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Abstract: This paper discusses the derivation and implementation of a nonlinear model predictive
control law for tracking reference trajectories and constrained control of a quadrotor platform.
The approach uses the state-dependent coefficient form to capture the system nonlinearities into a
pseudo-linear system matrix. The state-dependent coefficient form is derived following a rigorous
analysis of aerial vehicle dynamics that systematically accounts for the peculiarities of such systems.
The same state-dependent coefficient form is exploited for obtaining a nonlinear equivalent of the
model predictive control. The nonlinear model predictive control law is derived by first transforming
the continuous system into a sampled-data form and and then using a sequential quadratic
programming solver while accounting for input, output and state constraints. The boundedness of
the tracking errors using the sampled-data implementation is shown explicitly. The performance of
the nonlinear controller is illustrated through representative simulations showing the tracking of
several aggressive reference trajectories with and without disturbances.

Keywords: nonlinear; model predictive control; constraints; trajectory tracking; stability

1. Introduction

A quadrotor helicopter platform (often just called a quadrotor) is an under-actuated helicopter
with two pairs of rotors in a cross-configuration capable of spinning at different angular velocities in
order to achieve translational and rotational motion. Rotor pair (1, 3) spins in one direction, while the
pair (2, 4) spins in the opposite (see Figure 1).

The different motions the quadrotor can perform are: (a) vertical motion: simultaneous change in
rotor speed; (b) roll motion: imbalance in the rotor speed of pair (2, 4); (c) pitch motion: imbalance in
the rotor speed of pair (1, 3); (d) yaw motion: imbalance between all rotors.

Quadrotors have gained popularity as research platforms because of their simplicity of design
and low cost of manufacturing. Because they are challenging vehicles to control, wherever operated
in an indoor environment or in the open field, they serve as great platforms for research. They also
possess many advantages over standard helicopters in terms of safety and efficiency at small sizes [1].
There are many applications for a quadrotor platform, both in the military and the civil sectors, which
are summarized quite extensively in [2–6].
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Figure 1. Diagram of a quadrotor, top view.

To enable autonomous operations of a quadrotor, the research community typically focuses on
the following aspects of the quadrotor: kinematics and dynamics of the vehicle; trajectory generation
(path planning); guidance, navigation and control.

The focus of this paper is to synthesize a nonlinear model predictive control law for tracking a
trajectory to be followed by a quadrotor. The applications are typically way-point navigation and
tracking certain agile maneuvers [7–10]. Since the quadrotor can only generate forces normal to the
plane that contains the rotors, the translational and rotational dynamics are significantly coupled.
This restricts the quadrotor from performing certain maneuvers [11] that are possible with a fixed
wing aircraft and the more conventional helicopter. In what follows, some key works relevant to these
topics are summarized, and the layout of the paper is outlined.

A significant amount of research has been performed in the area of trajectory generation and
constrained control of unmanned vehicles that apply to quadrotors alike. The work in [12,13] discusses
the generation of trajectories for robots, wherein a spline interpolation method is used to solve a
minimum time optimization problem, while staying under torque and velocity constraints. The work
in [14] also used a spline interpolation method to generate optimal-time trajectories and applied it to a
micro-quadrotor. For reference trajectory generation, [7] develops the governing equations of motion
and describes the trajectories as algebraic functions of a flat output: outputs that can express the states
and inputs of the system in terms of its outputs and their derivatives [15]. This approach facilitates
the automatic trajectory generation for the system. In [9], trajectories are generated by designing a
sequence of controllers to drive the system to a desired goal state. The works in [1,16] discuss the
design of safe, aggressive maneuvers and control for a back flip trajectory. The work in [17] constructed
a dynamically feasible, desired speed profile for a given sequence of waypoints. The authors in
[18,19] worked on trajectory generation for quadrotors by implementing dynamic constraints to an
optimal control method and verified the existence of optimal trajectories. The work in [20] addresses
the problem of quadrotor trajectory generation and tracking while carrying a suspended payload.
They solved this by developing an optimal controller based on the dynamic programming technique:
breaking down a problem into several sub-problems. It should be recognized that translational control
of the quadcopter is very strongly coupled with the rigid body rotation especially for the longitudinal
and lateral motion. The stability of such platforms has been studied, and some notable techniques that
address the stability by separating the fast and slow dynamics can be found in [21,22].

Virtually every possible control technique, linear control, such as PID and linear quadratic
methods, robust linear control and nonlinear control [23,24] techniques, such as adaptive control,
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iterative learning control [25], neural networks [26], sliding mode, among others, have been tried
and tested in simulations and on actual flying test platforms. Since the quadrotor can only produce
bounded forces and that too only along one direction, the platform is input constrained. All of the
earlier mentioned control techniques apply the input constraints post-facto, while model predictive
control (MPC) provides a framework to impose input constraints as part of the control synthesis. Since
the quadrotor is also constrained in operation in state-space, the platform essentially is state and input
constrained. These state and input constraints along with goal states, as well as trajectory constraints
(equality and inequality) can all be effectively integrated into the MPC framework. The work in [27]
looked into the nonlinear model predictive tracking control (NMPTC) technique and applied it to
generate trajectories to unmanned rotorcraft while staying under input and state constraints.

This paper focuses on the development of the nonlinear model predictive control (NMPC)
formulation to derive an optimal controller subject to input, state and output constraints. This
is accomplished by formulating the nonlinear system dynamics using a state-dependent coefficient
(SDC) form, which allows the representation of the system in a pseudo-linear form. The performance
of this controller is illustrated via candidate simulations for tracking aggressive reference trajectories
in the presence of high frequency disturbances in the roll and pitch channels.

The rest of the paper is organized as follows. A brief overview of the governing equations
of motion is first presented. This is followed by elaborating the MPC technique for a linearized
quadrotor model (about the hover equilibrium) for the sake of completeness. The SDC form of the
nonlinear quadrotor model is presented next, which highlights key differences in the presented model
from those in other comparable works. Following this, the state-dependent Riccati equation (SDRE)
approach to deriving a nonlinear sub-optimal controller is presented that uses the aforementioned
SDC form. The nonlinear model predictive controller (NMPC) is developed using a discretized form
(sampled-data form) of the SDC model. The boundedness of the trajectory tracking errors is shown for
the NMPC, and simulation results are presented that compare the performance of linear and nonlinear
MPC techniques, highlighting key areas where the nonlinear controller performs better. The simulation
results correspond to representative maneuver scenarios. Finally, a brief summary of the work and
conclusions thereof are presented.

