
aerospace

Article

Comparative Study of Aircraft Boarding Strategies
Using Cellular Discrete Event Simulation

Shafagh Jafer * and Wei Mi *

Department of Electrical, Computer, Software and Systems Engineering, Embry-Riddle Aeronautical University,
Daytona Beach, FL 32114, USA
* Correspondence: jafers@erau.edu (S.J.); miw@my.erau.edu (W.M.);

Tel.: +1-386-226-4919 (S.J.); +1-386-226-4919 (W.M.)

Received: 6 November 2017; Accepted: 25 November 2017; Published: 28 November 2017

Abstract: Time is crucial in the airlines industry. Among all factors contributing to an aircraft
turnaround time; passenger boarding delays is the most challenging one. Airlines do not have
control over the behavior of passengers; thus, focusing their effort on reducing passenger
boarding time through implementing efficient boarding strategies. In this work, we attempt to
use cellular Discrete-Event System Specification (Cell-DEVS) modeling and simulation to provide a
comprehensive evaluation of aircraft boarding strategies. We have developed a simulation benchmark
consisting of eight boarding strategies including Back-to-Front; Window Middle Aisle; Random;
Zone Rotate; Reverse Pyramid; Optimal; Optimal Practical; and Efficient. Our simulation models are
scalable and adaptive; providing a powerful analysis apparatus for investigating any existing or yet
to be discovered boarding strategy. We explain the details of our models and present the results both
visually and numerically to evaluate the eight implemented boarding strategies. We also compare our
results with other studies that have used different modeling techniques; reporting nearly identical
performance results. The simulations revealed that Window Middle Aisle provides the least boarding
delay; with a small fraction of time difference compared to the optimal strategy. The results of this
work could highly benefit the commercial airlines industry by optimizing and reducing passenger
boarding delays.

Keywords: aircraft boarding; discrete-event; Cell-DEVS; enplane; passenger delay

1. Introduction

Airlines generate revenue by utilizing and flying airplanes. One of the factors for reducing airlines
cost is the quick turnaround of their airplanes. A turnaround time is used to measure the efficiency
of an airline’s operation in a traditional metric. Usually turnaround time is measured by the time
between an airplane’s arrival and its departure [1]. Some factors that influence the turnaround time
include passenger deplaning, baggage unloading, fueling, cargo, airplane maintenance, cargo loading,
baggage loading and passenger boarding. The most difficult factor to control is passenger boarding
time since airlines have little control over passengers. Therefore, airlines have to be cautious in making
changes to reduce boarding time [2]. Many researchers have proposed and investigated different
boarding strategies aiming at reducing the boarding time even by a couple of minutes [2–8]. Among
the existing boarding strategies, the following are the most well-known techniques: Back-to-Front,
Random Strategy, Outside-in (or Window Middle Aisle), Rotating zone, Reverse Pyramid, Optimal,
Practical Optimal and Efficient Strategy.

Aiming at evaluating the efficiency of various existing and new boarding strategies, we have
implemented a discrete-event simulation benchmark based on the Discrete-Event System Specification
(DEVS [9] and Cell-DEVS [10]) formalism. Our benchmark consists of DEVS-based models that are
perfectly suitable for executing various simulations on any type of aircraft. Our simulation results

Aerospace 2017, 4, 57; doi:10.3390/aerospace4040057 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://dx.doi.org/10.3390/aerospace4040057
http://www.mdpi.com/journal/aerospace

Aerospace 2017, 4, 57 2 of 22

are visually presented as 2-D animations, making it easily understandable by non-experts. In a prior
work, we have reported simulation results for three of the above mentioned boarding strategies:
Back-to-Front, Window Middle Aisle and Reverse Pyramid [11]. Here we present our extended effort,
documenting our modeling and simulation findings for all eight boarding strategies. We compare our
simulation results to the optimal strategy to present the degree of efficiency for the given strategies.

This work attempts to present the power of DEVS and Cell-DEVS in analyzing and investigating
aviation-related challenges. We demonstrate how flexible, adaptive and precise Cell-DEVS is in
simulating passenger behavior. This paper is organized as follows: Section 2 provides a brief
background about various boarding strategies and highlights some of the related works, then
introduces Cell-DEVS formalism. Section 4 discusses the high-level and low-level design. The DEVS
and Cell-DEVS implementation details are introduced in Section 5. Section 6 provides the simulation
results and analysis. The concluding remarks are given in Section 7.

2. Background

Aiming at reducing boarding times, the airline industry has tried various enplaning methods.
Below we summarize the commonly used strategies.

Back-to-Front: This boarding plan is known as the “traditional” boarding method. Passengers are
boarded to from the back row of the aircraft and continue with the rows up to the front. Aircraft rows
are divided into zones. The zones can be any number reaching from two to the total number of actual
rows. This strategy is easy to implement, however, it is easily prone to inefficiency, as congestions
occur over the boarding rows [1].

Random Strategy: This boarding plan is when passengers are not assigned to specific seats
but line up at the gate counter and are admitted in the order they arrive. Travelers can choose any
unoccupied seat as soon as they are onboard. Passenger will start to rush into the plane to get a better
seat. This makes the boarding process faster; however, this reduces passengers’ comfort level [4].

Outside- In Method: This method is also called “Window Middle Aisle.” Passengers who
are assigned to window seats will board first. When it is finished, middle and aisle seats follow.
This method has so far revealed very efficient boarding time. It potentially reduces passenger
interference caused by loading luggage and completely reduces passengers interfering with each
other as they walk down the rows. This method is relatively easy to implement [8].

Rotating Zone: In this method, aircraft rows are divided into zones (each zone grouping a number
of rows). This method starts with the last zone in the back to be seated, then continues with the first
zone in the front. After this, the order continues again with the furthest yet unoccupied zone in the
back, then the front one and so on. The advantage of this method is that passengers who are boarding
at the back and at the front will not interfere with each other [8,12].

Reverse Pyramid: This method is to board passengers from the outer back to the inner front
of cabin. This method is in fact a combination of Back-to-Front and Window to Aisle. It calls for
simultaneously loading an aircraft from back to front and outside in. Window and middle passengers
near the back of the plane board first; those with aisle seats near the front are called last. This strategy
is proven to be an efficient method by American West Airlines [2].

Optimal Method: This method is to make passengers board in order from Back-to-Front but in
every other row. This method aims at reducing the interference among passengers from back and the
front and giving passengers enough space to load their luggage, which reduces the luggage delay in
return. However, this method is not practical based on South West Airline experience. It is a challenge
to arrange all the passengers in the proper order [7].

Practical Optimal Method: This technique defines four boarding groups. First group is all
passengers in even rows in one side of the airplane. The second group is all passengers in even rows in
another side of the airplane. The third and fourth group is the passengers in odd rows in each side of
the airplane. This method is not as efficient as the optimal method but it is practical and it proved to
be a successful boarding method [7].

Aerospace 2017, 4, 57 3 of 22

A number of studies have been conducted previously by implementing various boarding
strategies using different simulation techniques including: Linear Programming [8], Discrete-Event
simulation [2] and even Cellular Automata [6]. A comprehensive literature survey about passenger
boarding simulation techniques was reported in Reference [13] while a newer more extensive
comparative study [14] was published in 2014 taking into account past, current and future research in
this area. The study analyzes a number of research conducted on traditional (e.g., random, back-to-front
and outside-in) and newer boarding strategies (e.g., eliminating carry-on luggage, using two doors),
where authors summarized that, based on the studies found, simple strategies such as random boarding
generally outperforms the commonly used back-to-front method.

New research has been reported recently that takes into account other factors such as changing
aircraft layout at the infrastructure level and seat interference [15]. Most related effort to our work can
be found in References [16–19]. In Reference [12], a grid based simulation model was used based on
the asymmetric simple exclusion process (ASEP) where simulation is carried as a stochastic forward
directed, one dimensional and discrete time and space process. The work focused on analyzing
boarding time from three perspectives: seat load factors, passenger acceptance of chosen boarding
order and arrival rates. The simulation results also showed that the use of rear door enhances boarding
efficiency by 25%.

In this work, we have implemented precise and aircraft-independent boarding strategies and
provide a comparison of their efficiency. Our simulation is based on the Discrete-Event System
Specification DEVS and Cell-DEVS theory. Unlike Cellular Automata (CA), Cell-DEVS does not
require updating the entire cellular grid at every time step. Rather, only cells with updated neighbor
values are evaluated. This improvement overcomes the issue of the original CA by reducing the overall
execution cost, leading to faster computations. We show that precise simulations results, comparable
to those produced by complex mathematical modeling techniques (like those reported in Reference [8]
using linear programming), can be obtained from the collective behavior of discrete-event cellular
grids. A number of research work has used cell-driven simulation (self-defined cellular simulation
environment) where they implement a simplified CA-based simulation to analyze boarding methods.
The work in Reference [3] for instance, augments the simulation study conducted in Reference [5] by
implementing a simple cell-based simulation environment to mimic passenger’s interactions while
boarding. Similarly, Steffen et al. [7] combine cell-divided simulation concept with Markov Chain
Monte Carlo optimization algorithm and propose their own optimal boarding strategy for their specific
simulation setting (boarding by seat). More recently, the researcher in Reference [20] improvised their
previous cell-based simulations [12] by studying use of an additional door for the boarding process,
a change of the boarding strategy and the potential application of different seat layouts. Field trials
were also carried out to evaluate the simulation results. Even though the above studies attempt to
include cell-based simulations, they do not make use of CA computational apparatus and instead
only divide their simulated environment into cells for handling interactions and capturing simulation
progression. In our study however, we systematically make use of the robust Cell-DEVS theory to
design and computer simulation scenarios.

