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Abstract: It is shown that replacing the sinusoidal chip in Golay complementary code pairs by special
classes of waveforms that satisfy two conditions, symmetry/anti-symmetry and quazi-orthogonality
in the convolution sense, renders the complementary codes immune to frequency selective fading
and also allows for concatenating them in time using one frequency band/channel. This results in
a zero-sidelobe region around the mainlobe and an adjacent region of small cross-correlation sidelobes.
The symmetry/anti-symmetry property results in the zero-sidelobe region on either side of the
mainlobe, while quasi-orthogonality of the two chips keeps the adjacent region of cross-correlations
small. Such codes are constructed using discrete frequency-coding waveforms (DFCW) based on linear
frequency modulation (LFM) and piecewise LFM (PLFM) waveforms as chips for the complementary
code pair, as they satisfy both the symmetry/anti-symmetry and quasi-orthogonality conditions.
It is also shown that changing the slopes/chirp rates of the DFCW waveforms (based on LFM and
PLFM waveforms) used as chips with the same complementary code pair results in good code
sets with a zero-sidelobe region. It is also shown that a second good code set with a zero-sidelobe
region could be constructed from the mates of the complementary code pair, while using the same
DFCW waveforms as their chips. The cross-correlation between the two sets is shown to contain
a zero-sidelobe region and an adjacent region of small cross-correlation sidelobes. Thus, the two sets
are quasi-orthogonal and could be combined to form a good code set with twice the number of codes
without affecting their cross-correlation properties. Or a better good code set with the same number
codes could be constructed by choosing the best candidates form the two sets. Such code sets find
utility in multiple input-multiple output (MIMO) radar applications.

Keywords: discrete frequency-coding waveform; linear FM; chirp; piecewise LFM; complementary
code pair; symmetry; anti-symmetry; good code sets; MIMO radar

1. Introduction

1.1. Background

Good aperiodic codes are characterized by a narrow mainlobe and small sidelobes. Smaller
autocorrelation peak sidelobes reduce the probability of false alarm, while a narrower mainlobe
enhances the range resolution. Such properties are desirable in certain communications applications
like preamble synchronization and in most radar applications.

Let x[n] be a code of length N. Its aperiodic autocorrelation (ACF) can be represented by,

R[n] =
N−1

∑
k=0

x[k]x∗[n + k] (1)
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In the Z-domain, if x[n] Z⇔ X(z). then, its ACF can be represented by,

R[n] Z⇔ R(z) = X(z)X
(

z−1
)
= N + S(z) (2)

where N and S(z) represent the mainlobe/peak and the sidelobes respectively.
Let p(t) = ej2π fpt, 0 ≤ t ≤ T, represent a sinusoidal chip. x[n] modulates p(t) resulting in xp(t).

xp(t) =
N−1

∑
n=0

x[n]p(t− nT) (3)

Its ACF can be represented by,

Rx(t) =
∫ t+T

t
xp(τ)x∗p(t + τ)dτ (4)

If xp(t) is sampled at intervals of Ts =
1
fs

, then in the Z-domain, xp(mTs) for m = 0, 1, 2, . . . ,

(N − 1)Ns, can be represented by,

xp(mTs)
Z⇔ Xp(z) = X

(
zNs
)

P(z) (5)

where p(mTs)
Z⇔ P(z) and Ns represents the number of samples in P(z). ACF of Xp(z) can be

represented by,
Rx(z) = Xp(z)Xp

(
z−1
)

(6)

Rx(z) = X
(

zNs
)

P(z)X
(

z−Ns
)

P
(

z−1
)

(7)

Rx(z) = R
(

zNs
)

Rp(z) (8)

Rx(z) = NRp(z) + S
(

zNs
)

Rp(z) (9)

where Rp(z) = P(z)P
(
z−1) represents the ACF of the highly sampled chip and R(z) is given in

Equation (2). It can be observed that the mainlobe and the sidelobes are spread by the ACF of the
chip (Rp(z)).

