wing trailing-edge investigated in the present work is
based on the idea of retrofitting the tab of an outer board Fowler flap to enable new functionalities
during cruise and climb flight conditions. The investigation domain is presented in Figure 1 and the
summary of main geometric data in Table 1.

During off-design cruise flight conditions, the TE can rigidly rotate around its main hinge axis,
during the climb phase, continuous span-wise twist can be enabled as explained in Figure 1; in both
cases the goal is always to enhance the aerodynamic efficiency of the wing and get consequent fuel
savings. The multifunctional twistable trailing-edge concept is a thin-walled closed section whose
functionalities are enabled thanks to the actuation torque provided by three brushless rotary motor,
properly amplified by harmonic drive gear units and inner mechanisms. As rotary actuators are
activated, the inner mechanisms can transfer torque to the structural concept thus providing the
required performance. Upon the actuation of the active ribs, the Fowler flap tab is put in movement
thus changing the external shape of the trailing edge (Figures 1 and 4); if the shape change of each
rib is prevented by locking the actuation system, the composite flap tab is elastically stable under the
action of external aerodynamic loads. The rigid rotation of the wing TE (Figure 1b, upper) can be
obtained synchronizing the three actuators (R1, R2, R3). Conversely, “continuous” span-wise elastic
twist of the flap trailing-edge (Figure 1b, lower) can be activated by providing differential actuation
control. For example, linear span-wise tab twist can be enabled providing a clockwise rotation to the
tip actuator (R3) and an anti-clockwise rotation to the root actuator (R1) while locking the central
actuator (R2). Fast and reliable analytical and numerical methods in combination with rational design
criteria, were implemented to assess the structural layout and actuation system with reference to the
most severe load condition expected in service (limit load condition); AL2024-T5 alloy was used for
the great part of the items of the inner mechanism, while 17-4PH steel was used for the fork link of the
leverage mechanism. A glass fibre prepreg with HexPly913 from Hexcel composites was used for the
skin, “active” ribs and C-shape spars of the trailing edge.

The final structural layout (Figure 4) was analysed by means of an advanced finite element model
which finally proved:

• the capability of the actuation system to enable morphing through smooth rigid-body kinematic
of the inner mechanisms;

• the absence of any local plasticization and elastic instability at limit load condition for the items
made of aluminium and steel alloy;

• the strains for items made of GFRP to be lower than the maximum allowed strains at the limit
load (both along the fibre direction and transversally with respect to the fibres);

• the absence of any failure up to the ultimate load condition (i.e., limit loads multiplied by a
contingency factor equal to 1.5).
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Aerodynamic Design Load Condition

According to reference regulations ([25]), the structural design of any movable control surface on
a large airplane must comply with the following requirements:

I. capability to support limit loads without permanent detrimental deformation and deformation
levels not compromising safe operations (EASA CS 25.305(a));

II. capability to withstand ultimate loads without failures in structural components or
actuator systems;

III. clearance from aeroelastic instability phenomena (EASA CS 25.629).

Moreover, when flying at dive speed, the control surface must be able to be deflected by an
angle equal to one third of the maximum design deflection. This condition has been considered as
limit operative configuration for the preliminary design of the device, being, the highest dynamic
pressure occurring at the dive speed. The limit loads were evaluated by means of an in-house code
implementing a 3D Doublet Lattice Method (DLM); the adopted aerodynamic model is depicted in
Figure 5, limit resultant loads along the outer wing trailing edge (/flap tab) have been summarized in
Table 1. In the preliminary design phase, the pressure distribution was considered as uniform on flap
tab upper and lower external surfaces (Figure 6a). Particular attention was paid to the power required
to morph the structure and to the consequent actuators size and weight; in summary, the entire
preliminary design process of the system was driven by the need of simultaneously meeting different
requirements (Figure 6b) in order to come to a solution of industrial relevance.
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Table 1. Flap tab geometric data and Limit Load Condition considered for its design (loads obtained
by means of DLM).