2. Mathematical Model of the Quadrotor

Let {OE, XE, YE, ZE} denote the Earth-fixed inertial frame and {OB, XB, YB, ZB} the body-fixed
frame, whose origin OB is at the center of mass of the quadrotor. The inertial position of the quadrotor
is defined by p = [x, y, z]T and the attitude by the Euler angles: roll, pitch and yaw (Θ = [φ, θ, ψ]T).
RBI ∈ SO(3) is the direction cosine matrix representing the inertial to body frame transformation.
VB = [Vx, Vy, Vz]T is the inertial velocity of the quadrotor expressed in the body frame components,
and Ω = [p, q, r]T is the angular velocity expressed in the body frame components. Neglecting the
aerodynamic and gyroscopic effects, the quadrotor model can be shown as [28]:

ṗ = RT
BIVB

V̇B = −Ω×VB + RBI(gê3) +
T
m ê3

Θ̇ = W(φ, θ, ψ)Ω

Ω̇ = J−1(−Ω× JΩ + τ)

(1)

where ê3 = [0 0 1]T , τ = [τ1 τ2 τ3]
T , and:

RBI(φ, θ, ψ) =

 cos θ cos ψ cos θ sin ψ − sin θ

sin θ cos ψ sin φ− sin ψ cos φ sin θ sin ψ sin φ + cos ψ cos φ cos θ sin φ

sin θ cos ψ cos φ + sin ψ sin φ sin θ sin ψ cos φ− cos ψ sin φ cos θ cos φ
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W(φ, θ, ψ) =

 1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ

 J =

 Jx

Jy

Jz

 (2)

The constants g, m, J in the equation denote the acceleration due to gravity, the mass and moment
of inertia of the quadrotor, respectively. The body axes are assumed oriented along the principal
axes without loss of any generality, and hence, the moment of inertia matrix is a diagonal matrix,
J = diag(Jx, Jy, Jz). T and τ represent the total thrust and torques about the body axes of the
quadrotor.

In addition, the relations between the total thrust (T), torque (τ) components and the individual
rotor thrusts (F1, F2, F3, F4) can be expressed as:

T
τ1

τ2

τ3

 =


−1 −1 −1 −1
0 −L 0 L
L 0 −L 0
−c c −c c




F1

F2

F3

F4

 (3)

where L is the distance from the rotor to the center of gravity (CG) of the quadrotor and c is a constant
that relates the rotor angular momentum to the rotor thrust (normal force). Combining Equations (1)
and (3), a more comprehensive model can be written as:


ṗ

V̇B

Θ̇

Ω̇

 =


RT

BIVB

−ΩVB + RBI(gê3)

W(φ, θ, ψ)Ω

J−1(−Ω× JΩ)

+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
− 1

m − 1
m − 1

m − 1
m

0 0 0 0
0 0 0 0
0 0 0 0
0 −J−1

x L 0 J−1
x L

J−1
y L 0 −J−1

y L 0
−J−1

z c J−1
z c −J−1

z c J−1
z c




F1

F2

F3

F4

 (4)

Let x = [pT VB
T ΘT ΩT ]T and u = [F1 F2 F3 F4]

T . Equation (4) can be compactly written as:

ẋ = f(x) + Bcu (5)

Given the nature of the quadrotor, the range of operation of the vehicle is restricted as shown
below. At a pitch angle of θ = ±π

2 , the matrix W(φ, θ, ψ) in Equation (2) becomes singular.

−π ≤ φ ≤ π

−π
2 < θ < π

2
−π < ψ < π

(6)

Actuator dynamics for each rotor is assumed to be a first order system [29]:

Ḟi = λF(Fc
i − Fi), i = 1, 2, 3, 4. (7)

where Fc
i denotes the commanded value for rotor lift (thrust) and λF denotes the first order actuator

time constant (assumed the same for all of the rotors). Actuator dynamics is ignored for prediction,
but is used for state propagation.
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3. Linear Model Predictive Control of a Quadrotor

This section summarizes the model predictive control (MPC) algorithm for the sake of
completeness. MPC, which can also be called receding horizon control (RHC), is a technique in
which a mathematical model of a system is used to solve a finite, moving horizon, closed loop optimal
control problem [30] by using the current states of the system [31]. MPC is able to take into account the
physical and mechanical limitations of the plant during the design process [32] and predict a number of
future outputs of the system (called the prediction horizon), in order to formulate an optimal controller
effort to bring the system to a desired state given a reference trajectory.

This optimization problem is solved at each sampling interval for the specified prediction horizon,
but only the first step of the solution to the optimization problem is applied to the system until the next
sampling interval. This routine is repeated for all subsequent time intervals (see [33]). In the following
section, the MPC technique as applied to a linear system (LMPC) is elaborated.

3.1. Plant Model and Prediction Horizon

Given the nonlinear system of the form:

ẋ = f(x(t), u(t))

y = h(x(t), u(t)) (8)

where x(t) ∈ <n are the system states, u(t) ∈ <m are the system inputs and y(t) ∈ <p are the system
outputs as functions of time t. In general m < n and m < p. f and h are vector valued functions in
C2. Note, the combined quadrotor governing equations of motion (Equation (4)) constitute such a
nonlinear dynamic system where n = 12 and m = 4. This system can be linearized about a desired
operating point, such as “hover”. The values of the states and the controls for such an operating point
will be denoted as the ordered pair, {xT , uT}. The equivalent discretized linear system assuming
a sampling interval Ts can be summarized as follows,

∆xk+1 = A∆xk + B∆uk

∆yk = C∆xk + D∆uk (9)

where k is the current sample, ∆xk = xk − xT , ∆uk = uk − uT , A ∈ <n×n is the state matrix, B ∈ <n×m

is the input matrix, C ∈ <p×n is the output matrix and D ∈ <p×m is the input feedforward matrix. The
equilibrium control input in the case of “hover” is uT =

[mg
4

mg
4

mg
4

mg
4
]T .

The objective of the linear MPC is to drive the system towards a desired state. Based on the model
of Equation (9) [34], the controller predicts the future states progression as a function of current states
and future inputs:

∆xk+i+1 = A∆xk+i + B∆uk+i

∆yk+i = C∆xk+i + D∆uk+i (10)

where i = 1, 2, . . . , N. Thus, the standard prediction equations can be written as,

∆Xk = F∆xk + H∆Uk

∆Yk = C̄∆Xk + D̄∆Uk (11)
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where,

∆Xk =


∆xk
∆xk+1
∆xk+2
...
∆xk+N−1

 , ∆Uk =


∆uk
∆uk+1
∆uk+2
...
∆uk+N−1

 , ∆Yk =


∆yk
∆yk+1
∆yk+2
...
∆yk+N−1

 , F =


I
A
A2

...
AN−1



H =


0
B 0
AB B 0
...

...
. . .