Some of the well-known good aperiodic codes are the Barker codes, Frank codes [1] and
waveforms based on Costas arrays [2–4]. Barker codes are biphase codes that have unity magnitude
peak sidelobes. However, the longest known Barker code of odd length is of length 13 which gives
a peak sidelobe ratio of 1

13 . Frank codes are polyphase codes obtained by concatenating the rows of
a discrete Fourier transform (DFT) matrix. Thus, Frank codes are available for a variety of code lengths
and achieve high peak sidelobe ratios for long code lengths. However, as the code length increases the
number of distinct phases also increases. Costas arrays are completely classified to date up to order
27, and are known to exist of orders up to 200. They are widely used in radar and sonar applications
because of their thumbtack ambiguity function. The codes presented in this paper are based on biphase
complementary code pair that are available at a variety of code lengths.

One of the widely used approaches to suppress the ACF sidelobes of a waveform/code is via
windowing whereby the peak sidelobe level is reduced, but at the cost of increasing the mainlobe width.
Mismatched filters like the ones introduced in [5–8] could also be used to reduce ACF sidelobes at
the cost of a small loss in signal-to-noise ratio. In [9], it is shown that complete sidelobe cancellation
for a class of aperiodic codes is possible using additive-multiplicative processing of the matched
filter (MF) output. However, the non-linear processing involved in these mismatched filters incurs
additional computational cost and suffer from degraded performance in high noise environments.
Although it is impossible for individual aperiodic codes to have zero sidelobes, Golay complementary
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code pair [10], polyphase complementary codes [11] and complementary code sequences [12] achieve
complete sidelobe cancellation via addition of their autocorrelations. Figure 1 shows the transmission
and reception of a Golay complementary code pair (say a[n] and b[n], of length Ng). a[n] is transmitted
at frequency f1 (using c1(t) = ej2π f1t) and b[n] at f2 (using c2(t) = ej2π f2t). At the receiver, the code
pair are received in their own matched filters. Addition of their MF outputs (Ra(t) and Rb(t)) results
in complete cancellation of the sidelobes. However, frequency selective fading results in unequal
attenuation of the two codes. This results in reemerging sidelobes due to inexact cancellation of the
non-zero sidelobes of the code pair, as shown in Figure 2 for Ng = 8. Since the sidelobes of the
code pair are not small, any inexact cancellation results in reemerging sidelobes which is highly
undesirable. In Figure 2, Ra(t), Rb(t) and R(t) represent the fading absent case and Ra′(t), Rb′(t) and
R′(t) represent the fading present case. For the fading present case, a(t) and b(t) are attenuated by
0.95 and 0.85 respectively. Galati et al. [13] also discusses in detail this effect of unequal attenuation
on the complementary code pairs. Liu et al. [14] describes z-complementary code pairs that achieve
a zero-correlation zone around the mainlobe and minimum possible sidelobe peaks outsize the zero
domain. However, these codes also require two frequencies or channels which makes them vulnerable
to the aforementioned effects of fading. Tang et al. [15] and Li [16] describe loosely synchronized (LS)
and large area (LA) codes for quasi-synchronous code division multiple access (QS-CDMA) systems.
These codes also achieve a zero interference zone in both the autocorrelation and the cross-correlations,
but the peak sidelobes outside the zero-sidelobe region are not small. In this paper, we introduce codes
constructed from biphase Golay complementary code pairs that are available at a variety of lengths.
These codes have a zero-sidelobe domain on either side of the mainlobe, while the sidelobe peaks
outside the zero domain are very small. Since these codes use the same frequency band, they are not
affected by the effects of fading.
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Figure 1. Transmitter (Tx) and receiver (Rx) of a Golay complementary code pair. 
Figure 1. Transmitter (Tx) and receiver (Rx) of a Golay complementary code pair.
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Figure 2. (a–c) Plots of matched filter outputs in the absence of frequency selective fading; and (d–f) 
plots of matched filter outputs in the presence of fading. 
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Figure 2. (a–c) Plots of matched filter outputs in the absence of frequency selective fading; and (d–f)
plots of matched filter outputs in the presence of fading.

1.2. The Proposed Codes Based on Complementary Pairs via Discrete Frequency Chips

Given any complementary code pair a[n] and b[n], a[n] + b[n− ND] is constructed by
concatenating a[n] and b[n] in the time domain using one frequency band/channel. The chips used for
a[n] and b[n] satisfy the following two conditions:

1. They are symmetrical/anti-symmetrical mirror images of each other, i.e., c(t) with a[n] and
c(−t)/− c(−t) (or γc(−t), where γ = 1 or −1) with b[n].