The Cell-DEVS cell space is composed of very simple cells that make local decisions solely based
on the information gathered from their immediate neighbors. To implement our DEVS and Cell-DEVS
models we used CD++ [21] development toolkit. CD++ is an open-source object-oriented modeling
and simulation environment that implements both DEVS and Cell-DEVS theories in C++. The tool
provides a specification language that defines the model’s coupling, the initial values, the external
events and the local transition rules for Cell-DEVS models. CD++ also includes an interpreter for
Cell-DEVS models. The language is based on the formal specifications of Cell-DEVS. The model
specification includes the definition of the size and dimension of the cell space, the shape of the
neighborhood and the border.

Aerospace 2017, 4, 57 4 of 22

Cellular Discrete Event Approach

The selected modeling and simulation methodology for this work is the Cellular Discrete-Event
System Specification (Cell-DEVS) formalism [10]. A model defined by Cell-DEVS is a cellular grid
where each cell represents an independent agent. Agents communicate and interact with each other
throughout the simulation by sending/receiving messages. The behavior of each agent is expressed
using a state-machine. Agents can be stationary or mobile meaning they can change their position
within the grid. Each cell defines a surrounding neighborhood that affects its state value. Whenever a
computation is performed and the cell’s value is modified, all its neighboring cells get an update to
re-evaluate their states accordingly. A cell’s value changes as a result of a simple local computation
based on the current state of the cell and its immediate neighbors as dictated by the Cell-DEVS
specification. Each cell can choose to have as many direct or indirect neighbors.

A Cell-DEVS model is defined by:

TDC = <X, Y, I, S, θ, N, d, δint, δext, τ, λ, D>,

where X is a set of external input events; Y is a set of external output events; I represents the model’s
modular interface; S is the set of sequential states for the cell; θ is the cell state definition; N is the set
of states for the input events; d is the delay for the cell; δint is the internal transition function; δext is
the external transition function; τ is the local computation function; λ is the output function; and D
is the state’s duration function. The modular interface (I) represents the input/output ports of the
cell and their connection to the neighbor cell. Communications among cells are performed through
these ports. The values inserted through input ports are used to compute the future state of the cell
by evaluating the local computation function τ. Once τ is computed, if the result is different from the
current cell’s state, this new state value must be sent out to all neighboring cells informing the state
change. Otherwise, the cell remains in its current state and therefore no output will be propagated to
other cells. This will happen when the time given by the delay function expires. Finally, the internal,
external transition functions and output functions (λ) define this behavior. Cell-DEVS improves
execution performance of cellular models by using a discrete-event approach. It also enhances the
cell’s timing definition by making it more expressive.

CD++ [21] is an open-source object-oriented modeling and simulation environment that
implements Cell-DEVS theories in C++. The tool provides a specification language that defines
the model’s coupling, the initial values, the external events and the local transition rules for Cell-DEVS
models. CD++ also includes an interpreter for Cell-DEVS models. The language is based on the formal
specifications of Cell-DEVS. The model specification includes the definition of the size and dimension
of the cell space, the shape of the neighborhood and the border. The cell’s local computing function is
defined using a set of rules with the form postcondition delay {precondition}. These indicate that when
the precondition is met, the state of the cell changes to the designated postcondition after the duration
specified by delay. If the precondition is not met, then the next rule is evaluated until a rule is satisfied
or there are no more rules. CD++ also provides a visualization tool, called CD++ Modeler, which
takes the result of the Cell-DEVS simulation as input and generates a 2-D representation of the cell
space evolution over the simulation time. This feature of the tool provides an interactive environment
allowing for visual tracking of the mode’s evolution.

3. Modeling Assumptions

In order to implement the eight boarding strategies introduced in the previous section, common
parameters and assumptions were considered. Based on the study in Reference [22], we define ranges
for four different parameters as given in Table 1. These parameters define:

• Walking Speed: the speed range at which passenger walks from the moment he/she enters the
aircraft till reaching the target seat (unit: meter per second).

Aerospace 2017, 4, 57 5 of 22

• Clearing Time: the time range passengers spend on storing their luggage in the overhead
compartment or underneath the seat in the front (unit: seconds).

• Getting out of Seat: the time range a passenger takes to get up from their seat, allowing other
passengers to sit within that row (unit: seconds).

• Passenger Flow Rate: the range number of passengers that enter the aircraft at a certain amount
of time (unit: passenger per second).

Table 1. Basic parameters ranges [22].

Parameter Range Unit

Walking Speed 0.27–0.44 [m/s]
Clearing Time 6–30 [s]

Getting out of seat 3–4.2 [s]
Passenger flow rate 0.2–1 [pax/s]

All of these parameters are given in the form of a range from min_value to max_value. We have
mapped these ranges to our Cell-DEVS model to precisely implement a near-reality model of passenger
boarding strategies. Details of these mappings are given in the next section when the model’s rules
are explained. Recent studies were conducted to validate some of these parameters. Compared to the
assumptions reported in Table 1, the field trails in References [23,24] reported passenger flow rate of
0.48–3.17 pax/s and average baggage storage of 13.9 s for similar aircraft used in our study. Other
strategy-specific data were also reported that require further extension of our work to allow for a
comparative study.

There are two basic elements that interfere with the boarding process: aisle interference and seat
interference [22]. Aisle interference is introduced when a passenger is blocked by another passenger
in the aisle, while seat interference is when a passenger tries to get to a seat near the window but
is blocked by another passenger already seated near the aisle. Given these two interferences, three
types of delays are recognized: walking delay, luggage delay and variable seated passenger delay.
In Table 2, based on the range values presented on Table 1, we defined fixed delay values for the
following parameters:

• Walking Delay: the average time it takes a passenger to pass a row (unit: milliseconds).
• Luggage Delay: the average time spent by individual passengers to store their luggage in the

overhead compartment (unit: milliseconds).
• Middle Seat Delay: the delay time a window passenger should wait at the row until middle/aisle

passengers who are already seated within that row get up (unit milliseconds).
• Aisle Seat Delay: the delay time a window or middle passenger should wait at the row until aisle

passenger who is already seated within that row gets up (unit milliseconds).

Table 2. Various delay values [22].

Parameter Time Unit

Walking delay 2270 ms
Luggage Delay 18,000 ms

Two passengers get out of seats 4200 ms
Middle passenger gets out of seat 3600 ms
Aisle passenger gets out of seat 3000 ms

The models we present in this article do not consider passengers who travel in groups
(e.g., families with children), as this would affect the seating strategy, since they need to be boarded at
the same time. We are anticipating that extra delays might be introduced under such situations.

Aerospace 2017, 4, 57 6 of 22

4. System Design

Our aircraft model defines an Airbus 320 internal space layout with two different seating areas
(first and economy classes) giving a total of 26 rows and 150 seats, a single middle aisle and an entrance
door as given in Figure 1.

Aerospace 2017, 4, 57 6 of 22

The models we present in this article do not consider passengers who travel in groups (e.g.,
families with children), as this would affect the seating strategy, since they need to be boarded at the
same time. We are anticipating that extra delays might be introduced under such situations.

4. System Design

Our aircraft model defines an Airbus 320 internal space layout with two different seating areas
(first and economy classes) giving a total of 26 rows and 150 seats, a single middle aisle and an
entrance door as given in Figure 1.

Figure 1. System overview.

To model the proposed system using DEVS, we define a DEVS coupled model composed of an
atomic DEVS component and a coupled Cell-DEVS grid as illustrated in Figure 2. Our DEVS
component “Passenger Generator” is in charge of generating passengers with specific seat numbers
and injecting them into the Aircraft cellular model.

Figure 2. Discrete-Event System (DEVS) conceptual model of the system.

The two subsystems (Passenger Generator and Aircraft) are interconnected through
input/output ports defined in the Top coupled DEVS specification. The atomic Passenger Generator
component is defined as represented in Figure 3:

Figure 3. Passenger generator DEVS specification.

This internal behavior of the component is translated from its state diagram illustrated in
Figure 4. Basically, the Passenger Generator is always in waiting mode. Whenever the cellular

Figure 1. System overview.

To model the proposed system using DEVS, we define a DEVS coupled model composed of
an atomic DEVS component and a coupled Cell-DEVS grid as illustrated in Figure 2. Our DEVS
component “Passenger Generator” is in charge of generating passengers with specific seat numbers
and injecting them into the Aircraft cellular model.

Aerospace 2017, 4, 57 6 of 22

The models we present in this article do not consider passengers who travel in groups (e.g.,
families with children), as this would affect the seating strategy, since they need to be boarded at the
same time. We are anticipating that extra delays might be introduced under such situations.

4. System Design

Our aircraft model defines an Airbus 320 internal space layout with two different seating areas
(first and economy classes) giving a total of 26 rows and 150 seats, a single middle aisle and an
entrance door as given in Figure 1.

Figure 1. System overview.

To model the proposed system using DEVS, we define a DEVS coupled model composed of an
atomic DEVS component and a coupled Cell-DEVS grid as illustrated in Figure 2. Our DEVS
component “Passenger Generator” is in charge of generating passengers with specific seat numbers
and injecting them into the Aircraft cellular model.

Figure 2. Discrete-Event System (DEVS) conceptual model of the system.

The two subsystems (Passenger Generator and Aircraft) are interconnected through
input/output ports defined in the Top coupled DEVS specification. The atomic Passenger Generator
component is defined as represented in Figure 3:

Figure 3. Passenger generator DEVS specification.

This internal behavior of the component is translated from its state diagram illustrated in
Figure 4. Basically, the Passenger Generator is always in waiting mode. Whenever the cellular

Figure 2. Discrete-Event System (DEVS) conceptual model of the system.

The two subsystems (Passenger Generator and Aircraft) are interconnected through input/output
ports defined in the Top coupled DEVS specification. The atomic Passenger Generator component is
defined as represented in Figure 3:

Aerospace 2017, 4, 57 6 of 22

The models we present in this article do not consider passengers who travel in groups (e.g.,
families with children), as this would affect the seating strategy, since they need to be boarded at the
same time. We are anticipating that extra delays might be introduced under such situations.