TE Root Chord 0.222 m

TE root chord as % of local wing chord 10.57%
TE tip chord 0.167 m
TE tip chord as % of the local wing chord 7.770%
Outboard Flap Span 5.015 m
TE rigid deflection (downward) +5.00◦

TE mean geometric chord 0.236 m
Pressure coefficient (upper), Cp, UP 0.3247
Pressure coefficient (lower), Cp, LOW 0.5011
Dynamic pressure 12,005 Pa
Dynamic pressure (upper), q ∗ Cp, UP 3898 Pa
Dynamic pressure (lower), q ∗ Cp, LOW 6015 Pa
Force resultant (upper), FUP 2378 N
Force resultant (lower), FLOW 3668 N
Total Hinge moment around TE hinge axis, MB3 475.8 N·m

4. Actuation System: Design Process and Estimated Performances

The core element of an adaptive structure is the actuation system including its transmission
line. Interactions between the basic elements of this mechanized system and the external loads
provide fundamental insight into the behaviour of the overall adaptive system. Power and weight
reductions are of paramount importance to successfully integrate adaptive systems in large airplanes
for improving performances and enlarge mission profiles. In Figure 7, the flow-chart of the actuation
system design process is summarized.
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4.1. Kinematic Design of the Inner Mechanism

The design engineer must ensure that the proposed mechanism will not fail under operating
conditions. At the beginning of the design process, a tentative linkage has to be synthesized with the
principal goal to provide the kinematic performances required by morphing operations; in a second
stage, the obtained mechanism is properly investigated from the structural standpoint. The position
of all the links or elements in the mechanism has to be evaluated for each increment of input motion
and compared with the expected kinematic performance enabling the transition of the airfoil from its
baseline configuration to the target morphed one.

The tentative linkage was selected as the one that can be seen in Figure 8a: a Watt’s Six-bar plus a
Four-bar linkage. In such a way, the hollow-shaft rotary brushless motor can transfer rotation from the
crank element (link 1 in Figure 8a) to the output element (link 7 in Figure 8a).

As a first step, the lengths and positions of the links were defined as function of the input angle θ1

as the full linkage is a single degree of freedom (DOF) mechanism. Indeed, assuming trial link lengths,
unknown link angles were evaluated and each link, represented as a position vector, was completely
defined for each increment of input motion. The approach to linkage position analysis generates a
vector loop (or several loops) around the linkage as first proposed by Raven [26].

In Figure 8b, the links are represented as position vectors that form a vector loop. The lengths
of the vectors are the link lengths, which are known. The choices of vector directions and sense, as
indicated by their arrowheads, lead to this vector loop equation:

→
r1 +

→
rT0T1 −

→
r2 −

→
r3a = 0

→
r3b +

→
rT1T2 −

→
r5a −

→
r4 = 0

→
r5b +

→
r6 −

→
r7 −

→
rT2H = 0

(1)

where position vectors are defined with complex number notation
→
r i = ri·ejθi (with i = 1, . . . , 7).

Each vector loop can be expressed as Freudenstein’s equation; if we solve for the angle θ3a, output
of first vector loop equation, we have:

KI · cos θ1 − KI I · cos θ3a + KI I I = cos(θ3a − θ1) (2)

KI =
rT0T1

r3a
; KI I =

rT0T1

r4
; KI I I =

r3a
2 − r2

2 + r1
2 + rT0T1

2

2·r3a·r1
; (3)

Then, the first vector loop, expressed as Freudenstein’s Equation (2), can be simplified as:

θ3a = 2· tan−1

(
−B±

√
B2 − 4·A·C
2A

)
(4)

where link lengths and known input angle θ1 terms have been collected as constants A, B and C:

A = KI · cos θ1 + KI I + KI I I + cos θ1; B = −2 cos θ1; C = KI I I − KI I − cos θ1 + KI · cos θ1 (5)

The full inner mechanism is made up of three four-bar linkages in series, as shown in Figure 8b.
These vector loop Equation (1) can be solved in succession with the results of the first loop applied

as input to the second loop. Note that there is a constant angular relationship between vectors r3a and
r3b within ternary link 3. The solution for the four-bar linkage (4) is simply applied twice in the Watt’s
Six-bar case:

θ3a = f (r1, r2, r3a, rT0T1, θ1)