2. They are quasi-orthogonal in the convolution sense.

This concatenated code has a region of zero-sidelobes on either side of the mainlobe and
an adjacent region of small cross-correlations. Due to the symmetry/anti-symmetry property,
the two chips have identical ACF. This results in exact sidelobe cancellation of the complementary
code pair, creating a zero-sidelobe region on either side of the mainlobe. The cross-correlation peak
(CCP) between c(t) and γc(−t) is represented by,

CCP = max
t

∣∣∣∣∣
∫ t+T

t γc(τ)c∗(−t + τ)dτ

2Ng

∣∣∣∣∣ (10)

Since c(t) and γc(−t) are quazi-orthogonal in the convolution, CCP is small compared to the
mainlobe peak 2Ng. This property makes the adjacent region of cross-correlation sidelobes small.

Discrete frequency-coding waveforms (DFCW) based on linear frequency modulation
(LFM, also known as a chirp signal) and piecewise LFM (PLFM) [17] waveforms satisfy both the
symmetry/anti-symmetry and quasi-orthogonality conditions. Hence, they are used as chips for the
complementary code pair. A discrete frequency-coding waveform, say c(t), is the sum of N contiguous
sub-pulses of the same duration ∆T, but not necessarily the same frequency.

c(t) =
1√
∆T

N−1

∑
n=0

ej2π f [n]∆Wtn (11)

where ∆W is the smallest possible frequency offset between two frequencies, f [n]∆W is the frequency
of the nth sub-pulse and f [n] ∈ {0, 1, 2, . . . , N − 1}.

DFCW sets find utility in MIMO radars [18] and Orthogonal Netted Radar Systems (ONRS) [19,20]
that improve radar performance through spatial diversity. Several good DFCW sets have been
proposed, such as the ones in [20–22].



Aerospace 2017, 4, 28 5 of 24

In this paper, it is also shown that a quasi-orthogonal set of symmetrical/anti-symmetrical DFCW
waveforms could be used as chips with the same complementary code pair to result in a good code
set with a zero-sidelobe region. Several good code sets are constructed by changing the slopes/chirp
rates of the DFCW chips based on LFM and PLFM waveforms. The code sets constructed with DFCW
chips based on LFM waveforms occupy different bandwidths but have smaller peak cross-correlations,
while the code sets constructed with DFCW chips based on PLFM waveforms occupy the same
bandwidth but have slightly larger peak cross-correlations.

1.3. Construction of a Good Code Set from the Mates of the Compelemntary Code Pair Resulting in Doubling
the Number of Codes in the Set or a Better Good Code Set with Significaltly Smaller Cross-Correlations

Given a complementary code pair, a[n] and b[n], there exists the complementary code pair:
b
[
−n + Ng

]
and −a

[
−n + Ng

]
, such that sum of the cross-correlation of a[n] with b

[
−n + Ng

]
and

that of b[n] with −a
[
−n + Ng

]
results in complete sidelobe cancellation. The code pair: b

[
−n + Ng

]
and −a

[
−n + Ng

]
, are called as the mates [23,24] of the complementary code pair: a[n] and b[n].

Thus, two good code sets could be constructed from the complementary code pair and their mates
using the same DFCW waveforms as chips. Since these two good code sets will be quasi-orthogonal to
each other, they could be combined to form a larger good code set with double the number of codes in
the set without affecting the cross-correlation properties. Instead of using all the codes in the two sets,
it is shown that a better good code set with significantly reduced cross-correlation peaks could be
constructed by choosing the best candidates form the two sets.

1.4. Previous Research

In [25,26], continuous frequency LFM and PLFM waveforms were used as chips for a[n] and b[n].
The current manuscript uses the same code structure as in [25,26], but DFCW waveforms based on
LFM and PLFM waveforms are used as chips for the complementary code pair. These codes find utility
in more modern digital radar systems like the ones discussed in [17–19]. In addition, this paper also
introduces a method of doubling the number of codes in the set without affecting the cross-correlation
properties or constructing a better good code set with significantly smaller cross-correlations than the
ones introduced in [25,26]. This is achieved by constructing good code sets from a complementary
code pair and their mates, while using the same DFCW waveforms as chips. This is explained in detail
in Section 7.