. . .
AN−2B AN−3B · · · B 0

 , C̄ =


C

C
C

. . .
C

 , D̄ =


D

D
D

. . .
D


Since D = 0 in most applications, it is assumed for the rest of the analysis:

∆Xk = F∆xk + H∆Uk

∆Yk = C̄∆Xk (12)

The terminal state and output are given by:

∆xk+N = AN∆xk + B̄∆Uk, ∆yk+N = C∆xk+N

where:
B̄ =

[
AN−1B AN−2B · · · AB B

]
3.2. Controller Design

The MPC algorithm requires the use of an objective function in its control formulation in order
to calculate the optimal solution at each sampling interval. It must be chosen in a way such that the
predicted outputs, derived from the prediction horizon N (Equation (11)), are driven to a desired state
or track a desired trajectory yr

k, while at the same time, it should minimize the controller effort ∆uk
required [35]. For the quadrotor scenario, the penalty function penalizes the norm of the difference
between the current output states and the desired trajectory and the norm of actuator inputs. It is of
the form:

J(∆xk, ∆Uk) = (∆Yk − ∆Yr
k)

TQ̄N(∆Yk − ∆Yr
k) + ∆UT

k R̄N∆Uk + (∆yk+N − ∆yr
k+N)

TQ f (∆yk+N − ∆yr
k+N) (13)

It is important to note that usually, the reference trajectory ∆yr
k+i = yr

k+i − yT , i ∈ (1, · · · , N) is
known in advance. Furthermore, ∆Yr

k is defined as:

∆Yr
k =


∆yr

k
∆yr

k+1
...
∆yr

k+N−1


This implies that the controller is able to predict a series of adequate inputs that will drive the

system towards the desired goal. In the quadratic form of (Equation (13), the term Q̄N and R̄N are
defined as:
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Q̄N =


Q

Q
. . .

Q

 , R̄N =


R

R
. . .

R


where Q, Q f ∈ <p×p and R ∈ <m×m are all diagonal, and they satisfy Q ≥ 0, Q f ≥ 0
and R > 0. Q f is chosen based on the solution to the discrete algebraic Riccati equation
using P = ATPA−ATPB(R + BTPB)−1BTPA + Q. Q f is set equal to P. With proper substitution,
it follows that,

J(∆xk, ∆Uk) = ∆UT
k

[
HTC̄TQ̄NC̄H + R̄N + B̄TCTQ f CB̄

]
∆Uk

+ 2
((

C̄F∆xk − ∆Yr
k
)T Q̄NC̄H +

(
CAN∆xk − ∆yr

k+N

)T
Q f CB̄

)
∆Uk

+
(
C̄F∆xk − ∆Yr

k
)T Q̄N

(
C̄F∆xk − ∆Yr

k
)

+
(

CAN∆xk − ∆yr
k+N

)T
Q f

(
CAN∆xk − ∆yr

k+N

)
(14)

Quadratic programming: Since the cost function from Equation (14) is of quadratic form, a quadratic
programming (QP) method can be used to solve the optimization problem [36]. The idea behind QP
is to minimize the quadratic function J(∆xk, ∆Uk) in Equation (14) by looking for a feasible search
direction ∆Uk.
Input and state constraint handling: Special attention is given to the constraint handling capabilities
of the MPC problem formulation now that the objective function has been specified (Equation (14)). In
the case of the quadrotor, it is necessary to constrain both the total thrust force of each rotor and restrict
the magnitude of the angles in order to stay within the limits allowed by the Euler angles’ formulation
discussed previously.

3.3. Input Constraints

It is necessary to constrain the maximum force each rotor is able to deliver in order to make the
quadrotor perform in such a way that it resembles a more realistic physical model. The forces need to
be within some lower bound ulb and some upper bound uub, ulb ≤ uk+i ≤ uub for i = 0, 1, 2, . . . , N− 1.
However, the MPC problem is solved to obtain the perturbation controls since the model employed
is the linearized dynamics about the equilibrium point. Since, uk+i = uT + ∆uk+i, it can be seen
that ulb ≤ uT + ∆uk+i ≤ uub. Alternately, ulb − uT ≤ ∆uk+i ≤ uub − uT . These constraints can be
expressed in matrix form as follows:[

Im×m

−Im×m

]
∆uk+i ≤

[
(uub − uT)

− (ulb − uT)

]
(15)

where Im×m is an m × m identity matrix. After proper arrangement, the input constraint can be
represented as:

MU∆Uk ≤ ∆Ub (16)
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where:

MU =



[
Im×m

−Im×m

]
[

Im×m

−Im×m

]
. . . [

Im×m

−Im×m

]


, ∆Ub =



[
(uub − uT)

− (ulb − uT)

]
[

(uub − uT)

− (ulb − uT)

]
...[

(uub − uT)

− (ulb − uT)

]


(17)

3.4. Output and State Constraints

It is also of high importance to limit the angles so that no kinematic singularities are encountered
due to the limitations in the model description. In the case of the quadrotor, the angles need to
be within the bounds specified by Equation (6). If a particular output, such as the pitch angle,
θ needs to be constrained, the corresponding output is defined as ∆z = Cz∆xk. The constraints are
represented as zlb ≤ Czxk+i ≤ zub for i = 0, 1, 2, . . . , N − 1, where zlb and zub are the upper and
lower bounds for the output variables. Since xk+i = xT + ∆xk+i, zlb ≤ Cz (xT + ∆xk+i) ≤ zub. Thus,
zlb −CzxT ≤ Cz∆xk+i ≤ zub −CzxT . It can be represented in matrix form as:[

Cz

−Cz

]
∆xk+i ≤

[
(zub −CzxT)

− (zlb −CzxT)

]
(18)

With proper arrangement and substitution of ∆Xk from (12), the constraints can be expressed in
terms of ∆Uk as:

Cz (F∆xk + H∆Uk) ≤ ∆Zb (19)

where:

Cz =



[
Cz

−Cz

]
[

Cz

−Cz

]
. . . [

Cz

−Cz

]


, ∆Zb =



[
(zub −CzxT)

− (zlb −CzxT)

]
[

(zub −CzxT)

− (zlb −CzxT)

]
...[

(zub −CzxT)

− (zlb −CzxT)

]


(20)

3.5. Combined Input and Output State Constraints

Both the input and output variable constraints can be integrated into one equation as shown below.

MU∆Uk ≤ ∆Ub from Equation (16)

Cz (F∆xk + H∆Uk) ≤ ∆Zb from Equation (19)

or CzH∆Uk ≤ ∆Zb − CzF∆xk

∴ Γ∆Uk ≤ Υ (21)



Aerospace 2017, 4, 31 9 of 25

where Υ is a matrix containing both input and output variable constraints and:

Γ =

[
MU

CzH

]
, Υ =

[
∆Ub

∆Zb − CzF∆xk

]

3.6. Stability of Unconstrained Linear MPC

Without loss of generality, an “informal” proof of stability will be given only for the regulator
case. For trajectory tracking problems, an error system can always be constructed with the new state
being e = x− xr. With the proper feed-forward input, the new system would be of the same form as
the regulator.