4. System Design

Our aircraft model defines an Airbus 320 internal space layout with two different seating areas
(first and economy classes) giving a total of 26 rows and 150 seats, a single middle aisle and an
entrance door as given in Figure 1.

Figure 1. System overview.

To model the proposed system using DEVS, we define a DEVS coupled model composed of an
atomic DEVS component and a coupled Cell-DEVS grid as illustrated in Figure 2. Our DEVS
component “Passenger Generator” is in charge of generating passengers with specific seat numbers
and injecting them into the Aircraft cellular model.

Figure 2. Discrete-Event System (DEVS) conceptual model of the system.

The two subsystems (Passenger Generator and Aircraft) are interconnected through
input/output ports defined in the Top coupled DEVS specification. The atomic Passenger Generator
component is defined as represented in Figure 3:

Figure 3. Passenger generator DEVS specification.

This internal behavior of the component is translated from its state diagram illustrated in
Figure 4. Basically, the Passenger Generator is always in waiting mode. Whenever the cellular

Figure 3. Passenger generator DEVS specification.

This internal behavior of the component is translated from its state diagram illustrated in Figure 4.
Basically, the Passenger Generator is always in waiting mode. Whenever the cellular Aircraft model

Aerospace 2017, 4, 57 7 of 22

requests a new passenger entrance (indicated when the aircraft door is not occupied by a passenger),
the Passenger Generator calculates an unassigned seat and sends the seat number as an integer value
to the “in” port of the Aircraft Cell-DEVS model. When a seat number arrives at the input port of the
door cell, it is simply regarded as a passenger who is assigned that specific seat number.

Aerospace 2017, 4, 57 7 of 22

Aircraft model requests a new passenger entrance (indicated when the aircraft door is not occupied
by a passenger), the Passenger Generator calculates an unassigned seat and sends the seat number as
an integer value to the “in” port of the Aircraft Cell-DEVS model. When a seat number arrives at the
input port of the door cell, it is simply regarded as a passenger who is assigned that specific
seat number.

Figure 4. Passenger generator state diagram.

Obviously, the seat numbers generated by the Passenger Generator model cannot be duplicates
and the order they are sent out to the Aircraft differs from one strategy to another. This is discussed
in Sections 5.1–5.8.

The Aircraft Cell-DEVS model is defined as a coupled DEVS model with 430 cells, where each
cell is a DEVS machine. The model’s layout is illustrated in Figure 5 where yellow cells denote seats,
red cell is a passenger and gray cells in the middle demonstrate the aisle. The aircraft door is a green
cell in the bottom left corner of the model. Thanks to the capability of CD++ in representing 2D
visualization of the simulation, our model verification process was made easy. Basically, the flow of
the passengers and the order of seats being occupied were easily verifiable through the visualization. This
way, we were able to observe the progress of the models dynamically and easily verify their correctness.

Figure 5. Aircraft Cell-DEVS model.

The Aircraft layout model in Figure 5 is defined in CD++ environment as following:

[aircraft]

type: cell
width: 10
height: 43
neighbors: aircraft(−1,−1) aircraft(−1,0) aircraft(−1,1) aircraft(0,−4)
neighbors: aircraft(0,−3) aircraft(0,−2) aircraft(0,−1) aircraft(0,0)
neighbors: aircraft(0,1) aircraft(0,2) aircraft(0,3)
neighbors: aircraft(1,−1) aircraft(1,0) aircraft(1,1)

This yields a 10 by 43 cellular space where each cell defines fourteen cells in its neighborhood,
as shown in Figure 6. The cellular neighborhood indicates that the value of a cell is affected by those
residing in its neighborhood. Thanks to Cell-DEVS theory, when the value of a cell changes, only its
neighborhood cells are notified rather than the entire cell space (a major limitation of Cellular Automata).

Figure 4. Passenger generator state diagram.

Obviously, the seat numbers generated by the Passenger Generator model cannot be duplicates
and the order they are sent out to the Aircraft differs from one strategy to another. This is discussed in
Sections 5.1–5.8.

The Aircraft Cell-DEVS model is defined as a coupled DEVS model with 430 cells, where each cell
is a DEVS machine. The model’s layout is illustrated in Figure 5 where yellow cells denote seats, red
cell is a passenger and gray cells in the middle demonstrate the aisle. The aircraft door is a green cell in
the bottom left corner of the model. Thanks to the capability of CD++ in representing 2D visualization
of the simulation, our model verification process was made easy. Basically, the flow of the passengers
and the order of seats being occupied were easily verifiable through the visualization. This way, we
were able to observe the progress of the models dynamically and easily verify their correctness.

Aerospace 2017, 4, 57 7 of 22

Aircraft model requests a new passenger entrance (indicated when the aircraft door is not occupied
by a passenger), the Passenger Generator calculates an unassigned seat and sends the seat number as
an integer value to the “in” port of the Aircraft Cell-DEVS model. When a seat number arrives at the
input port of the door cell, it is simply regarded as a passenger who is assigned that specific
seat number.

Figure 4. Passenger generator state diagram.

Obviously, the seat numbers generated by the Passenger Generator model cannot be duplicates
and the order they are sent out to the Aircraft differs from one strategy to another. This is discussed
in Sections 5.1–5.8.

The Aircraft Cell-DEVS model is defined as a coupled DEVS model with 430 cells, where each
cell is a DEVS machine. The model’s layout is illustrated in Figure 5 where yellow cells denote seats,
red cell is a passenger and gray cells in the middle demonstrate the aisle. The aircraft door is a green
cell in the bottom left corner of the model. Thanks to the capability of CD++ in representing 2D
visualization of the simulation, our model verification process was made easy. Basically, the flow of
the passengers and the order of seats being occupied were easily verifiable through the visualization. This
way, we were able to observe the progress of the models dynamically and easily verify their correctness.

Figure 5. Aircraft Cell-DEVS model.

The Aircraft layout model in Figure 5 is defined in CD++ environment as following:

[aircraft]

type: cell
width: 10
height: 43
neighbors: aircraft(−1,−1) aircraft(−1,0) aircraft(−1,1) aircraft(0,−4)
neighbors: aircraft(0,−3) aircraft(0,−2) aircraft(0,−1) aircraft(0,0)
neighbors: aircraft(0,1) aircraft(0,2) aircraft(0,3)
neighbors: aircraft(1,−1) aircraft(1,0) aircraft(1,1)

This yields a 10 by 43 cellular space where each cell defines fourteen cells in its neighborhood,
as shown in Figure 6. The cellular neighborhood indicates that the value of a cell is affected by those
residing in its neighborhood. Thanks to Cell-DEVS theory, when the value of a cell changes, only its
neighborhood cells are notified rather than the entire cell space (a major limitation of Cellular Automata).

Figure 5. Aircraft Cell-DEVS model.

The Aircraft layout model in Figure 5 is defined in CD++ environment as following:
[aircraft]

type: cell
width: 10
height: 43
neighbors: aircraft(−1,−1) aircraft(−1,0) aircraft(−1,1) aircraft(0,−4)
neighbors: aircraft(0,−3) aircraft(0,−2) aircraft(0,−1) aircraft(0,0)
neighbors: aircraft(0,1) aircraft(0,2) aircraft(0,3)
neighbors: aircraft(1,−1) aircraft(1,0) aircraft(1,1)

This yields a 10 by 43 cellular space where each cell defines fourteen cells in its neighborhood,
as shown in Figure 6. The cellular neighborhood indicates that the value of a cell is affected by
those residing in its neighborhood. Thanks to Cell-DEVS theory, when the value of a cell changes,
only its neighborhood cells are notified rather than the entire cell space (a major limitation of
Cellular Automata).

Aerospace 2017, 4, 57 8 of 22
Aerospace 2017, 4, 57 8 of 22

Figure 6. Aircraft model cellular neighborhood.

In order to recognize different cells (passenger, door, aisle, occupied and empty seats, etc.) we
have defined our model states as follows (refer to Table 3):

Table 3. Cellular state values.

State Name State Value Color Description
Wall 0 Black Wall or obstacle
Aisle 1, 51–76 Gray Aisle

Door Open 2 Green Boarding door is open
Cabin 3 Blue Cabin or bathroom or cafe

Empty Passenger Seat 100–3000 white Passenger seat
Walking Passenger 10,000–300,000 Red Walking Passenger

Seats with passenger 4 Yellow Seat is occupied with passenger
Door Closed 9 Green All the passengers have been boarded

Figure 7 demonstrates a screenshot of the aircraft’s front where all seats are occupied (yellow),
the door is closed (green) and no passenger is in the aisle (gray).

Figure 7. Mapping state values to cells.

5. Implementation Details

Seat numbers are generated randomly but are injected into the Aircraft model in a different
sequence order depending on the boarding strategy. Thus, eight different versions of the Passenger
Generator model were implemented to accommodate these restrictions. By using the same seed
numbers, we have enforced identical random outputs over various simulation runs, thus our
experiments did not need to be replicated. Although, the three models define the exact same DEVS
specification that was illustrated in Figure 3, the internal behavior given by the external transition
function is slightly different. Next, we will present these variations.

5.1. Seat Generation in Back-to-Front Strategy

The Back-to-Front strategy includes six boarding zones: zone_1 (rows 1 to 3, business seats),
zone_2 (rows 22 to 26), zone_3 (rows 17 to 21), zone_4 (rows 12 to 16), zone_5 (rows 7 to 11) and
zone_6 (rows 4 to 6). Seat numbers are generated based on zones with a simple formula that considers
the row number and the seat capacity within that row (6 for economy rows 4–26 and 4 for first-class

Figure 6. Aircraft model cellular neighborhood.