1.5. Paper Structure

Section 2 explains the two properties of symmetry/anti-symmetry and quasi-orthogonality for the
discrete frequency-coding waveform chips based on LFM and PFLM waveforms. Construction of the
proposed codes using DFCW chips is explained in Section 3. Doppler properties of the proposed codes
are discussed in Section 4. Invariance of the zero-sidelobe region under frequency selective fading is
demonstrated in Section 5. Section 6 shows the construction of good code sets. Section 7 shows the
method of doubling the number of codes in the set or constructing a better good code set followed by
conclusion in Section 8.

2. Symmetrical/Anti-Symmetrical DFCW Chips That Are Quasi-Orthogonal

Let a(t) and b(t) be constructed by using c(t), for 0 ≤ t ≤ T, and γc(−t) (where γ = 1 or −1) as
chips for the Golay complementary code pair {a[n], b[n]} of length Ng, respectively. a(t) and b(t) can
be represented as shown in Equation (3).

If a[n] Z⇔ A(z) and b[n] Z⇔ B(z), then

a(mTs)
Z⇔ Ac(z) = A

(
zNc
)

C(z) (12)

b(mTs)
Z⇔ Bc(z) = γB

(
zNc
)

C
(

z−1
)

(13)
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where a(mTs) and b(mTs) represent the sampled versions of a(t) and b(t), respectively, Nc is the

number of samples in C(mTs)
Z⇔ C(z) and m ∈ {0, ±1, ±2, . . . , ±∞ }.

Ac(z) + z−DBc(z) represents a code constructed by concatenating Ac(z) and Bc(z) with a gap D
in between. At the receiver, this code is passed into two matched filters: Ac

(
z−1) which is the matched

filter of Ac(z), and Bc
(
z−1) which is the MF of Bc(z). The cross-correlation of Ac(z) + z−DBc(z) with

Ac
(
z−1) results in,

RAc(z) =
(

Ac(z) + z−DBc(z)
)

Ac

(
z−1
)

(14)

RAc(z) = A
(

zNc
)

C(z)A
(

z−Nc
)

C
(

z−1
)
+ γz−DB

(
zNc
)

C
(

z−1
)

A
(

z−Nc
)

C
(

z−1
)

(15)

RAc(z) = RA

(
zNc
)

Rc(z) + γz−DRB,A

(
zNc
)

C2
(

z−1
)

(16)

where RA(z) = A(z)A
(
z−1) represents the autocorrelation of a[n], Rc(z) = C(z)C

(
z−1) represents the

chip ACF (C
(
z−1) is the MF of C(z)), RB,A(z) = B(z)A

(
z−1) represents the cross-correlation of b[n]

with a[n] and γC2(z−1) represents the cross-correlation of γC
(
z−1) with C

(
z−1).

Similarly, the cross-correlation of Ac(z) + z−DBc(z) with B−1
c (z) can be represented by,

RBc(z) = γRA,B

(
zNc
)

C2(z) + γ2z−DRB

(
zNc
)

Rc(z) (17)

where RA,B(z) = A(z)B
(
z−1) represents the cross-correlation of a[n] with b[n], RB(z) = B(z)B

(
z−1)

represents the ACF of b[n] and γC2(z) is the cross-correlation of C(z) with γC(z).
Delaying RAc(z) by D and adding it to RBc(z) results in,

Rs(z) = z−DRAc(z) + RBc(z) (18)

Since γ2 = 1 and RA(z) + RB(z) = 2Ng, RA
(
zNc
)

Rc(z) + γ2RB
(
zNc
)

Rc(z) = 2NgRc(z),
Equation (17) becomes

Rs(z) = γRA,B

(
zNc
)

C2(z) + 2Ngz−DRc(z) + γz−2DRB,A

(
zNc
)

C2
(

z−1
)

(19)

Rs(z) contains the mainlobe (2NgRc(z)) that is spread by the chip ACF (i.e., Rc(z)), a zero-sidelobe
region on either side of the mainlobe and an adjacent region of cross-correlation sidelobes (i.e., the first
and the last terms in Equation (19)). If γ = 1, then C(z) and γC

(
z−1) = C

(
z−1) represent

symmetrical waveforms. If γ = −1, then C(z) and γC
(
z−1) = −C

(
z−1) represent anti-symmetrical

waveforms. For both the symmetry (γ = 1) and anti-symmetry (γ = −1) conditions, ACF of C(z),
i.e., Rc(z) = C(z)C

(
z−1) is identical to the ACF of γC(z), i.e., Rγc(z) = γ2C

(
z−1)C(z) = Rc(z).