θ5a = g(r3b, r4, r5a, rT1T2, θ3a)
(6)
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and one more time for the last four-bar linkage in Figure 6a:

θ7 = f (r5b, r6, r7, rT2H , θ5a) (7)
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The independent variable is θ1 which will be controlled with the brushless motor. In such a way,
each angle link was expressed as function of the crank angle θ1 (Figure 9a), once the link lengths
were defined within the minimum available design space of the tip trailing-edge section (Figure 9b).
When the hollow-shaft brushless rotary motor is activated, the input rotation is transferred to the
crank element (link 1). Leverage’s output element (link 7) must provide adequate control action
during trailing-edge evolution from baseline position to the target shape. As shown in Figure 9a,
the final output angle curve θ7(θ1) was able to fulfill performance angle requirements within the range
[+10◦/−10◦] with the following additional criteria observed to assure effective trailing-edge transition
during morphing operations:

dθ7

dθ1
6= 0 ∀ θ7(θ1) ∈ [+10◦;−10◦], (8)

When condition (8) is verified, inversion points (i.e., toggle positions of the linkage) are avoided
and smoothness transition from the baseline position to the target shape (and vice versa) can occur.
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4.2. Inner Mechanism Mechanical Advantage

Modern adaptive systems, designed for large demonstrators, are commonly based on the seamless
integration of actuators, mechanisms and structures with the purpose of reshaping the external surface
on demand. The reduction of power required to morph the structure and of the actuation system
weight are of paramount importance to successfully integrate adaptive systems in large airplanes.

For this reason, an energy-efficient approach must be adopted since the preliminary design phase
of the actuation system. Parameters capable to express interactions between the basic elements of this
mechanized system and the external loads have to be defined to provide insight into the behaviour
of the overall adaptive architecture. The mechanical advantage of a mechanism could be defined as
the ratio between the output and the input torque [27]. In order to cut down the capacities of electro-
mechanical actuators, the mechanical advantage of the inner mechanism within the TE angle working
range should be as high as possible. For the inner mechanism (IM) in Figure 9b, the main output is
the moment transferred around the trailing-edge hinge axis (MOUT) and the input refers to the torque
applied to the crank (MIN).

Assuming that the friction and inertia are neglectable, according to the principle of the virtual
works, the following relationship can be found for the inner mechanism:

PIN = MIN ·ωIN = MOUT ·ωOUT = POUT (9)

where ωIN is the crank angular speed and ωOUT is the angular speed around the trailing-edge hinge
axis. According to the definition of instant center of rotation, at a given instant of time, a linkage
mechanism undergoing planar movement has a point showing the same speed for both the input and
output parts, thus the following relationship can be defined:

ωIN·IC12 − IC2B3 = ωOUT·IC1B3 − IC2B3 (10)

where IC12 is the instant centre between frame and input part (crank), IC1B3 is the instant centre
between frame and output part, IC2B3 is the instant centre between input part and output part;
IC12 − IC2B3 is the distance of instant centers IC12 and IC2B3, IC1B3 − IC2B3 is the distance of instant
centres IC1B3 and IC2B3.

Let’s now recall the Aronhold-Kennedy’s theorem which deals with the three instant centres
between three links of a system of rigid members [28]:

Aronhold-Kennedy’s Theorem: The three instantaneous centres of three bodies moving relative to one
another must lie along a straight line.

By returning to the inner mechanism obtained at the end of the kinematic design process
(Figure 9b) and applying this theorem, we can further simplify Equation (10) as follows:

ωIN

ω6
· IC26 − IC12

IC26 − IC16
=

ωIN

ωOUT
· IC6B3 − IC1B3

IC6B3 − IC16
(11)

where IC6B3 is a first order instant centre and IC26 is a second order instant center.
Therefore, the mechanical advantage of the inner mechanism can be defined as a function of

particular first order and second order Instant Centres (ICs) of the linkage:

M.A. =
MOUT
MIN

=
ωIN

ωOUT
=

IC26 − IC16

IC26 − IC12
· IC6B3 − IC1B3

IC6B3 − IC16
(12)

where IC12, IC16 and IC1B3 are the primary instant centers which respectively coincide with leverage’s
fixed hinges (1, 2), (1, 6) and (1, B3). Construction of required instant centers for the inner mechanism,
as shown in Figure 10a, is based on the intersection of proper Aronhold-Kennedy (AK) lines. All
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required ICs for the estimation of the mechanical advantage are summarized in the IC matrix of the
linkage (Figure 10b).
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of AK lines; (b) IC matrix of the linkage: main hinges (labelled in green), first order ICs (labelled in
blue), second order IC (labelled in orange) and required ICs for MA estimation (marked in red).