In order to recognize different cells (passenger, door, aisle, occupied and empty seats, etc.) we
have defined our model states as follows (refer to Table 3):

Table 3. Cellular state values.

State Name State Value Color Description

Wall 0 Black Wall or obstacle
Aisle 1, 51–76 Gray Aisle

Door Open 2 Green Boarding door is open
Cabin 3 Blue Cabin or bathroom or cafe

Empty Passenger Seat 100–3000 white Passenger seat
Walking Passenger 10,000–300,000 Red Walking Passenger

Seats with passenger 4 Yellow Seat is occupied with passenger
Door Closed 9 Green All the passengers have been boarded

Figure 7 demonstrates a screenshot of the aircraft’s front where all seats are occupied (yellow),
the door is closed (green) and no passenger is in the aisle (gray).

Aerospace 2017, 4, 57 8 of 22

Figure 6. Aircraft model cellular neighborhood.

In order to recognize different cells (passenger, door, aisle, occupied and empty seats, etc.) we
have defined our model states as follows (refer to Table 3):

Table 3. Cellular state values.

State Name State Value Color Description
Wall 0 Black Wall or obstacle
Aisle 1, 51–76 Gray Aisle

Door Open 2 Green Boarding door is open
Cabin 3 Blue Cabin or bathroom or cafe

Empty Passenger Seat 100–3000 white Passenger seat
Walking Passenger 10,000–300,000 Red Walking Passenger

Seats with passenger 4 Yellow Seat is occupied with passenger
Door Closed 9 Green All the passengers have been boarded

Figure 7 demonstrates a screenshot of the aircraft’s front where all seats are occupied (yellow),
the door is closed (green) and no passenger is in the aisle (gray).

Figure 7. Mapping state values to cells.

5. Implementation Details

Seat numbers are generated randomly but are injected into the Aircraft model in a different
sequence order depending on the boarding strategy. Thus, eight different versions of the Passenger
Generator model were implemented to accommodate these restrictions. By using the same seed
numbers, we have enforced identical random outputs over various simulation runs, thus our
experiments did not need to be replicated. Although, the three models define the exact same DEVS
specification that was illustrated in Figure 3, the internal behavior given by the external transition
function is slightly different. Next, we will present these variations.

5.1. Seat Generation in Back-to-Front Strategy

The Back-to-Front strategy includes six boarding zones: zone_1 (rows 1 to 3, business seats),
zone_2 (rows 22 to 26), zone_3 (rows 17 to 21), zone_4 (rows 12 to 16), zone_5 (rows 7 to 11) and
zone_6 (rows 4 to 6). Seat numbers are generated based on zones with a simple formula that considers
the row number and the seat capacity within that row (6 for economy rows 4–26 and 4 for first-class

Figure 7. Mapping state values to cells.

5. Implementation Details

Seat numbers are generated randomly but are injected into the Aircraft model in a different
sequence order depending on the boarding strategy. Thus, eight different versions of the Passenger
Generator model were implemented to accommodate these restrictions. By using the same seed
numbers, we have enforced identical random outputs over various simulation runs, thus our
experiments did not need to be replicated. Although, the three models define the exact same DEVS
specification that was illustrated in Figure 3, the internal behavior given by the external transition
function is slightly different. Next, we will present these variations.

5.1. Seat Generation in Back-to-Front Strategy

The Back-to-Front strategy includes six boarding zones: zone_1 (rows 1 to 3, business seats),
zone_2 (rows 22 to 26), zone_3 (rows 17 to 21), zone_4 (rows 12 to 16), zone_5 (rows 7 to 11) and zone_6

Aerospace 2017, 4, 57 9 of 22

(rows 4 to 6). Seat numbers are generated based on zones with a simple formula that considers the
row number and the seat capacity within that row (6 for economy rows 4–26 and 4 for first-class rows
1–3). The code snippet in Figure 8 illustrates how seats within zones 1, 2, 3 and 6 are generated upon
initialization of the DEVS model.

1

Figure 8. Back-to-Front seat number generation for sample zones: 1, 2, 3 and 6.

Given all seat numbers, upon each request from the Aircraft cellular model, the Passenger
Generator model injects a random seat number within the current boarding zone. In our
implementation, we simply handle this by shuffling the seat numbers within each zone as following:

random_shuffle(v1.begin(), v1.end());

With Back-to-Front strategy, random seat numbers are sent out to the Aircraft in the order of
zone_1, zone_6, zone_5, zone_4, zone_3 and zone_2. Only when all seat numbers from a given zone are
sent out, the seat numbers from next zone are selected. This behavior is implemented within the DEVS
external transition function which is triggered when the Aircraft requests a passenger by sending an
input through port “in” of the Passenger Generator model. This is shown in Figure 9.

Aerospace 2017, 4, 57 9 of 22

rows 1–3). The code snippet in Figure 8 illustrates how seats within zones 1, 2, 3 and 6 are generated
upon initialization of the DEVS model.

Figure 8. Back-to-Front seat number generation for sample zones: 1, 2, 3 and 6.

Given all seat numbers, upon each request from the Aircraft cellular model, the Passenger
Generator model injects a random seat number within the current boarding zone. In our
implementation, we simply handle this by shuffling the seat numbers within each zone as following:

random_shuffle(v1.begin(), v1.end());

With Back-to-Front strategy, random seat numbers are sent out to the Aircraft in the order of
zone_1, zone_6, zone_5, zone_4, zone_3 and zone_2. Only when all seat numbers from a given zone
are sent out, the seat numbers from next zone are selected. This behavior is implemented within the
DEVS external transition function which is triggered when the Aircraft requests a passenger by
sending an input through port “in” of the Passenger Generator model. This is shown in Figure 9.

Figure 9. Back-to-Front random seats selection.

5.2. Seat Generation in Random Strategy

Seat generation for Random strategy consists of two zones: zone_1 (rows 1 to 3, business seats)
and zone_2 (economy class seats of rows 4 to 26). All seats are generated randomly, depicting the
random seat assignment, as presented in Figure 10.

Figure 10. Random strategy seat number generation.

Figure 9. Back-to-Front random seats selection.

5.2. Seat Generation in Random Strategy

Seat generation for Random strategy consists of two zones: zone_1 (rows 1 to 3, business seats)
and zone_2 (economy class seats of rows 4 to 26). All seats are generated randomly, depicting the
random seat assignment, as presented in Figure 10.

Aerospace 2017, 4, 57 10 of 22

Aerospace 2017, 4, 57 9 of 22

rows 1–3). The code snippet in Figure 8 illustrates how seats within zones 1, 2, 3 and 6 are generated
upon initialization of the DEVS model.

Figure 8. Back-to-Front seat number generation for sample zones: 1, 2, 3 and 6.

Given all seat numbers, upon each request from the Aircraft cellular model, the Passenger
Generator model injects a random seat number within the current boarding zone. In our
implementation, we simply handle this by shuffling the seat numbers within each zone as following:

random_shuffle(v1.begin(), v1.end());

With Back-to-Front strategy, random seat numbers are sent out to the Aircraft in the order of
zone_1, zone_6, zone_5, zone_4, zone_3 and zone_2. Only when all seat numbers from a given zone
are sent out, the seat numbers from next zone are selected. This behavior is implemented within the
DEVS external transition function which is triggered when the Aircraft requests a passenger by
sending an input through port “in” of the Passenger Generator model. This is shown in Figure 9.

Figure 9. Back-to-Front random seats selection.

5.2. Seat Generation in Random Strategy

Seat generation for Random strategy consists of two zones: zone_1 (rows 1 to 3, business seats)
and zone_2 (economy class seats of rows 4 to 26). All seats are generated randomly, depicting the
random seat assignment, as presented in Figure 10.

Figure 10. Random strategy seat number generation. Figure 10. Random strategy seat number generation.

Seats at then randomly shuffled at both zones by invoking the random_shuffle operation on
seat queues.

5.3. Seat Generation in Window Middle Aisle (WMA) Strategy

The WMA strategy defines four zones: zone_1 (rows 1 to 3, business seats), zone_2 (window seats
of rows 4 to 26), zone_3 (middle seats of rows 4 to 26) and zone_4 (aisle seats of rows 4 to 26). The first
zone seats are generated similar to Back-to-Front Strategy and then the seats for the remaining three
zones are generated as presented in Figure 11.

Aerospace 2017, 4, 57 10 of 22

Seats at then randomly shuffled at both zones by invoking the random_shuffle operation on seat
queues.

5.3. Seat Generation in Window Middle Aisle (WMA) Strategy

The WMA strategy defines four zones: zone_1 (rows 1 to 3, business seats), zone_2 (window
seats of rows 4 to 26), zone_3 (middle seats of rows 4 to 26) and zone_4 (aisle seats of rows 4 to 26).
The first zone seats are generated similar to Back-to-Front Strategy and then the seats for the
remaining three zones are generated as presented in Figure 11.

Figure 11. Window Middle Aisle (WMA) seat number generation.

As discussed in Back-to-Front strategy, the seat numbers are sent to the Aircraft by selecting
random seat numbers from within each zone, given a zone sequence of: first-class (zone_1), window
seats (zone_2), middle seats (zone_3) and aisle seats (zone_4). Only when a zone is completely seated,
the next zone is selected for seating (random fashion is only within each zone, the zones follow WMA
sequence).

5.4. Seat Generation in Zone Rotate Strategy

Zone Rotate strategy defines six zones: zone_1 (rows 1 to 3, business seats), zone_2 (rows 22 to
26), zone_3 (rows 4 to 8), zone_4 (rows 17 to 21), zone_5 (rows 9 to 13) and zone_6 (rows 14 to 16).
Figure 12 provides the implementation of zone_1 and zone_4. Similar to other strategies, seats within
each zone are then randomly shuffled.

Figure 12. Zone rotate seat number generation.