As a result, exact sidelobe cancellation of the complementary code pair is achieved resulting in the
zero-sidelobe region on either side of the mainlobe as shown in Equation (19). If C(z) and γC

(
z−1) are

also quasi-orthogonal in the convolution sense, i.e., their cross-correlation peak (as defined in Equation
(10)) is small compared to the mainlobe peak (2Ng), then the first and the last terms in Equation (19) are
small. It should be noted that using a sinusoidal chip for the complementary code pair will also result
in a zero-sidelobe region around the mainlobe as it satisfies the symmetry/anti-symmetry condition.
However, a sinusoidal chip is not quasi-orthogonal to its symmetrical/anti-symmetrical mirror image.
Thus, the proposed codes with sinusoidal chip achieves zero-sidelobe region but the cross-correlation
sidelobes outside the zero domain are large which is undesirable. Hence, any waveform that satisfies
the two conditions, symmetry/anti-symmetry and quasi-orthogonality, could be used as chips for the
complementary code pair in the proposed code design.

DFCWs based on LFM and PLFM waveforms are constructed by discretizing their instantaneous
frequencies. These will be referred to as Discrete Frequency LFM (DF-LFM) and Discrete Frequency
PLFM (DF-PLFM) waveforms, respectively. The DF-LFM and DF-PLFM waveforms satisfy the
symmetry/anti-symmetry and the quasi-orthogonality conditions required for the chips in the
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proposed code design. The following three types of DFCWs are used as chips for the complementary
code pair in the proposed code design:

1. DF-LFM waveforms.
2. DF-PLFM waveforms comprised of two up-chirp segments.
3. DF-PLFM waveforms comprised of an up-chirp followed by a down-chirp as in [21].

Let u(t) and d(t) = u∗(−t) represent a DF-LFM/DF-PLFM waveform and its symmetrical mirror
image respectively. The DF-LFM waveforms can be represented by,

u(t) =
1√
∆T

N−1

∑
n=0

ej2π f [n]∆Wtn (20)

d(t) =
1√
∆T

N−1

∑
n=0

ej2π f [N−1−n]∆Wtn (21)

where f [n] = n, ∆W =
1

∆T
, ∆T =

T
N

, n∆T ≤ tn ≤ (n + 1)∆T and T. is the time-duration of the
DFCW chip.

The DF-PLFM waveforms comprised of two up-chirp segments can be represented by,

u(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π f1[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π f2[N−1−n]∆Wtn

(22)

d(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π f2[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π f1[N−1−n]∆Wtn

(23)

where f1[n] = round
(

2k(N−1)n
N

)
for n = 0, 1, . . . , N

2 − 1, 0 < k ≤ 0.5 and

f2[n] = round
(
(N − 1)(1− (1−k)2n

N−1 )
)

for n = N
2 , N

2 + 1, . . . , N − 1.
The DF-PLFM waveforms comprised of an up-chirp and a down-chirp segment can be

represented by,

u(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π f1[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π f2[n]∆Wtn

(24)

d(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π f2[

N
2 −1−n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π f1[N−1−n]∆Wtn

(25)

Figure 3 shows the plots of instantaneous frequencies of the aforementioned DFCW chips. Let fu(t)
and fd(t) represent the instantaneous frequencies of u(t) and d(t), respectively. Ru(t), Rd(t) and
Ru,d(t) represent the ACF of u(t), ACF of d(t) and cross-correlation between u(t) and d(t) respectively.
They can be represented as shown in Equation (4). Since u(t) and d(t) are symmetrical mirror images
of each other, their ACFs are identical, i.e., Ru(t) = Rd(t) as shown in the plots in Figure 4. Since u(t)
and d(t) are also quasi-orthogonal, max

t

∣∣Ru,d(t)
∣∣ is very small as shown in their plots in Figure 4.
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For these plots, k = 0.24 and N = 32. k closes to 0 results in a DF-LFM/DF-PLFM waveform that is
close to a pure sinusoid, while k close to 0.5 results in a very sharp slope.
Aerospace 2017, 4, 28  8 of 24 

 

Figure 3. Plots of instantaneous frequencies of (a) discrete frequency linear frequency modulation 
(DF-LFM) chips, (b) discrete frequency piecewise linear frequency modulation (DF-PLFM) chips 
comprised of two up-chirp segments and (c) DF-PLFM chips comprised of an up-chirp and a 
down-chirp segment. 