If the main hinges (labelled in green in Figure 10a) of the inner mechanism are defined as the
output of the kinematic design process, in the first iteration the first order ICs (labelled in blue in
Figure 10b) were evaluated by intersection of the respective Aronhold-Kennedy lines. In the second
iteration, the second order ICs (2, 6) was finally evaluated and the mechanical advantage, for this
specific linkage position, was obtained.

When the crank is activated, the rib rotates from the baseline position to the maximum downward
(upward) deflection equal to +10◦ (−10◦). During the transition from the baseline position to the target
shape, for each intermediate linkage position, all required instant centres were estimated to completely
obtain the mechanical advantage curve as function of the input crank rotation.

In Figure 11a, the evolution of each instant centre position is reported. The mechanical advantage
for the working output angle range [+10◦; −10◦] is within the range [5.18; 8.97] (Figure 11b).
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4.3. Structural Assessment of the Inner Mechanism

To enable the transition of the Multifunctional Twistable trailing-edge concept from the reference
(baseline) shape to the target ones (Mode A and B), three “active ribs” were defined along the span-wise
direction: root, central and tip sections.

Each active rib has the same inner mechanism, which was synthesized to be placed within
the minimum design space available in the rib block 2 (B2) of the Fowler flap. Indeed, each single
degree-of-freedom (DOF) leverage is activated by a single brushless rotary motor. Therefore, the rigid
rotation of the Fowler flap tab (Mode A) can be obtained by synchronizing the three actuators. On the
other hand, “continuous” span-wise trailing edge twist (Mode B) can be activated providing different
control actions. For example, linear span-wise flap tab twist can be enabled providing clockwise
rotation to the tip actuator and anti- clockwise rotation to the root actuator.

For this reason, the geometric parameters of the leverage were synthesized in order to obtain
almost linear relationship without oscillations between the crank angle and the TE angle (Figure 9a),
as well as a high mechanical advantage. If the first loop design was mainly driven by kinematic
performance according to the minimum available room within the Fowler flap structure, the second
loop was mainly driven by the structural sizing of the links and by the mechanical arrangement
definition in compliance with limit aerodynamic loads. As the actuation system was the core of the
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adaptive structure, reliable and accurate finite-element model were defined to simulate its kinematics,
verify the preliminary design tool based on instant centres (ICs) as well as to prove its structural
integrity upon limit loads. A three-dimensional finite-element model was generated; it consisted
of six-faced solid elements (CHEXA [29]) for the links of the inner mechanisms and trailing edge
hinge fitting and beam elements (CBEAM [29]) coupled to rigid body elements (RBE2 [29]) for the
cylindrical hinges and related pins. For structural analysis purpose, the implicit nonlinear solver
of MSC-NASTRAN® (SOL 400) was used to account for nonlinear effects and large displacements
(rotations). The capability of the actuation system to enable morphing through smooth rigid-body
kinematic of the inner mechanism was verified by applying enforced displacements (SPCD [29]) to
the crank and resistant torque (equal to 160 N·m) along the hinge axis of the actuator hinge fitting.
The magnitude of the enforced rotation was defined on the base of a preliminary iterative analysis
finalized to get a specific rotation angle of the trailing edge. A crank rotation (θ1) equal to −35.3◦ was
found to be required to obtain a trailing-edge rotation (θ7) equal to +5◦.