Figure 11. Window Middle Aisle (WMA) seat number generation.

As discussed in Back-to-Front strategy, the seat numbers are sent to the Aircraft by selecting
random seat numbers from within each zone, given a zone sequence of: first-class (zone_1), window
seats (zone_2), middle seats (zone_3) and aisle seats (zone_4). Only when a zone is completely seated,
the next zone is selected for seating (random fashion is only within each zone, the zones follow
WMA sequence).

5.4. Seat Generation in Zone Rotate Strategy

Zone Rotate strategy defines six zones: zone_1 (rows 1 to 3, business seats), zone_2 (rows 22 to
26), zone_3 (rows 4 to 8), zone_4 (rows 17 to 21), zone_5 (rows 9 to 13) and zone_6 (rows 14 to 16).
Figure 12 provides the implementation of zone_1 and zone_4. Similar to other strategies, seats within
each zone are then randomly shuffled.

Aerospace 2017, 4, 57 11 of 22

Aerospace 2017, 4, 57 10 of 22

Seats at then randomly shuffled at both zones by invoking the random_shuffle operation on seat
queues.

5.3. Seat Generation in Window Middle Aisle (WMA) Strategy

The WMA strategy defines four zones: zone_1 (rows 1 to 3, business seats), zone_2 (window
seats of rows 4 to 26), zone_3 (middle seats of rows 4 to 26) and zone_4 (aisle seats of rows 4 to 26).
The first zone seats are generated similar to Back-to-Front Strategy and then the seats for the
remaining three zones are generated as presented in Figure 11.

Figure 11. Window Middle Aisle (WMA) seat number generation.

As discussed in Back-to-Front strategy, the seat numbers are sent to the Aircraft by selecting
random seat numbers from within each zone, given a zone sequence of: first-class (zone_1), window
seats (zone_2), middle seats (zone_3) and aisle seats (zone_4). Only when a zone is completely seated,
the next zone is selected for seating (random fashion is only within each zone, the zones follow WMA
sequence).

5.4. Seat Generation in Zone Rotate Strategy

Zone Rotate strategy defines six zones: zone_1 (rows 1 to 3, business seats), zone_2 (rows 22 to
26), zone_3 (rows 4 to 8), zone_4 (rows 17 to 21), zone_5 (rows 9 to 13) and zone_6 (rows 14 to 16).
Figure 12 provides the implementation of zone_1 and zone_4. Similar to other strategies, seats within
each zone are then randomly shuffled.

Figure 12. Zone rotate seat number generation.

Figure 12. Zone rotate seat number generation.

5.5. Seat Generation in Reverse Pyramid (RP) Strategy

Similar to Back-to-Front, the RP strategy defines six zones: zone_1 (rows 1 to 3, business seats),
zone_2 (window seats of rows 13 to 26), zone_3 (window seats of rows 8 to 12 and middle seats of
rows 18 to 26), zone_4 (middle seats of rows 8 to 17 and window seats of rows 4 to 7), zone_5 (aisle
seats of rows 17 to 26 and middle seats of rows 4 to 7) and zone_6 (aisle seats of rows 4 to 16). Figure 13
provides the implementation of zone_3 and zone_4.

Figure 13. RP seat number generation.

5.6. Seat Generation in Optimal Strategy

The Optimal strategy consists of thirteen zones, where seats are assigned to each zone as follows:
zone_1 (rows 1 to 3, business seats), zone_2 (right side window seats on odd rows 4 to 26), zone_3
(left side window seats on odd rows 4 to 26), zone_4 (right side window seats on even rows 4 to 26),
zone_5 (left side window seats on even rows 4 to 26), zone_6 (right side middle seats on odd rows 4 to
26), zone_7 (left side middle seats on odd rows 4 to 26), zone_8 (right side middle seats on even rows 4
to 26), zone_9 (left side middle seats on even rows 4 to 26), zone_10 (right side aisle seats on odd rows
4 to 26), zone_11 (left side aisle seats on odd rows 4 to 26), zone_12 (right side aisle seats on even rows
4 to 26) and zone_13 (left side aisle seats on even rows 4 to 26). Figure 14 shows seat generation of only
two sample zones.

Aerospace 2017, 4, 57 11 of 22

5.5. Seat Generation in Reverse Pyramid (RP) Strategy

Similar to Back-to-Front, the RP strategy defines six zones: zone_1 (rows 1 to 3, business seats),
zone_2 (window seats of rows 13 to 26), zone_3 (window seats of rows 8 to 12 and middle seats of
rows 18 to 26), zone_4 (middle seats of rows 8 to 17 and window seats of rows 4 to 7), zone_5 (aisle
seats of rows 17 to 26 and middle seats of rows 4 to 7) and zone_6 (aisle seats of rows 4 to 16). Figure
13 provides the implementation of zone_3 and zone_4.

Figure 13. RP seat number generation.

5.6. Seat Generation in Optimal Strategy

The Optimal strategy consists of thirteen zones, where seats are assigned to each zone as follows:
zone_1 (rows 1 to 3, business seats), zone_2 (right side window seats on odd rows 4 to 26), zone_3
(left side window seats on odd rows 4 to 26), zone_4 (right side window seats on even rows 4 to 26),
zone_5 (left side window seats on even rows 4 to 26), zone_6 (right side middle seats on odd rows 4
to 26), zone_7 (left side middle seats on odd rows 4 to 26), zone_8 (right side middle seats on even
rows 4 to 26), zone_9 (left side middle seats on even rows 4 to 26), zone_10 (right side aisle seats on
odd rows 4 to 26), zone_11 (left side aisle seats on odd rows 4 to 26), zone_12 (right side aisle seats on
even rows 4 to 26) and zone_13 (left side aisle seats on even rows 4 to 26). Figure 14 shows seat
generation of only two sample zones.

Figure 14. Optimal strategy seat number generation.

5.7. Seat Generation in Optimal Practical Strategy

The Optimal practical strategy consists of five zones, with the following configuration: zone_1
(first-class, rows 1 to 3), zone_2 (left side seats on odd rows 4–36), zone_3 (right side seats on odd
rows 4–36), zone_4 (left side seats on even rows 4–36) and zone_5 (right side seats on even rows 4–
36). Figures 14 and 15 shows seat generation of only two sample zones. As in Optimal Strategy, seats
within each zone are randomly shuffled afterwards.

Figure 15. Optimal strategy seat number generation.

Figure 14. Optimal strategy seat number generation.

5.7. Seat Generation in Optimal Practical Strategy

The Optimal practical strategy consists of five zones, with the following configuration: zone_1
(first-class, rows 1 to 3), zone_2 (left side seats on odd rows 4–36), zone_3 (right side seats on odd
rows 4–36), zone_4 (left side seats on even rows 4–36) and zone_5 (right side seats on even rows 4–36).
Figures 14 and 15 shows seat generation of only two sample zones. As in Optimal Strategy, seats
within each zone are randomly shuffled afterwards.

Aerospace 2017, 4, 57 12 of 22

Aerospace 2017, 4, 57 11 of 22

5.5. Seat Generation in Reverse Pyramid (RP) Strategy

Similar to Back-to-Front, the RP strategy defines six zones: zone_1 (rows 1 to 3, business seats),
zone_2 (window seats of rows 13 to 26), zone_3 (window seats of rows 8 to 12 and middle seats of
rows 18 to 26), zone_4 (middle seats of rows 8 to 17 and window seats of rows 4 to 7), zone_5 (aisle
seats of rows 17 to 26 and middle seats of rows 4 to 7) and zone_6 (aisle seats of rows 4 to 16). Figure
13 provides the implementation of zone_3 and zone_4.

Figure 13. RP seat number generation.

5.6. Seat Generation in Optimal Strategy

The Optimal strategy consists of thirteen zones, where seats are assigned to each zone as follows:
zone_1 (rows 1 to 3, business seats), zone_2 (right side window seats on odd rows 4 to 26), zone_3
(left side window seats on odd rows 4 to 26), zone_4 (right side window seats on even rows 4 to 26),
zone_5 (left side window seats on even rows 4 to 26), zone_6 (right side middle seats on odd rows 4
to 26), zone_7 (left side middle seats on odd rows 4 to 26), zone_8 (right side middle seats on even
rows 4 to 26), zone_9 (left side middle seats on even rows 4 to 26), zone_10 (right side aisle seats on
odd rows 4 to 26), zone_11 (left side aisle seats on odd rows 4 to 26), zone_12 (right side aisle seats on
even rows 4 to 26) and zone_13 (left side aisle seats on even rows 4 to 26). Figure 14 shows seat
generation of only two sample zones.

Figure 14. Optimal strategy seat number generation.

5.7. Seat Generation in Optimal Practical Strategy

The Optimal practical strategy consists of five zones, with the following configuration: zone_1
(first-class, rows 1 to 3), zone_2 (left side seats on odd rows 4–36), zone_3 (right side seats on odd
rows 4–36), zone_4 (left side seats on even rows 4–36) and zone_5 (right side seats on even rows 4–
36). Figures 14 and 15 shows seat generation of only two sample zones. As in Optimal Strategy, seats
within each zone are randomly shuffled afterwards.

Figure 15. Optimal strategy seat number generation.

Figure 15. Optimal strategy seat number generation.

5.8. Seat Generation in Efficient Strategy

The Efficient strategy generates five zones, where zones are assigned the following seat numbers:
zone_1 (first-class, rows 1 to 3), zone_2 (window seats on rows 16 to 26 and middle seats on rows 22 to
26), zone_3 (window seats on rows 12 to 15 and middle seats on rows 15 to 21 and aisle seats on rows
21 to 26), zone_4 (window seats on rows 5 to 11 , middle seats on rows 10 to 14 and aisle seats on rows
15 to 20) and zone_5 (window seats on row 4, middle seats on rows 4 to 9 and aisle seats on rows 4
to 14). Figure 16 shows seat generation of only two sample zones. Seats within each zone are then
randomly shuffled.