DF-LFM waveform 

 
DF-PLFM waveform comprised of two up-chirp segments 

 
DF-PLFM waveform comprised of an up-chirp and a down-chirp 

Figure 4. Cont. 

  

0 NΔT
0

(N-1)ΔW

In
st

an
ta

ne
ou

s 
fre

qu
en

cy
 [H

z]

(a) Time [s]
0 (N/2)ΔT NΔT

0

(N-1)ΔW

(b) Time [s]

0 (N/2)ΔT NΔT
0

(N-1)ΔW

(c) Time [s]

-0.5T 0 0.5T

-60

-20

0

(a) Time [s]

-0.5T 0 0.5T

-60

-20

0

(b) Time [s]

-0.5T 0 0.5T

-60

-20

0

(c) Time [s]

|Rd(t)|
|Ru,d(t)|

|Ru(t)|

-0.5T 0 0.5T

-60

-20

0

(a) Time [s]

-0.5T 0 0.5T

-60

-20

0

(b) Time [s]

-0.5T 0 0.5T

-60

-20

0

(c) Time [s]

|Ru(t)|

|Rd(t)|

|Ru,d(t)|

Figure 3. Plots of instantaneous frequencies of (a) discrete frequency linear frequency modulation
(DF-LFM) chips; (b) discrete frequency piecewise linear frequency modulation (DF-PLFM) chips
comprised of two up-chirp segments and (c) DF-PLFM chips comprised of an up-chirp and
a down-chirp segment.
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waveforms.

3. The Proposed Code Based on Complementary Pair Using DF-LFM and DF-PLFM Waveforms
as Chips

Let a[n] and b[n] represent a Golay complementary code pair of length Ng. Let a(t) and b(t)
represent the waveforms obtained by modulating u(t) (Equation (20), (22) or (24)) with a[n] and d(t)
(Equation (21), (23) or (25)) with b[n], respectively.

a(t) =
Ng

∑
n=1

a[n]u(t− (n− 1)T) (26)

b(t) =
Ng

∑
n=1

b[n]d(t− (n− 1)T) (27)

where T = N∆T is the duration of u(t) and d(t).
A new code, s(t) = a(t) + b

(
t− 2NgT

)
, is constructed by concatenating a(t) and b(t) with a delay

of 2NgT between them, as shown in Figure 5. s(t) is then carrier ( fc) modulated before transmission,
resulting in sm(t), as shown in Figure 5. The transmitted signal can be represented by,

sm(t) =
(
a(t) + b

(
t− 2NgT

))
ej2π fct (28)

Figure 6 shows the block diagram of the receiver. The received signal, x(t) = sm(t) + n(t),
is first carrier demodulated and then bandpass filtered (BPF), giving x′(t) as shown in Figure 6.
Since both a(t) and b(t) occupy the same bandwidth, only one BPF is used. n∼N

(
0, σ2) represents

additive white Gaussian noise.

x′(t) = a(t) + b
(
t− 2NgT

)
++n(t)e−j2π fct (29)

In one path, x′(t) is passed into the matched filter (MF) of a(t) implemented as a cascade of
two MFs, one for the digital code (a[n]) and the other for the chip (u(t)), as shown in Figure 6.

Rx′ ,a(t) = Ra(t) + Rb,a
(
t− 2NgT

)
+ na(t) (30)

where Ra(t) represents the ACF of a(t), Rb,a(t) represents the cross-correlation of b(t) with a(t) and
na(t) represents the filtered noise process, na ∼ N

(
0, Ngσ2).



Aerospace 2017, 4, 28 10 of 24

Ra(t) =
Ng

∑
n=1

Ng

∑
m=1

a[n]a∗
[
Ng −m

] ∫ t+T

t
u(τ − (n− 1)T)u∗(t + τ + (m− 1)T)dτ (31)

Rb,a(t) =
Ng

∑
n=1

Ng

∑
m=1

b[n]a∗
[
Ng −m

] ∫ t+T

t
d(τ − (n− 1)T)u∗(t + τ + (m− 1)T)dτ (32)

In another path, x′(t) is passed into the MF of b(t) which is also implemented as a cascade of MF
of b[n] and that of d(t).