Von Mises stress distribution (Figure 12b) over the actuation mechanism confirms the absence of
any local plasticization at limit load condition: maximum peak stress is equal to 484 MPa and located
in the “fork” link made of 17-4PH steel which in turn has a Yield Strength higher than 700 MPa. All
the other leverage’s items made of aluminium, show lower stress than the Yield Strength of Al2024-T5
alloy. Finally, the actuation torque required to hold the leverage in the final position resulted equal to
23.25 N·m: the mechanical advantage resulted equal to 6.88 in accordance with the outcomes of the
instant centre tool used in the preliminary design stage.
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4.4. Definition of the Mechanical Arrangement

The aeronautical needs for compactness and lightness guided the choice of the mechanical
components necessary for the actuation system design. The mechanical system, shown as exploded
view in Figure 13b, consists of a crank, two ternary links and three binary links. The items are connected
by cylindrical hinges. The crank and the ternary links are doubly supported on the rib block 2 (B2)
plates. In such a way, out-of- plane rotations of the actuation system are strongly reduced and the
actuator moment is effectively transferred along the tab hinge axis. Commercial Off-the-Shelf (COTS)
actuators and gearbox were considered for the finalized design.
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The Harmonic-drive® strain wave gear unit was selected because of its high-power density (gear
ratio equal to 120, for CPL-17A [30]), overall dimensions and repeatability. In such a way, the torque
provided by a brushless rotary motor can be amplified and transferred by the gear unit to the inner
mechanism. Each rotary actuator (R1, R2 and R3) is connected to a segmented shaft which can transfer
the torque to the harmonic drive gear unit of each rib. Each gear is properly joined to the rib block
plate and it can transfer the torque to the crank of each inner mechanism (Figure 13c). Each crank is
doubly supported by the rib plates and ball bearings were used to reduce friction between moving
parts during operations.



Aerospace 2018, 5, 122 16 of 23

5. Multifunctional Twistable Trailing-Edge

The Multifunctional Twistable TE concept is based on a thin-walled closed section beam layout
(Figure 14). Three rotary actuators (placed in root, central and tip regions) transfer the torque to three
independent actuation systems consisting of harmonic drive gear unit with a six-bar linkage.
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Control action of the TE shape can be provided by means of active ribs connected to the actuation
systems with fitting and bonded to the skin. Two “c-shape” spars are bonded to the skin and connected
to the Fowler flap by means of hinge fittings.

The energy required to the actuation systems to twist the trailing edge is strictly related to the
geometric layout and material data. The twist of a homogeneous closed thin-walled section beam
loaded by a torque Mt and that is free to warp can be evaluated according to the Bredt equation [31]:

ψ =
dϑ

dx
=

Mt

4Am2

∮ ds
Gt

=
Mt

GJt
(13)

where Am is the area enclosed by the mid-line of the profile’s wall and ϑ is the twist angle about the
X-axis, normal to the beam section. For a homogeneous cross section, the twist in case of restrained
warping can be expressed by the following differential equation [32],

ECω
d3ϑ

dx3 − GJt
dϑ

dx
+ Mt = 0 (14)

where Jt = Mt/Gψ is the torsional constant of the cross section and Cω is the sectorial moment of
inertia of the cross section, expressed as follows:

Cω =
∫ s

0
ω2 t ds (15)

where ω is the sectorial area and t is the section thickness.
In case of tip section free to twist but warping-constrained and central section fixed (no twist nor

warp), the solution of Equation (14) is given by:

ϑ =
Mt

ECω β3 [sinhβx + β(l − x)− tanh
βl
2
(1 + cosh βx)] (16)

The twist angle will be maximum at x = 0 (tab tip section),

ϑmax =
Mt

ECω β3 (βl − 2tanh
βl
2
) (17)
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where the parameter β = (GJt/ECω)
1/2 is the ratio between the Saint-Venant torsion rigidity GJt and

the warping rigidity ECω which in turn depends only on the cross-section geometry.
The parameter χ can be defined to give indication to whether the Saint-Venant torsion or warping

torsion predominates [33],

χ2 =
l2 GJt

ECω
= l2 β2 (18)