Aerospace 2017, 4, 57 12 of 22

5.8. Seat Generation in Efficient Strategy

The Efficient strategy generates five zones, where zones are assigned the following seat
numbers: zone_1 (first-class, rows 1 to 3), zone_2 (window seats on rows 16 to 26 and middle seats
on rows 22 to 26), zone_3 (window seats on rows 12 to 15 and middle seats on rows 15 to 21 and aisle
seats on rows 21 to 26), zone_4 (window seats on rows 5 to 11 , middle seats on rows 10 to 14 and
aisle seats on rows 15 to 20) and zone_5 (window seats on row 4, middle seats on rows 4 to 9 and
aisle seats on rows 4 to 14). Figure 16 shows seat generation of only two sample zones. Seats within
each zone are then randomly shuffled.

Figure 16. Optimal strategy seat number generation.

Unlike the DEVS Passenger Generator model which has to behave differently under various
boarding strategies, the Aircraft Cell-DEVS model is exactly the same. The following section reveals
its details.

5.9. Aircraft Rules Specification and Implementation

Based on the Cell-DEVS model defined in Section 3, the Aircraft model implements a series of
rules that are evaluated for every cell on the cell space over time steps. As mentioned before, the eight
boarding strategies use the exact same Cell-DEVS Aircraft model, since the boarding pattern really
depends on the order at which passengers are called to enplane. This is handled by the DEVS
Passenger Generator model described in the previous section. Here we will present the cellular model
rules and explain how simulation evolves based on the discrete-event continuous-time property of
DEVS theory.

The rules are divided into two groups:

1 pre-seat rules: a set of nine rules with responsibilities to send requests to the Passenger Generator
model to release passengers and guide passengers at the aircraft door to walk to the beginning
of the seats aisle. The area that pre-seat rules apply to is from cell (0, 0) to cell (6, 0) where cell
(y, x) defines the y and x coordinates of the cell on the grid. The affected area by pre-seat rules
is highlighted in a surrounding solid box in Figure 17.

2 seating rules: a set of 33 rules handling passengers’ forward movement within the aisle and
occupation of seats. These rules only apply to the cells that represent the seats (both first-class
and economy) and the aisle, as well as passengers on these cells. This area is highlighted in
Figure 17 with a surrounding dashed box.

Figure 16. Optimal strategy seat number generation.

Unlike the DEVS Passenger Generator model which has to behave differently under various
boarding strategies, the Aircraft Cell-DEVS model is exactly the same. The following section reveals
its details.

5.9. Aircraft Rules Specification and Implementation

Based on the Cell-DEVS model defined in Section 3, the Aircraft model implements a series of
rules that are evaluated for every cell on the cell space over time steps. As mentioned before, the
eight boarding strategies use the exact same Cell-DEVS Aircraft model, since the boarding pattern
really depends on the order at which passengers are called to enplane. This is handled by the DEVS
Passenger Generator model described in the previous section. Here we will present the cellular model
rules and explain how simulation evolves based on the discrete-event continuous-time property of
DEVS theory.

The rules are divided into two groups:

1. pre-seat rules: a set of nine rules with responsibilities to send requests to the Passenger Generator
model to release passengers and guide passengers at the aircraft door to walk to the beginning of
the seats aisle. The area that pre-seat rules apply to is from cell (0, 0) to cell (6, 0) where cell (y,

Aerospace 2017, 4, 57 13 of 22

x) defines the y and x coordinates of the cell on the grid. The affected area by pre-seat rules is
highlighted in a surrounding solid box in Figure 17.

2. seating rules: a set of 33 rules handling passengers’ forward movement within the aisle and
occupation of seats. These rules only apply to the cells that represent the seats (both first-class
and economy) and the aisle, as well as passengers on these cells. This area is highlighted in
Figure 17 with a surrounding dashed box.

Aerospace 2017, 4, 57 13 of 22

Figure 17. Areas evaluated by “pre-seat” (solid box) and “seating” (dashed box) rules.

A rule in Cell-DEVS is the local computing function which is defined in the form of {result} delay
{precondition}. This indicates that when the precondition is met, the state of the cell changes to the
designated result after the duration specified by delay. If the precondition is not met, then the next
rule is evaluated until a rule is satisfied or there are no more rules. In the space below we will present
some of the rules implemented in Aircraft model.

For instance, the following rule (from pre-seat rules):
rule: {(0,0) + send(out1,2)} 0 {(0,0) = 2}

defines that whenever the door cell is unoccupied, a request for passenger entrance should be sent to
the Passenger Generator model immediately.

Now let’s consider the seating rules for a scenario where a passenger is walking down the aisle
with a window seat assigned to her. There are four possible scenarios, thus four evaluation rules:

(1) Aisle seat and middle seat is occupied:
rule: 1 #Macro(WBothSeatDelayAddUp) {(0,0) > 10000 and (0,−1) = 4 and (0,−2) = 4}
(2) Only aisle seat is occupied:
rule: 1 #Macro(WAisleSeatDelayAddUp) {(0,0) >10000 and (0,−1) = 4 and (0,−2) > 100}
(3) Only middle seat is occupied:
rule: 1 #Macro(WMiddleSeatDelayAddUp) {(0,0) > 10000 and (0,−2) = 4 and (0,−1) > 100}
(4) Neither the aisle seat nor the middle seat is occupied:
rule: 1 #Macro(WNoneSeatDelayAddUp) {(0,0) > 10000 and (0,−1) > 100 and (0,−2) > 100}
The #Macros defined in the above rules are the fixed delays applied to the passenger when

he/she gets to the assigned row. These delays are defined in a “boarding.inc” file with a format
presented in Figure 18. The delay values are conducted from the literature and were addressed earlier
in Table 2.

Figure 18. Sample macros defining various delay values based on Table 2 ranges.

In order to execute the simulations, a model file is created, providing DEVS top level structure
where Passenger Generator and Cellular Aircraft models are connected through coupling. CD++
allows creating and editing model file by providing syntax checking mechanism. Another file that

Figure 17. Areas evaluated by “pre-seat” (solid box) and “seating” (dashed box) rules.

A rule in Cell-DEVS is the local computing function which is defined in the form of {result} delay
{precondition}. This indicates that when the precondition is met, the state of the cell changes to the
designated result after the duration specified by delay. If the precondition is not met, then the next
rule is evaluated until a rule is satisfied or there are no more rules. In the space below we will present
some of the rules implemented in Aircraft model.

For instance, the following rule (from pre-seat rules):
rule: {(0,0) + send(out1,2)} 0 {(0,0) = 2}
defines that whenever the door cell is unoccupied, a request for passenger entrance should be

sent to the Passenger Generator model immediately.
Now let’s consider the seating rules for a scenario where a passenger is walking down the aisle

with a window seat assigned to her. There are four possible scenarios, thus four evaluation rules:
(1) Aisle seat and middle seat is occupied:
rule: 1 #Macro(WBothSeatDelayAddUp) {(0,0) > 10000 and (0,−1) = 4 and (0,−2) = 4}
(2) Only aisle seat is occupied:
rule: 1 #Macro(WAisleSeatDelayAddUp) {(0,0) >10000 and (0,−1) = 4 and (0,−2) > 100}
(3) Only middle seat is occupied:
rule: 1 #Macro(WMiddleSeatDelayAddUp) {(0,0) > 10000 and (0,−2) = 4 and (0,−1) > 100}
(4) Neither the aisle seat nor the middle seat is occupied:
rule: 1 #Macro(WNoneSeatDelayAddUp) {(0,0) > 10000 and (0,−1) > 100 and (0,−2) > 100}
The #Macros defined in the above rules are the fixed delays applied to the passenger when he/she

gets to the assigned row. These delays are defined in a “boarding.inc” file with a format presented in
Figure 18. The delay values are conducted from the literature and were addressed earlier in Table 2.

Aerospace 2017, 4, 57 14 of 22

Aerospace 2017, 4, 57 13 of 22

Figure 17. Areas evaluated by “pre-seat” (solid box) and “seating” (dashed box) rules.

A rule in Cell-DEVS is the local computing function which is defined in the form of {result} delay
{precondition}. This indicates that when the precondition is met, the state of the cell changes to the
designated result after the duration specified by delay. If the precondition is not met, then the next
rule is evaluated until a rule is satisfied or there are no more rules. In the space below we will present
some of the rules implemented in Aircraft model.

For instance, the following rule (from pre-seat rules):
rule: {(0,0) + send(out1,2)} 0 {(0,0) = 2}

defines that whenever the door cell is unoccupied, a request for passenger entrance should be sent to
the Passenger Generator model immediately.

Now let’s consider the seating rules for a scenario where a passenger is walking down the aisle
with a window seat assigned to her. There are four possible scenarios, thus four evaluation rules:

(1) Aisle seat and middle seat is occupied:
rule: 1 #Macro(WBothSeatDelayAddUp) {(0,0) > 10000 and (0,−1) = 4 and (0,−2) = 4}
(2) Only aisle seat is occupied:
rule: 1 #Macro(WAisleSeatDelayAddUp) {(0,0) >10000 and (0,−1) = 4 and (0,−2) > 100}
(3) Only middle seat is occupied:
rule: 1 #Macro(WMiddleSeatDelayAddUp) {(0,0) > 10000 and (0,−2) = 4 and (0,−1) > 100}
(4) Neither the aisle seat nor the middle seat is occupied:
rule: 1 #Macro(WNoneSeatDelayAddUp) {(0,0) > 10000 and (0,−1) > 100 and (0,−2) > 100}
The #Macros defined in the above rules are the fixed delays applied to the passenger when

he/she gets to the assigned row. These delays are defined in a “boarding.inc” file with a format
presented in Figure 18. The delay values are conducted from the literature and were addressed earlier
in Table 2.