The cost function in Equation (14) can be simplified respectively as:

J(∆xk, ∆Uk) = ∆UT
k

(
HTC̄TQ̄NC̄H + R̄N + B̄TCTQ f CB̄

)
∆Uk

+ 2
((

C̄F∆xk
)T Q̄NC̄H +

(
CAN∆xk

)T
Q f CB̄

)
∆Uk

+
(
C̄F∆xk

)T Q̄N
(
C̄F∆xk

)
+
(

CAN∆xk

)T
Q f

(
CAN∆xk

)
(22)

Assuming there are no constraints present on the inputs or states, the optimal control ∆U∗k can be

determined by setting
∂J (∆xk, ∆Uk)

∂∆Uk
= 0, i.e.,

∆U∗k = −
(

HTC̄TQ̄NC̄H + R̄N + B̄TCTQ f CB̄
)−1 [(

C̄H
)T Q̄NC̄F + (CB̄)T Q f CAN

]
∆xk (23)

Additionally, the control input ∆u∗k can be extracted as follows.

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (24)

Combining Equations (23) and (24), ∆uk can be simplified.

∆u∗k = −Kk∆xk (25)

where:

Kk = [Im×m 0m×m · · · 0m×m]
[
HTC̄TQ̄NC̄H + R̄N + B̄TCTQ f CB̄

]−1 [(
C̄H
)T Q̄NC̄F + (CB̄)T Q f CAN

]
(26)

According to [37], if Q f in Equation (22) satisfies the following inequality:

CTQ f C ≥ CTQC + KT
k RKk + (A− BKk)

TCTQ f C(A− BKk) (27)

for some Kk ∈ Rm×n, then the system of Equation (9) driven by control ∆u∗k of Equation (24) is stable
(note, the input feedforward matrix D = 0).

The optimal cost J(∆xk, ∆U∗k ) satisfies the following monotonicity condition:

J(∆xk, ∆U1∗
k , N + 1) ≤ J(∆xk, ∆U2∗

k , N) (28)

where N denotes the prediction horizon and ∆U1∗
k , ∆U2∗

k represent the optimal control derived from
minimizing their respective cost functions. Imagine a new control input ∆U1

k by using ∆U2∗
k up to time

k + N − 1 and ∆uk+N = −Kk∆xk+N ; the cost for this control would be:



Aerospace 2017, 4, 31 10 of 25

J(∆xk, ∆U1
k , N + 1) =

k+N−1

∑
i=k

(∆xT
i CTQC∆xi + ∆uT

i R∆ui) + ∆xT
k+NCTQC∆xk+N

+ ∆xk+NKk
TRKk∆xk+N + ∆xT

k+N(A− BKk)
TCTQ f C(A− BKk)∆xk+N (29)

Since J(∆xk, ∆U1∗
k , N + 1) is optimal and denoting ∆J = J(∆xk, ∆U1∗

k , N + 1)− J(∆xk, ∆U2∗
k , N),

the following applies:

∆J ≤ J(∆xk, ∆U1
k , N + 1)− J(∆xk, ∆U2∗

k , N)

≤ ∆xT
k+NCTQC∆xk+N + ∆xk+NKTRK∆xk+N

+ ∆xT
k+N(A− BKk)

TCTQ f C(A− BKk)∆xk+N − ∆xT
k+NCTQ f C∆xk+N

≤ ∆xT
k+N [C

TQC + Kk
TRKk + (A− BKk)

TCTQ f C(A− BKk)−CTQ f C]∆xk+N

≤ 0 (30)

thus proving the cost monotonicity condition. From the cost monotonicity condition, the following
non-increasing sequence can be obtained:

J(∆xk, ∆U∗k , N) = ∆xT
k CTQC∆xk + ∆uT

k R∆uk + J(∆xk+1, ∆U∗k+1, N − 1)

≥ ∆xT
k CTQC∆xk + ∆uT

k R∆uk + J(∆xk+1, ∆U∗k+1, N)

≥ J(∆xk+1, ∆U∗k+1, N) (31)

Since a non-increasing sequence bounded from below converges to a constant, J(∆xk, ∆U∗k , N) ≥ 0,
and hence, J(∆xk, ∆U∗k , N)→ a nonnegative constant as k→ ∞. Thus,

i+j

∑
k=i

(
∆xT

k CTQC∆xk + ∆uT
k R∆uk

)
→ 0, j = 0, 1, 2, · · · (32)

which leads to the following equation:

i+j

∑
k=i

∆xT
k [(A− BKk)

j]T(CTQC + KT
k RKk)[(A− BKk)

j]∆xk → 0, j = 0, 1, 2, · · · . (33)

It is proven in [38] that if (A, C) is observable, then:(
(A− BKk),

[ √
QC√
RKk

])

is observable for any Kk. Thus, the only solution that could guarantee this is the trivial solution ∆xk = 0.
Hence, system Equation (9), driven by control ∆u∗k of Equation (24) by minimizing the quadratic cost
Equation (22), is stable. Back to our control law design, if a Q f is carefully selected such that CTQ f C
is the solution of the Discrete Algebraic Riccati Equation (DARE), thus automatically satisfying the
Equation (27), the optimal control given by Equation (25) asymptotically stabilizes system Equation (9).
Since full state feedback is assumed for this problem (C = I), this can be easily accomplished.

3.7. Stability of Constrained Linear MPC

Again without loss of generality, only stability for the regulator case is considered here.
To guarantee the same monotonicity condition as Equation (28), it must be guaranteed that the
system is feasible. The following linear matrix inequalities (LMI) are constructed for this purpose.
There must exist a set of (Q f , Q, R, Kk, ∆Uk) that satisfies the following conditions:

γ < ∞ (34)
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 γ− 2
[(

C̄F∆xk
)T Q̄NC̄H +

(
CAN∆xk

)T Q f CB̄
]

∆Uk ∆UT
k

∆Uk

(
HTC̄TQ̄NC̄H + R̄N + B̄TCTQ f CB̄

)−1

 ≥ 0 (35)

Γ∆Uk ≤ Υ (36)


(CTQ f C)−1 (CTQ f C)−1(A− BKk)

T (CTQ f C)−1
√

CTQC (CTQ f C)−1Kk
T
√

R
(A− BKk)(CTQ f C)−1 (CTQ f C)−1 0n×n 0n×n√

CTQC(CTQ f C)−1 0n×n In×n 0n×n√
RKk(CTQ f C)−1 0n×n 0n×n In×n

 ≥ 0 (37)