For small values of χ, only warping torsion needs to be considered, however there will be a certain
region for χ where neither Saint-Venant torsion nor warping torsion may be neglected and thus the
structural system must be analysed for mixed torsion. If the numerator in the expression for χ2 is large
as compared to the denominator, one may expect that Saint-Venant torsion is predominant. Indeed,
the twist angle distribution will be described by the following equation:

ϑSV =
Mt x
GJt

(19)

and for x = l, the maximum Saint-Venant twist angle will be:

ϑSV, max =
Mt l
GJt

(20)

In the above equations, the elastic moduli are related to the generic section (Figure 15) and can be
obtained as integration along the section profile contour:

E =

∫ s
0 E ds∫ s

0 ds
(21)

G =

∫ s
0 G ds∫ s

0 ds
(22)

where s is a coordinate following the profile’s contour.
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The actuation torque to be provided by the actuation system can be preliminary estimated with
Equation (17) assuming the properties of the outer tab mean geometric section, summarized in Table 2.

Table 2. Data of the Outer Trailing-edge mean geometric section.

Chord 190.8 mm

Area 542.7 mm2

Shear Centre (from Centroid), SCy −1.995 mm
Shear Centre (from Centroid), SCz 0.904 mm

Torsional Constant, Jt 2.918 × 105 mm4

Warping Constant, Cω 7.567 × 107 mm6

Characteristic Length (Torsional-Bending length) 31.18 mm
Torsion Parameter, χ 6428
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5.1. Assessment of the Structural Layout

The analytical model represented an effective tool to estimate main figure-of-merit and parameters
during the preliminary design phase. To verify the mechanical behaviour of the multifunctional
twistable trailing-edge in operative conditions, finite element (FE) simulations were instead taken
in account.

A glass fibre prepreg with HexPly913 from Hexcel composites [34] was chosen as material for the
upper and lower skins, the active ribs and the “C-shape” spars. This material is widely used for the
manufacturing of rotor blades. Indeed, the material assures good compromise between robustness
and capabilities to accommodate the large strains arising while twisting the trailing-edge.

A 3D finite-elements model was generated by using quadrilateral plane elements (CQUAD4 [29])
for the skin, C-shape spars and active ribs, while six-faced solid elements (CHEXA [29]) for the foam,
actuators and hinge fittings. The numerical simulations were performed using the linear static solver of
MSC-Nastran® [29]. A preliminary analysis was performed on the composite tab without aerodynamic
loads to assess the maximum twisting torque required by the actuation system to implement Mode B
as well as the structural strength of the twisted skin. The central “active” rib was constrained in all
degrees of freedom; enforced rotations (SPCD [29]) were applied at the tip active rib (+5 degrees, “+”
standing for downward) and at the root active rib (−5 degrees, “−“ standing for upward). As shown
in Figure 16b, a maximum strain of about 1.34% is reached near the cut-out of the central section. For
the most part of the remaining structure the strain is lower than 0.8%. According to [35], the maximum
allowed strain to 2.5% along fibres direction is equal and to 0.5% along the direction perpendicular to
the fibres. The torque required to enable linear twist is equal to 64.05 N·m for the tip actuation system
and 103.6 N·m for the root one.
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A second analysis was performed to prove the structural integrity of the composite structure
upon the limit load condition (depicted in Figure 17) pertaining to Mode A (TE rigid rotation equal to
+5 degrees downward). In such a case, all actuation systems must withstand the total aerodynamic
hinge-moment pertaining to the limit load of Table 2.
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As shown in Figure 17, a maximum strain of about 1.42% is reached near the central section.
The maximum displacement is equal to 7.39 mm at the midpoint of the inboard tab region. In the
remaining part of the structure, the overall displacement is below 3 mm which demonstrates sufficient
stiffness of the system; in compliance with regulations (EASA CS 25.305(a)) the deformation levels do
not interfere with the safe operation at limit load condition.

5.2. Estimation of Trailing-Edge Performance in Operative Conditions

According to airworthiness requirements [25], aircraft structures must withstand the limit load
conditions in order to prove its structural integrity across the overall flight envelope.

However, during the regular airplane flight mission profile, load-bearing aircraft structures have
to withstand aerodynamic loads lower than the ones prescribed in the limit condition.