Figure 18. Sample macros defining various delay values based on Table 2 ranges.

In order to execute the simulations, a model file is created, providing DEVS top level structure
where Passenger Generator and Cellular Aircraft models are connected through coupling. CD++
allows creating and editing model file by providing syntax checking mechanism. Another file that

Figure 18. Sample macros defining various delay values based on Table 2 ranges.

In order to execute the simulations, a model file is created, providing DEVS top level structure
where Passenger Generator and Cellular Aircraft models are connected through coupling. CD++ allows
creating and editing model file by providing syntax checking mechanism. Another file that needs to be
generated is the model initialization file, consisting of initial values for the cells, as demonstrated in
Figure 19.

Aerospace 2017, 4, 57 14 of 22

needs to be generated is the model initialization file, consisting of initial values for the cells, as
demonstrated in Figure 19.

Figure 19. Initializing cell space with various values.

The Passenger Generator, a DEVS model, is implemented in C++ (requiring a header and source
code files). Figure 20 provides a screenshot of the Passenger Generator source code Figure 20.

Figure 20. Passenger generator header and source file (C++).

CD++ provides a visualization tool, called CD++ Modeler, which takes the result of the Cell-
DEVS simulation as input and generates a 2-D representation of the cell space evolution over the
simulation time (presented in Figure 21). We will use this feature to visually present the results of
our simulations.

Figure 19. Initializing cell space with various values.

The Passenger Generator, a DEVS model, is implemented in C++ (requiring a header and source
code files). Figure 20 provides a screenshot of the Passenger Generator source code Figure 20.

Aerospace 2017, 4, 57 15 of 22

Aerospace 2017, 4, 57 14 of 22

needs to be generated is the model initialization file, consisting of initial values for the cells, as
demonstrated in Figure 19.

Figure 19. Initializing cell space with various values.

The Passenger Generator, a DEVS model, is implemented in C++ (requiring a header and source
code files). Figure 20 provides a screenshot of the Passenger Generator source code Figure 20.

Figure 20. Passenger generator header and source file (C++).

CD++ provides a visualization tool, called CD++ Modeler, which takes the result of the Cell-
DEVS simulation as input and generates a 2-D representation of the cell space evolution over the
simulation time (presented in Figure 21). We will use this feature to visually present the results of
our simulations.

Figure 20. Passenger generator header and source file (C++).

CD++ provides a visualization tool, called CD++ Modeler, which takes the result of the Cell-DEVS
simulation as input and generates a 2-D representation of the cell space evolution over the simulation
time (presented in Figure 21). We will use this feature to visually present the results of our simulations.Aerospace 2017, 4, 57 15 of 22

Figure 21. CD++ animation for Cell-DEVS.

6. Simulation Results

Given the common Cell-DEVS model file (“Aircraft.MA”) we execute the overall simulation by
including the desired Passenger Generator DEVS model for the specific boarding strategy (generating
strategy-specific seat assignments). The simulation results are captured in the following screenshots.
Figure 22 shows four simulation scenarios of the Back-to-Front strategy: (a) one passenger has entered
the aircraft and currently occupying the door; (b) the first-class zone is completely seated; (c) the last
back two zones are also seated; (d) the last passenger is about to be seated. Similar simulation results
were also conducted for the other eight strategies. As illustrated in Figure 23 for the WMA strategy,
the four scenarios describe when: (a) the first-class passengers are seated; (b) all window passengers
are seated; (c) all middle passengers are seated and (d) the last three aisle passengers are about to be
seated. Simulation screenshots for Random, Zone Rotate, Reverse Pyramid, Optimal, Optimal
Practical and Efficient strategies are given in Figures 24–29 respectively, illustrating four various
simulation scenes (initial, midway, near final and final) for each strategy. Video representation of the
simulation runs can be viewed here [25] to better illustrate various strategies.

Figure 21. CD++ animation for Cell-DEVS.

6. Simulation Results

Given the common Cell-DEVS model file (“Aircraft.MA”) we execute the overall simulation by
including the desired Passenger Generator DEVS model for the specific boarding strategy (generating
strategy-specific seat assignments). The simulation results are captured in the following screenshots.
Figure 22 shows four simulation scenarios of the Back-to-Front strategy: (a) one passenger has entered
the aircraft and currently occupying the door; (b) the first-class zone is completely seated; (c) the last
back two zones are also seated; (d) the last passenger is about to be seated. Similar simulation results
were also conducted for the other eight strategies. As illustrated in Figure 23 for the WMA strategy,
the four scenarios describe when: (a) the first-class passengers are seated; (b) all window passengers
are seated; (c) all middle passengers are seated and (d) the last three aisle passengers are about to be
seated. Simulation screenshots for Random, Zone Rotate, Reverse Pyramid, Optimal, Optimal Practical

Aerospace 2017, 4, 57 16 of 22

and Efficient strategies are given in Figures 24–29 respectively, illustrating four various simulation
scenes (initial, midway, near final and final) for each strategy. Video representation of the simulation
runs can be viewed here [25] to better illustrate various strategies.Aerospace 2017, 4, 57 16 of 22

Figure 22. Back-to-Front strategy.

Figure 23. Window Middle Aisle (WMA) strategy.

Figure 22. Back-to-Front strategy.

Aerospace 2017, 4, 57 16 of 22

Figure 22. Back-to-Front strategy.

Figure 23. Window Middle Aisle (WMA) strategy. Figure 23. Window Middle Aisle (WMA) strategy.

Aerospace 2017, 4, 57 17 of 22

Aerospace 2017, 4, 57 17 of 22

Figure 24. Random strategy.

Figure 25. Zone rotate strategy.

Figure 24. Random strategy.

Aerospace 2017, 4, 57 17 of 22

Figure 24. Random strategy.

Figure 25. Zone rotate strategy. Figure 25. Zone rotate strategy.

Aerospace 2017, 4, 57 18 of 22

Aerospace 2017, 4, 57 18 of 22

Figure 26. Reverse pyramid strategy.

Figure 27. Optimal strategy.

Figure 26. Reverse pyramid strategy.

Aerospace 2017, 4, 57 18 of 22

Figure 26. Reverse pyramid strategy.

Figure 27. Optimal strategy. Figure 27. Optimal strategy.

Aerospace 2017, 4, 57 19 of 22

Aerospace 2017, 4, 57 19 of 22

Figure 28. Optimal practical (every other row) strategy.

Figure 29. Efficient strategy.

In order to compare the performance of the implemented strategies, we collected the overall
execution time for the simulations. Two sets of experiments were conducted, investigating fixed and
variant walking delay for passengers based on the values expressed in Table 1 (delay ranges) and
Table 2 (fixed delays). With fixed delay values for all passengers (Table 2 fixed delay values for every
passenger), the execution results revealed that among all strategies, the Window-Middle-Aisle
provides the fastest boarding with only 26.16 min compared to the Optimal strategy with 19.43 min.
The Optimal strategy provides a reference point as the “fastest” boarding method. Clearly, the
Optimal strategy is not practical since it will cause huge line ups at the gates, trying to get passengers
entering the airplane one by one at a descending order of seat number (with exception for first-class

Figure 28. Optimal practical (every other row) strategy.

Aerospace 2017, 4, 57 19 of 22

Figure 28. Optimal practical (every other row) strategy.

Figure 29. Efficient strategy.

In order to compare the performance of the implemented strategies, we collected the overall
execution time for the simulations. Two sets of experiments were conducted, investigating fixed and
variant walking delay for passengers based on the values expressed in Table 1 (delay ranges) and
Table 2 (fixed delays). With fixed delay values for all passengers (Table 2 fixed delay values for every
passenger), the execution results revealed that among all strategies, the Window-Middle-Aisle
provides the fastest boarding with only 26.16 min compared to the Optimal strategy with 19.43 min.
The Optimal strategy provides a reference point as the “fastest” boarding method. Clearly, the
Optimal strategy is not practical since it will cause huge line ups at the gates, trying to get passengers
entering the airplane one by one at a descending order of seat number (with exception for first-class

Figure 29. Efficient strategy.

In order to compare the performance of the implemented strategies, we collected the overall
execution time for the simulations. Two sets of experiments were conducted, investigating fixed
and variant walking delay for passengers based on the values expressed in Table 1 (delay ranges)
and Table 2 (fixed delays). With fixed delay values for all passengers (Table 2 fixed delay values for
every passenger), the execution results revealed that among all strategies, the Window-Middle-Aisle
provides the fastest boarding with only 26.16 min compared to the Optimal strategy with 19.43 min.
The Optimal strategy provides a reference point as the “fastest” boarding method. Clearly, the Optimal

Aerospace 2017, 4, 57 20 of 22

strategy is not practical since it will cause huge line ups at the gates, trying to get passengers entering
the airplane one by one at a descending order of seat number (with exception for first-class passengers).
However, as indicated on the diagram illustrated in Figure 30, the Optimal Practical strategy, closest to
the optimal concept, was still outperformed by the WMA strategy.

Aerospace 2017, 4, 57 20 of 22

passengers). However, as indicated on the diagram illustrated in Figure 30, the Optimal Practical
strategy, closest to the optimal concept, was still outperformed by the WMA strategy.

Figure 30. Boarding time with fixed walking delays.

With variable delay values (selected randomly for passengers from the range values presented
in Table 1), the simulation results yield slightly different timing values as reported on Figure 31.
Nonetheless, the WMA was again the fastest practical strategy, taking only 32.57 min compared to
the Optimal strategy with 26.93 min.

Figure 31. Boarding time with variable walking delays.

Comparing our results with similar studies in the literature, we find similar outcome. Table 4
summarizes the best practical boarding strategies in the literature, revealing that Window-Middle-
Aisle as the most efficient boarding method for zone-based enplaning.