[
Im×m

−Im×m

]
Kk

(
AN∆xk + B̄∆Uk

)
≤

[
(uub − uT)

− (ulb − uT)

]
(38)[

Cz

−Cz

]
(A− BKk)

(
AN∆xk + B̄∆Uk

)
≤

[
(zub −CzxT)

− (zlb −CzxT)

]
(39)

It should be noted here that CTQ f C needs to be full rank. Since the constraints contain constant
terms, this condition only needs to be checked just once at the beginning. After obtaining a suitable
(Q f , Q, R) from the above LMI, ∆U∗k is obtained by solving the following optimization problem:

∆U∗k = arg min
∆Uk

γ

subject to Equations (34)–(39).
The solution to the above-mentioned optimization problem yields ∆u∗k ,

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (40)

The same proof of asymptotic stability from the unconstrained case can then be used here once
the feasible control action is determined. Thus, system Equation (9) driven by control Equation (40)
subject to constraints Equation (21) is stable. Note, the stability of such platforms with coupled fast
and slow dynamics has been studied extensively by other researchers, and some notable techniques,
such as singular perturbation control can be found in [21,22]. In the present context, the translational
control in the horizontal plane (forward and lateral directions) can only be affected by the pitch and roll
angles. Thus, it is imperative for the quadrotor platform to have a very robust pitch and roll control. In
our present work, we do not explicitly address this time scale decomposition, since the closed loop
system is guaranteed stable with an appropriate choice of the weighting matrices. Robustness could
be improved by further turning these weighting matrices.

4. Nonlinear Model Predictive Control Formulation

In this section, the procedure to develop the nonlinear model predictive controller (NMPC) is
elaborated. The essential idea is to utilize the state-dependent coefficient (SDC) factorization [39] of
the nonlinear dynamics. A state space representation of the quadrotor is obtained, where each of its
system matrices are now expressed as functions of the current state [40]. Consider a dynamic system as
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in Equation (8). The NMPC formulation involves transforming the nonlinear system into the following
state space form,

ẋ = Ac(x)x + Bc(x)u

y = Cc(x)x + Dc(x)u (41)

where x ∈ <n is the state vector, u ∈ <m is the input vector, y ∈ <p is the output vector and
Ac(x) ∈ <n×n, Bc(x) ∈ <n×m, Cc(x) ∈ <p×n and Dc(x) ∈ <p×m are the pseudo-linear system matrices
in the SDC form, as well as the pairs (Ac(x), Bc(x)) and (Ac(x), Cc(x)) are stabilizable and detectable
∀x ∈ <n, respectively. It is important to note that this representation of Ac(x), Bc(x), Cc(x) and Dc(x)
is not unique in general, except for a scalar system. Different state-dependent coefficient matrices can
be obtained from the equations of motion, and a solution to the optimization problem may or may not
exist. However, a particular factorization (shown later) is derived here. The discrete-time equivalent
of Equation (41) is obtained by using a zero-order-hold (ZOH) with a specified sample time. Let the
discrete-time equivalent of the system be of the following form:

xk+1 = A(xk)xk + B(xk)uk

yk = C(xk)xk (42)

where A(xk) and B(xk) are discrete approximations of the continuous Ac(x) and Bc(x), respectively.
From the description of the quadrotor, it can be seen that D(xk) = 0 and B(xk) = B (a constant

matrix). Since Equation (42) is of the pseudo-linear form, the system matrices can be considered to
be constants for each sampling interval, i.e., [tk, tk+1) with tk+1 − tk = ∆t. It should be noted that in
Equation (41), the first term Ac(x)x vanishes if x = 0. For the quadrotor case (Equation (5)), f (x) does
not completely vanish when x = 0. Thus, a slight change is needed in Equation (41) to account for this.
The quadrotor system will be transformed into the form:

ẋ = Ac(x)x + Bc(x) (u0 + δu) (43)

where u0 represents the constant force term that is required to balance the weight of the quadrotor.
It is assumed that the quadrotor starts from an initial equilibrium state. The new control design
then focuses on the synthesis of δu. Clearly, when δu = 0, for the “hover” equilibrium case, ẋ = 0,
since Ac(x)x + Bc(x)u0 = 0. One possible way to factorize the equations of motion into the SDC form
is presented in Equation (44).

Ac(x) =


03×3 RT

BI 03×3 03×3

03×3 A22 A23 A24

03×3 03×3 03×3 W
03×3 03×3 03×3 A44

 (44)

where:

A22 =

 0 r
2 − q

2
− r

2 0 p
2

q
2 − p

2 0

 , A23 =

 0 −g sin θ
θ 0

g cos θ sin φ
φ 0 0

g (cos θ+1)(cos φ−1)
2φ g (cos φ+1)(cos θ−1)

2θ 0



A24 =

 0 −w
2

v
2

w
2 0 − u

2
− v

2
u
2 0

 , A44 =


0 (Jy−Jz)r

2Jx

(Jy−Jz)q
2Jx

(Jz−Jx)r
2Jy

0 (Jz−Jx)p
2Jy

(Jx−Jy)q
2Jz

(Jx−Jy)p
2Jz

0





Aerospace 2017, 4, 31 13 of 25

and Bc is the same as in Equation (4). One issue that arises from this SDC form is that the term like
sin θ

θ does not exist when θ = 0. To prevent this from happening, the first three terms of Taylor series
expansions of sin θ, sin φ, (cos θ − 1) and (cos φ− 1) are used here to provide a close approximation
(in reality, the approximations only differ from their true values 4% at most in the range of (−π

2 , π
2 )).

By doing this, A23 can be expressed as shown in Equation (45).

A23 =


0 −g(1− θ2

3 ! +
θ4

5 ! ) 0

g cos θ(1− φ2

3 ! +
φ4

5 ! ) 0 0

g cos θ+1
2 (− φ

2 + φ3

4 ! −
φ5

6 ! ) g cos φ+1
2 (− θ

2 + θ3

4 ! −
θ5

6 ! ) 0

 (45)

Considering the specific aspects of the quadrotor as detailed above, the discretized system for the
derivation of the NMPC is summarized below:

xk+1 = A(xk)xk + B (uT + δuk)

yk = C(xk)xk (46)

where the fact that for this system, B(xk) = B (a constant matrix) is used. Following the same
approach as outlined for the linear MPC, we arrive at the N step state prediction equations (similar to
Equation (12)):

Xk = F(xk)xk + H(xk)(UT + ∆Uk)

Yk = C̄(xk)Xk (47)

where,

Xk =


xk
xk+1
xk+2
...
xk+N−1

 , UT =


uT
uT
uT
...
uT

 , ∆Uk =


δuk
δuk+1
δuk+2
...
δuk+N−1

 , Yk =


yk
yk+1
yk+2
...
yk+N−1



F(xk) =


I
A(xk)

A(xk)
2

...
A(xk)

N−1

 , H(xk) =


0
B 0
A(xk)B B 0
...

...
...