In such cases, the multifunctional twistable trailing-edge used on the AG2-NLF wing is expected to
be activated in high speed climb flight conditions. To enable the transition from baseline configuration
to the rigid trailing-edge deflection (mode A) equal to 2.5◦, all rotary brushless motors have to be
activated (R1, R2 and R3) transferring to their respective “active” ribs the same angle. In this case, the
actuating torques required to enable this transition are reported in Figure 18.
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Continuous span-wise increase in deflection angles (mode B) from tip to root can be enabled whit
three independent actuation systems transferring angles equal to (4◦/3◦/2◦) to their respective “active”
ribs. Considering the aerodynamic load pertaining to the climb condition (M∞ = 0.36 at 4572 m) with
TE morphing in Mode B (4◦/3◦/2◦), the structural layout shows the maximum strain equal to 0.28 per
cent and the required actuating torques (per each active rib) are summarized in Figure 19.
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tip to root section (+4◦/+3◦/+2◦): (a) Displacement (mm); (b) Strain distribution, Max Principal
[MicroStrain].

During morphing TE operations, each actuation system can provide the respective active rib with
an output torque equal to

MOUT = Mt·(M.A.)·FHD·ηHD·ηIM (23)

where Mt is the torque provided by each rotary hollow-shaft brushless motor, FHD is the gear ratio
of the Harmonic Drive (CPL 17-2A) [30], ηHD is the efficiency of the Harmonic Drive and ηIM the
efficiency of the inner mechanism. The output torque at each active rib can be expressed as a function
of the crank position (Figure 20).
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6. Conclusions

The use of a morphing system using a multifunctional twistable trailing-edge has been evaluated
with reference to the NLF wing of the CLeanSky2 regional aircraft. For such subsonic aircraft,
performance improvements can be expected only by recovering the loss of laminar flow that occurs at
low (on the lower surface) or high (on the upper surface) CL values.

As concerns the wing trailing-edge, the structural and kinematic design process of the actuation
system were completely addressed: three rotary brushless motors (placed in root, central and tip
sections) were required to activate the inner mechanisms enabling different trailing-edge morphing
modes. The structural layout of the thin-walled closed-section composite trailing-edge represents a
promising concept to balance the conflicting requirements between load-carrying capability and shape
adaptivity. Actuation system performances and aeroelastic deformations, considering both operative
aerodynamic and limit load conditions, prove the potential of the proposed structural concept to be
energy efficient and lightweight for real aircraft implementation.

Final weight of the multi-functional twistable trailing-edge is summarized in Table 3. Overall
system implications have to be made with reference to the weight of a conventional outboard flap tab
used for regional aircraft (Table 4).

Retrofitting a regional aircraft with such device, a 3.52% weight increase of the outboard flap tip
segment will be produced. At aircraft level, the Max Zero Fuel Weight (MZFW) will increase of 0.012%
only. Finally, the mechanical power required to enable load control (LC) functionalities can be proved
to be extremely affordable. Assuming the maximum resisting torque (on crank link) equal to 23.35 N·m
and a crank speed rotation of 20 deg/s, the total mechanical power will be equal to 24.34 Watt for
elastic twist mode (4◦/3◦/2◦).

Table 3. Multifunctional twistable wing trailing-edge: weight breakdown.

Skeleton (Kg)

Skin 4.582
C-Spars 1.381

Active ribs 0.371
Foam 1.506

Hinge fittings 0.103
Actuator fittings 0.115

Total weight 8.058

Actuation system (Kg)

Inner mechanisms, joints, bearings 3.13
Brushless motors, gear-boxes, shafts 6.45

Total weight 9.58
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Table 4. Regional Turbo-Prop aircraft (90 passengers).

Maximum Take-Off Weight (MTOW) 33,200

Maximum Zero Fuel Weight (MZFW) 31,200
Operative Empty Weight (OEW) 19,360

Outboard Fowler Flap (conventional) 104.65
Flap tip segment (all-metallic) 13.95

Multifunctional twistable wing trailing-edge (Kg)

Structural skeleton (composites materials) 8.06
Actuation system 9.58

Total weight 17.64
Outboard Fowler flap weight increase 3.688
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