Figure 30. Boarding time with fixed walking delays.

With variable delay values (selected randomly for passengers from the range values presented
in Table 1), the simulation results yield slightly different timing values as reported on Figure 31.
Nonetheless, the WMA was again the fastest practical strategy, taking only 32.57 min compared to the
Optimal strategy with 26.93 min.

Aerospace 2017, 4, 57 20 of 22

passengers). However, as indicated on the diagram illustrated in Figure 30, the Optimal Practical
strategy, closest to the optimal concept, was still outperformed by the WMA strategy.

Figure 30. Boarding time with fixed walking delays.

With variable delay values (selected randomly for passengers from the range values presented
in Table 1), the simulation results yield slightly different timing values as reported on Figure 31.
Nonetheless, the WMA was again the fastest practical strategy, taking only 32.57 min compared to
the Optimal strategy with 26.93 min.

Figure 31. Boarding time with variable walking delays.

Comparing our results with similar studies in the literature, we find similar outcome. Table 4
summarizes the best practical boarding strategies in the literature, revealing that Window-Middle-
Aisle as the most efficient boarding method for zone-based enplaning.

Figure 31. Boarding time with variable walking delays.

Comparing our results with similar studies in the literature, we find similar outcome. Table 4
summarizes the best practical boarding strategies in the literature, revealing that Window-Middle-Aisle
as the most efficient boarding method for zone-based enplaning.

Aerospace 2017, 4, 57 21 of 22

Table 4. Literature survey of comparative studies.

Author Best Strategy

Landeghem 2002 [5] WMA
Van Den Briel 2003 [1] WMA/Reverse Pyramid

Ferrari 2005 [3] WMA
Marelli 1998 [6] WMA
Steffen 2008 [7] WMA

Bazargan 2007 [8], Ferrari 2005 [3], Marelli 1998 [6] Efficient Strategy
Steffen 2012 [26] Zone Rotate Strategy

7. Conclusions

We presented a simulation study investigating the efficiency of aircraft’s passenger boarding
strategies. We used the Discrete Event System Specification (DEVS) and its cellular extension
(Cell-DEVS) theory to evaluate eight boarding strategies: Back-to-Front, Window Middle Aisle,
Random, Zone Rotate, Optimal, Optimal Practical, Reverse Pyramid and Efficient strategies. With the
obtained simulation results, we concluded that among the eight implemented boarding strategies, the
Window Middle Aisle provided the least boarding time, while Back-to-Front was the most inefficient
method. Given the ideal smallest boarding time of 18.55 min from the Optimal Strategy with fixed
walking delays, our most efficient boarding strategy exceeds this by about 7 min which in airlines world
is still a significant time incurring huge costs. We are currently implementing other boarding strategies,
as well as variable luggage storing delays, families with small children and passengers needing
assistance, aiming at exploring better options to save time, satisfying both passengers and airliners.

Author Contributions: Shafagh Jafer has compiled the manuscript and provided major text contribution, while
Wei Mi developed the models and conducted tests, as well as provided comparative results study.

Conflicts of Interest: There are no conflicts of interest.

References

1. Van den Briel, M.; Villalobos, J.; Hogg, G. The aircraft boarding problem. In Proceedings of the 12th Industrial
Engineering Research Conference (IERC), Portland, OR, USA, 18–20 May 2003. [CD ROM]; Paper No. 2153.

2. Van Den Briel, M.H.L.; Villalobos, J.R.; Hogg, G.L.; Lindemann, T.; Mulé, A.V. America west airlines develops
efficient boarding strategies. Interfaces 2005, 35, 191–201. [CrossRef]

3. Ferrari, P.; Nagel, K. Robustness of efficient passenger boarding strategies for airplanes. Transp. Res. Rec. J.
Transp. Res. Board 2005, 1915, 44–54. [CrossRef]

4. Nyquist, D.C.; McFadden, K.L. A study of the airline boarding problem. J. Air Transp. Manag. 2008, 14,
197–204. [CrossRef]

5. Van Landeghem, H.; Beuselinck, A. Reducing passenger boarding time in airplanes: A simulation based
approach. Eur. J. Oper. Res. 2002, 142, 294–308. [CrossRef]

6. Marelli, S.; Mattocks, G.; Merry, R. The role of computer simulation in reducing airplane turn time. Aero Mag.
1998, 1, 10.

7. Steffen, J.H. Optimal boarding method for airline passengers. J. Air Transp. Manag. 2008, 14, 146–150.
[CrossRef]

8. Bazargan, M. A linear programming approach for aircraft boarding strategy. Eur. J. Oper. Res. 2007, 183,
394–411. [CrossRef]

9. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems; Academic press: Cambridge, MA, USA, 2000.

10. Wainer, G.A. Discrete-Event Modeling and Simulation: A Practitioner’s Approach; CRC Press: Boca Raton, FL,
USA, 2009.

11. Jafer, S.; Mi, W. Simulation of aircraft boarding strategies with discrete-event cellular DEVS. In Proceedings
of the Symposium on Theory of Modeling & Simulation-DEVS Integrative, Tampa, FL, USA, 13–16 April
2014; Society for Computer Simulation International: San Diego, CA, USA, 2014; p. 32.

http://dx.doi.org/10.1287/inte.1050.0135
http://dx.doi.org/10.3141/1915-06
http://dx.doi.org/10.1016/j.jairtraman.2008.04.004
http://dx.doi.org/10.1016/S0377-2217(01)00294-6
http://dx.doi.org/10.1016/j.jairtraman.2008.03.003
http://dx.doi.org/10.1016/j.ejor.2006.09.071

Aerospace 2017, 4, 57 22 of 22

12. Schultz, M.; Christian, S.; Hartmut, F. Efficiency of Aircraft Boarding Procedures. In Proceedings of the
ICRAT 2008, Fairfax, VA, USA, 1–4 June 2008.

13. Audenaert, J.; Verbeeck, K.; Berghe, G.V. Multi-agent based simulation for boarding. In Proceedings of the
21st Belgian-Netherlands Conference on Artificial Intelligence, Eindhoven, The Netherlands, 29–30 October
2009; pp. 3–10.

14. Jaehn, F.; Neumann, S. Airplane boarding. Eur. J. Oper. Res. 2015, 244, 339–359. [CrossRef]
15. Schultz, M. The Seat Interference Potential as an Indicator for the Aircraft Boarding Progress; No. 2017-01-2113;

SAE Technical Paper; SAE: Warrendale, PA, USA, 2017.
16. Mas, S.; Juan, A.A.; Arias, P.; Fonseca, P. A simulation study regarding different aircraft boarding strategies.

In Modeling and Simulation in Engineering, Economics, and Management; Springer: Berlin/Heidelberg, Germany,
2013; pp. 145–152.

17. Steiner, A.; Philipp, M. Speeding up the airplane boarding process by using pre-boarding
areas. In Proceedings of the 9th Swiss Transport Research Conference, Monte Verità, Switzerland,
9–11 September 2009; pp. 1–30.

18. Bauer, M.; Bhawalkar, K.; Edwards, M. Boarding at the Speed of Flight. UMAP J. 2007, 28, 237.
19. Ciarallo, F.W.; Ward, K.K.; Hill, R.R. Modeling Airline Boarding for Improved Efficiency and Passenger

Experience. In Proceedings of the IIE Annual Conference, Pittsburgh, PA, USA, 20–23 May 2017; Institute of
Industrial and Systems Engineers (IISE): Norcross, GA, USA, 2017; pp. 1900–1905.

20. Schultz, M.; Kunze, T.; Fricke, H. Boarding on the critical path of the turnaround. In Proceedings of the 10th
USA/Europe air Traffic Management Research and Development Seminar (ATM2013), Chicago, IL, USA,
10–13 June 2013.

21. Wainer, G. CD++: A toolkit to develop DEVS models. Softw. Pract. Exp. 2002, 32, 1261–1306. [CrossRef]
22. Muller, J. Optimal Boarding Methods for Airline Passengers; Hamburg University Internal Report; Hamburg

University: Hamburg, Germany, August 2009.
23. Schultz, M. Aircraft Boarding-Data, Validation, Analysis. In Proceedings of the 12th USA/Europe Air Traffic

Management Research and Development Seminar, Seattle, WA, USA, 26–30 June 2017.
24. Schultz, M. Reliable Aircraft Boarding for Fast Turnarounds. In Proceedings of the ENRI International

Workshop on ATM/CNS (EIWAC 2017), Tokyo, Japan, 14–16 November 2017.
25. Cell-DEVS Boarding Strategies. Available online: https://youtu.be/sodyh4e5yyE?list=

PLRvCUnTmrqJCyZNDGAgJmXSu0N1i8GMzv (accessed on 26 November 2017).
26. Steffen, J.H.; Hotchkiss, J. Experimental test of airplane boarding methods. J. Air Transp. Manag. 2012, 18,

64–67. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2014.12.008
http://dx.doi.org/10.1002/spe.482
https://youtu.be/sodyh4e5yyE?list=PLRvCUnTmrqJCyZNDGAgJmXSu0N1i8GMzv
https://youtu.be/sodyh4e5yyE?list=PLRvCUnTmrqJCyZNDGAgJmXSu0N1i8GMzv
http://dx.doi.org/10.1016/j.jairtraman.2011.10.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Modeling Assumptions
	System Design
	Implementation Details
	Seat Generation in Back-to-Front Strategy
	Seat Generation in Random Strategy
	Seat Generation in Window Middle Aisle (WMA) Strategy
	Seat Generation in Zone Rotate Strategy
	Seat Generation in Reverse Pyramid (RP) Strategy
	Seat Generation in Optimal Strategy
	Seat Generation in Optimal Practical Strategy
	Seat Generation in Efficient Strategy
	Aircraft Rules Specification and Implementation

	Simulation Results
	Conclusions