...
A(xk)

N−2B A(xk)
N−3B · · · B 0



C̄(xk) =


C(xk)

C(xk)

C(xk)
. . .

C(xk)


Similarly, the terminal state and output is given by:

xk+N = A(xk)
Nxk + B̄(xk)(UT + ∆Uk), yk+N = C(xk)xk+N

where:

B̄(xk) =
[
A(xk)

N−1B A(xk)
N−2B · · · A(xk)B B

]
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The nonlinear MPC uses the same algorithm as the linear MPC to calculate the solution to the
minimization of the cost function outlined in Equation (13). The main difference between the linear
and nonlinear version of the MPC is that now, the objective function depends on the current states
of the system and needs to be calculated at the start of each sample interval. The objective function
Equation (14) then becomes:

J(xk, Uk) = ∆UT
k

(
H(xk)

TC̄(xk)
TQ̄NC̄(xk)H(xk) + R̄N + B̄(xk)

TC(xk)
TQ f C(xk)B̄(xk)

)
∆Uk

+ 2
[(

C̄(xk)F(xk)xk − Yr
k
)T Q̄NC̄(xk)H(xk) + (C(xk)A(xk)

Nxk − yr
k+N)TQ f C(xk)B̄(xk)

]
∆Uk

+ UT
T

(
H(xk)

TC̄(xk)
TQ̄NC̄(xk)H(xk) + R̄N + B̄(xk)

TC(xk)
TQ f C(xk)B̄(xk)

)
UT

+ 2
[(

C̄(xk)F(xk)xk − Yr
k
)T Q̄NC̄(xk)H(xk) + (C(xk)A(xk)

Nxk − yr
k+N)TQ f C(xk)B̄(xk)

]
UT

+ (C̄(xk)F(xk)xk − Yr
k)

TQ̄N(C̄(xk)F(xk)xk − Yr
k)

+ (C(xk)A(xk)
Nxk − yr

k+N)TQ f (C(xk)A(xk)
Nxk − yr

k+N) (48)

As with the linear case, Q f is chosen based on the solution to the discrete algebraic Riccati equation using:

P(xk) = A(xk)
TP(xk)A(xk)−A(xk)

TP(xk)B(R + BTP(xk)B)
−1BTP(xk)A(xk) + Q (49)

and Q f is set equal to P(xk). This calculation is performed at each sample instant as opposed to just once, which
was the case in the linear control law derivation.

The cost function is seen to be quasi-quadratic, and the regular quadratic programming method is used
to solve for the control (Equation (48)). Similar to Equation (21), the input and output variable constraints are
integrated into one equation of the form:

Γ(xk)∆Uk ≤ Υ(xk) (50)

where Υ(xk) is a matrix containing both input and output variable constraints and:

Γ(xk) =

[
MU

Cz(xk)H(xk)

]
, Υ(xk) =

[
∆Ub

Zb − Cz (xk)(F(xk)xk + H(xk)UT)

]

where,

∆Ub =



[
(uub − uT)

− (ulb − uT)

]
[

(uub − uT)

− (ulb − uT)

]
...[

(uub − uT)

− (ulb − uT)

]


, Zb =



[
zub
−zlb

]
[

zub
−zlb

]
...[
zub
−zlb

]


Note, the inequality in Equation (50) needs to be checked at the start of every new prediction. Alternately,

the feasibility of the solution to the LMIs for NMPC needs to be evaluated at every new prediction.

5. Stability of Nonlinear Model Predictive Control Solution

In this section, the stability of the closed loop system with the NMPC solution from minimizing the cost
function in Equation (48) subject to the input and state constraints in Equation (50), when applied to the dynamics
in Equation (1), is shown. It is shown that the control scheme when applied to the quadrotor model results in
bounded tracking errors, while guaranteeing internal stability. The bounded stability is shown for a general class
of nonlinear systems representative of the application under consideration. Consider the nonlinear system:

ẋ = f(x) + g(x)u, x(0) = x0 (51)
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with the definition of the state and control variables to be the same as what was discussed in earlier sections. The
mappings f : <n → <n and g : <m → <n are sufficiently smooth. A pseudo-linear description of Equation (51) is
the pair (Ac(x), Bc(x)), such that,

ẋ = Ac(x)x + Bc(x)u, x(0) = x0 (52)

Since the control implementation essentially renders the closed loop system to be a sampled-data system,
the stability problem is addressed by first considering the unconstrained sampled-data NMPC for the SDC system
in Equation (52). The constrained sampled-data NMPC is considered later.

5.1. Stability of Unconstrained Sampled-Data NMPC Based on the SDC System

Assumptions:

• (Ac(x), Bc(x)) is point-wise controllable. Thus, ∀ x ∈ <n, i.e., ∃ Kc(x) ∈ <m×n, such that
(Ac(x)− Bc(x)Kc(x)) is point-wise Hurwitz.

• Kc(x) is obtained as a solution to a state-dependent Riccati equation using the system matrices in the SDC
form. The control law is thus expressed as,

uc = −Kc(x)(x− xr) (53)

• xr(t) is an admissible reference state trajectory, i.e., xr(t) satisfies the governing equations of motion, as well
as the state constraints.

• The reference control inputs ur(t) obtained from Equation (51) together with xr(t) and ẋr(t) satisfy the
control constraints discussed previously.

• The solution is feasible for the given predictive horizon.

In this section, following a similar approach reported in [41], it will be first shown that for an appropriate
sample time ∆t, the ZOH control, computed as:

uc(k∆t) = −Kc(x(k∆t)) (x(k∆t)− xr(k∆t))

when applied to the nonlinear system in Equation (51) results in bounded trajectory tracking errors, i.e., ‖x(k∆t)−
xr(k∆t)‖ < ε, ε > 0 for k > kN , where kN ∈ Z+. For the rest of the discussion, x(k∆t) and uc(k∆t) will be simply
written as xk and uk.

For t ∈ [k∆t, (k + 1)∆t), the frozen in time SDC representation for the system is considered; thus, the states
evolve as,

˙̃x = Ac(x̂k)x̃ + Bc(x̂k)uk, x̃(k∆t) = xk, t ∈ [k∆t, (k + 1)∆t)] (54)

At the next sampling interval [(k + 1)∆t, (k + 2)∆t), x̃((k + 1)∆t) is replaced with xk+1 measured from the
original system Equation (52), and the same process starts over again. To avoid potential ambiguities, the solution
of differential Equation (54) at the end of the interval, namely the value of x̃ as t→ (k + 1)∆t, is denoted as x̃′k+1.
Note, the control input uc is constant during the interval [k∆t, (k + 1)∆t)]. Under the assumptions stated earlier,
the control for Equation (54) will stabilize the original system Equation (52) provided the control law given by
Equation (53) will achieve uniformly globally asymptotic stability (UGAS) for System (51). It should be noted here
that this algorithm is merely a sampled-data implementation of Equation (53). The work in [41] proved the stability
of sampled-data control based on SDC provided that Pk obtained from Equation (49) converges to a constant
matrix; in other words, limk→∞ Pk exists. However, the convergence of Pk is hard, if not impossible to guarantee.
Here, an alternative proof with a different, albeit restrictive assumption, is given. Without loss of generality, only
the stability of the system for the regulator case, meaning xr = 0 at all times, is proven. Firstly, xk 6= 0 since xk = 0
dictates uk = 0, which makes it trivial. With a constant input uk during time interval t ∈ [k∆t, (k + 1)∆t], xk+1 is
obtained from the following:

xk+1 = xk +
∫ (k+1)∆t

k∆t

[
f(x(τ)) + g(x(τ))uk

]
dτ (55)

and obtain x̃′k+1 from:

x̃′k+1 = eA(xk)∆txk +
∫ (k+1)∆t

k∆t

(
eA(xk)(s−τ)B(xk)uk

)
dτ (56)

The control input uk is designed based on (56), such that:

‖x̃′k+1‖ < ‖xk‖
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It should be noted that such an input uk will always exist since the system in Equation (52) is assumed
point-wise controllable. The local truncation error (between the true nonlinear system and the discretized
pseudo-linear system subject to the ZOH control law) at the end of the time interval is defined as:

ek+1 = x̃′k+1 − xk+1 (57)

Define a term λ(xk, ∆t) as:

λ(xk, ∆t) =
‖ek+1‖

‖x̃′k+1‖ − ‖xk‖

By taking the limit of λ(·, ∆t) when ∆t→ 0, the following is obtained:

lim
∆t→0

λ(xk, ∆t) = lim
∆t→0

‖x̃′k+1 − xk+1‖
‖x̃′k+1‖ − ‖xk‖

= lim
∆t→0

‖x̃′k+1 − xk+1‖
∆t

1
‖x̃′k+1‖−‖xk‖

∆t

Let:

λF(xk, ∆t) =
‖x̃′k+1 − xk+1‖

∆t
, λG(xk, ∆t) =

‖x̃′k+1‖ − ‖xk‖
∆t

One can then obtain:

lim
∆t→0

λF(xk, ∆t) = lim
∆t→0

‖x̃′k+1 − xk+1‖
∆t

= lim
∆t→0

‖(x̃′k+1 − xk)− (xk+1 − xk)‖
∆t

→ 0

lim
∆t→0

λG(xk, ∆t) = lim
∆t→0

‖x̃′k+1‖ − ‖xk‖
∆t

=
xT

k
(
f(xk) + g(xk)uk

)
‖xk‖

xk 6= 0⇒ f(xk) + g(xk)uk 6= 0. A stabilizing uk dictates xT
k
(
f(xk) + g(xk)uk

)
6= 0. From all of this, it can be

concluded that:

lim
∆t→0

λ(xk, ∆t) =
lim∆t→0 λF(xk, ∆t)
lim∆t→0 λG(xk, ∆t)

→ 0
xT

k

(
f(xk)+g(xk)uk

)
‖xk‖

= 0

Thus, ∃ ∆t ∈ (0, ∞), which ensures the corresponding λ(xk, ∆t) ∈ (0, 1). This leads to:

‖ek+1‖ = λ(xk, ∆t)
∣∣‖x̃′k+1‖ − ‖xk‖

∣∣ < ‖xk‖ − ‖x̃′k+1‖

Combined with Equation (57), one can then easily deduce that ‖xk+1‖ < ‖xk‖ which means that the system
would progress successively as, ‖xi+1‖ < ‖xi‖ i → 0, 1, 2, . . .. Therefore, one can conclude that ∃ ∆t ∈ [0, ∞),
which guarantees that a control law designed based on Equation (54) will stabilize the original system described by
Equation (51). Thus, it is shown that the sampled-data ZOH controller based on the pseudo-linear representation
in Equation (52) also ensures that the states of the true nonlinear system stay close to the states evolving based on
Equation (52). The next section focuses on the constrained sampled-data NMPC based on the SDC system.

5.2. Stability of Constrained Sampled-Data NMPC Based on SDC System

The only difference between the constrained sampled-data NMPC and constrained linear MPC is that the
feasibility of the system needs to be checked at the start of every sampling interval. For simplicity, the brackets
will be replaced as subscripts to indicate that the dependence on xk, (·)(xk) would be written as (·)k. Similarly for
each xk, there must exist a set of (Q f k, Qk, Rk, Kk, ∆Uk) that satisfy the following conditions:

γk < ∞ (58)[
γk − 2

[(
C̄kFkxk

)T Q̄Nk C̄kHk +
(

CkAN
k xk

)T
Q f kCkB̄k

]
∆Uk ∆UT

k

∆Uk
(

HT
k C̄T

k Q̄Nk C̄kHk + R̄Nk + B̄T
k CT

k Q f kCk B̄k
)−1

]
≥ 0 (59)

Γ(xk)∆Uk ≤ Υ(xk) (60)
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 (CT
k Q f kCk )

−1 (CT
k Q f kCk )

−1(Ak − BkKk )
T (CT

k Q f kCk )
−1
√

CT
k QkCk (CT

k Q f kCk )
−1KT

k
√

Rk
(Ak − BkKk)(CT

k Q f kCk )
−1 (CT

k Q f kCk )
−1 0n×n 0n×n√

CT
k QkCk (C

T
k Q f kCk )

−1 0n×n In×n 0n×n√
RkKk (C

T
k Q f kCk )

−1 0n×n 0n×n In×n

 ≥ 0 (61)

[
Im×m

−Im×m

]
Kk(A

N
k xk + B̄k∆Uk) ≤

[
(uub − uT)

− (ulb − uT)

]
(62)

[
Czk
−Czk

]
(Ak − BkKk)[A

N
k xk + B̄k(UT + ∆Uk)] ≤

[
zub
−zlb

]
(63)

After obtaining a suitable (Q f k, Qk, Rk) from the above LMI, ∆U∗k is obtained by doing the following
optimization:

∆U∗k = arg min
∆Uk

γk

subject to the conditions specified in Equations (58)–(63). Upon solving the optimization problem, ∆u∗k can be
obtained by:

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (64)

6. Simulation Results

In the preceding sections, two methods for generating control laws to track trajectories for a quadrotor
with state and input constraints were discussed. All of the simulations were performed on a Fujitsu America
i7 Laptop with 8 GB RAM and a 2.8-GHz processor running MATLAB R2016a. For all of the cases considered,
there was always a converged optimization solution. The simulation had a provision to bypass the optimization if
it exceeded the default maximum number of function evaluations and continue to use the previous converged
solution. However, such a scenario was not encountered for the cases considered. The parameters used in the
simulations are described in Appendix A.

For the linear case, the six degrees of freedom equations of motion were linearized, and the MPC algorithm
was implemented, which optimized the actuator effort based on the constraints imposed. For all of the simulation
results, the initial equilibrium condition was that of a hover. The quadrotor model (5) is linearized at a certain
hover position denoted as xT = [pT 01×3 01×3 01×3]

T , in which p ∈ R3 is any constant position. The input uT

needed to maintain the hover position is uT =
[mg

4
mg
4

mg
4

mg
4
]T . Furthermore,

Ac =


03×3 I3×3 03×3 03×3

03×3 03×3 Ac,Θ 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3



where the Ac,Θ =

 0 −g 0
g 0 0
0 0 0

 and Bc matrix is the same as in Equation (4). The linear MPC control actions

are obtained using the matrices given above that optimize Equation (13) subject to constraints Equation (21).
For the nonlinear case, the control laws are derived using the system matrices described in Section 4 that

optimize the cost in Equation (48) subject to the constraints in Equation (50).
For both cases, the true system dynamics presented in Equation (51) along with the first order actuator

dynamics for the rotor thrusts is simulated. Three different reference trajectories are generated to evaluate the
effectiveness of the control laws: (a) helical, (b) spherical spiral and (c) straight line segments. The control input
bounds are set as ulb = [0 0 0 0]T and uub = [mg mg mg mg]T . The control horizon is chosen as N = 25.

Figure 2 shows the reference trajectory and the tracking errors for both the linear and the nonlinear MPC
cases. It can be seen that both controllers achieve good tracking; however, the transient response of the nonlinear
MPC is better. Clearly, from Figure 2b, the speed of response with regards to tracking the position errors is much
better for the nonlinear MPC.

Figure 3 shows the results of tracking a spherical spiral trajectory. As with the previous case, both controllers
achieve successful tracking.

Figure 4 shows the results of tracking a straight line trajectory segment between two way points. As with the
previous cases, both controllers achieve successful tracking. In this case, too, the superior transient performance of
the nonlinear MPC is clearly seen. Additional studies show that the nonlinear MPC is able to track the trajectories
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even with a shorter prediction horizon. Table 1 showed the average root mean square (RMS) of position tracking
errors of different prediction horizons. It can be seen that NMPC has better tracking performances in terms of
position tracking. Table 2 showed the average control effort used in each tracking scenarios for different control
horizons. In all three cases, NMPC is able to achieve better tracking with less control effort.
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Figure 2. Helical trajectory tracking.
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Figure 3. Spherical spiral trajectory.
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Figure 4. Straight line trajectory segments.
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Table 1. RMS of position tracking errors.

Trajectory Nonlinear/Linear N = 10 N = 15 N = 25 N = 35 N = 45

Helical Nonlinear 0.5663 0.5824 0.5831 0.5757 0.5832
Helical Linear 0.8075 0.8348 0.8484 0.8364 0.8334

Spherical Spiral Nonlinear 1.4739 1.4725 1.4725 1.4720 1.4726
Spherical Spiral Linear 1.4984 1.5000 1.5016 1.5009 1.5009

Straight Line Nonlinear 0.3112 0.3020 0.3169 0.3160 0.3155
Straight Line Linear 0.3722 0.3575 0.3633 0.3612 0.3603

Table 2. Average control effort (∆uT∆u).

Trajectory Nonlinear/Linear N = 10 N = 15 N = 25 N = 35 N = 45

Helical Nonlinear 0.3838 0.3724 0.3652 0.3665 0.3674
Helical Linear 0.4205 0.4107 0.4057 0.4084 0.4114

Spherical Spiral Nonlinear 0.1687 0.1689 0.1700 0.1707 0.1710
Spherical Spiral Linear 0.1910 0.1913 0.1914 0.1913 0.1913

Straight Line Nonlinear 0.2125 0.1433 0.1282 0.1280 0.1296
Straight Line Linear 0.2245 0.1593 0.1388 0.1379 0.1367

Nonlinear Model Predictive Control with Disturbance

In order to further assess the effectiveness of the NMPC scheme, simulations were performed with
simultaneous high frequency disturbance torques injected in the roll and pitch channels. The disturbances
are two exponentially decaying sinusoidal functions: δτ = e−0.1t[sin(10t); cos(10t); 0] during t ∈ (5, 10)(s).
Figures 5–7 show the performance of linear and nonlinear MPC subject to disturbance. The disturbance is used to
approximate the effects of wind during typical outdoor flight conditions.

Under disturbances, linear MPC and nonlinear MPC both performed well with an acceptable amount
of tracking errors and kept the input within bounds. It can be seen from the figures that the nonlinear MPC
significantly out-performs the linear MPC with regards to transient performance.
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Figure 5. Helical trajectory (with disturbance).
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Figure 6. Spherical spiral trajectory (with disturbance).
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Figure 7. Straight line trajectory segments (with disturbance).

7. Summary and Conclusions

A linear and nonlinear model predictive control scheme were presented to control a quadrotor platform
with an objective to track various reference trajectories. The nonlinear model predictive controller made use of
a state-dependent coefficient representation of the nonlinear dynamics that accounted for the peculiarities of
the platform under consideration. The closed loop stability analysis of the linear and nonlinear control schemes
were presented to show the similarities, as well as to highlight the differences. The nonlinear controller clearly
outperformed the linear controller with superior transient performance in both nominal conditions and in the
presence of high frequency disturbance torques in the roll and pitch channels.
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Appendix A Simulation Parameters

The following parameters were used for all of the simulations. The parameters for the control law synthesis
were the same regardless of the reference trajectories and the linear/nonlinear control schemes.

• Mass: m = 0.8 (kg).

• Moment of inertia: J =

 0.0224
0.0224

0.0436

 (kg ·m2).

• Distance from the center of the rotor to CG of the quadrotor: L = 0.165 (m).
• Ratio of rotor angular momentum to rotor lift: c = 0.002167 (m).
• Gravitational acceleration: g = 9.8 (m/s2).
• Rotor actuator time constant: λF = 50.
• Control horizon: N = 25.
• Prediction horizon: M = 25.
• Sample time: ∆t = 0.05 (s).
• State weighting matrix: Q = diag [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
• Input weighting matrix: R = diag [1, 1, 1, 1].
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