Rx′ ,b(t) = Ra,b(t) + Rb
(
t− 2NgT

)
+ nb(t) (33)

where Ra,b(t) represents the cross-correlation of a(t) with b(t), which can be represented as shown
in Equation (17), Rb(t) represents the ACF of b(t) and na(t) represents the filtered noise process,
nb∼N

(
0, Ngσ2).
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Delaying Rx′ ,a(t) by 2NgT (as shown in Figure 6) and adding it to Rx′ ,b(t) results in,

R(t) = Ra,b(t) + Ra
(
t− 2NgT

)
+ Rb

(
t− 2NgT

)
+ Rb,a

(
t− 4NgT

)
+ na

(
t− 2NgT

)
+ nb(t) (34)

Since,

Ra(t) + Rb(t) =

{
2NgRu(t), −T ≤ t ≤ T

0, otherwise
(35)

where Ru(t) = Rd(t) represents the ACF of the DFCW chip.
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R(t) = Ra,b(t) + 2NgRu
(
t− 2NgT

)
+ Rb,a

(
t− 4NgT

)
+ na

(
t− 2NgT

)
+ nb(t) (36)

Thus, the final output, R(t), (excluding the noise terms) consists of,

R(t) =



Ra,b(t), 0 ≤ t < 2NgT
0, 2NgT ≤ t < 3NgT − T
2NgRu(t), 3NgT − T ≤ t < 3NgT + T
0, 3NgT + T ≤ t < 4NgT
Rb,a(t), 4NgT ≤ t < 6NgT

(37)

In Equation (37), 2NgRu(t) is the mainlobe of R(t) (Ru(t) is the ACF of the DFCW chip, as shown
in the plots in Figure 4). 2NgT ≤ t ≤ 3NgT − T and 3NgT + T ≤ t ≤ 4NgT are the zero-sidelobe
regions on either side of the mainlobe. Ra,b(t) and Rb,a(t) (defined in Equation (32)), respectively,
represent the small cross-correlation sidelobes. Let CCP represent the peak cross-correlation sidelobe.
Since, Ra,b(t) and Rb,a(t) are mirror images of each other,

CCP = max
t

∣∣∣∣Ra,b(t)
2Ng

∣∣∣∣ (38)

The table in Figure 7 shows the plots of
∣∣Rx′ ,a

(
t− 2NgT

)∣∣, ∣∣Rx′ ,b(t)
∣∣ and |R(t)|, all normalized

by 2Ng and in the absence of noise, for Ng = 8 and N = 16 for the three DFCW chips in Column
1. 3D-plots of the corresponding cross-correlation peaks (CCP) for a range of Ng and N are shown
in Column 2. Clearly, the ACF plots show the zero-sidelobe region around the mainlobe and the
adjacent region of small cross-correlation sidelobes. From the 3D-plots of CCP it can be observed
that CCP values are very small, and decrease in magnitude as the code length Ng and the number
of discrete frequencies N in the DF-LFM/DF-PLFM chips increase. In addition, the CCP values are
slightly larger for the codes constructed using the DFCW chips based on PLFM waveforms compared
to the CCP values for the codes constructed using DFCW chips based on LFM waveform, but still very
small (≈−30 dB).

If −a(t) and b(t) are concatenated and transmitted at a second frequency band and received
using a receiver similar to the one described in Figure 6, then the final output of this code can be
represented by,

R′(t) =



−Ra,b(t), 0 ≤ t < 2NgT
0, 2NgT ≤ t < 3NgT − T
2NgRu(t), 3NgT − T ≤ t < 3NgT + T
0, 3NgT + T ≤ t < 4NgT
−Rb,a(t), 4NgT ≤ t < 6NgT

(39)
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Figure 7. Column 1: (a–c) Plots in dB of the normalized matched filter (MF) outputs. Column 2: Plots of
the corresponding cross-correlation sidelobe peaks (CCP) vs. code length (Ng) vs. number of discrete
frequencies in the DF-LFM/DF-PLFM chips (N).

Clearly, adding Equations (37) and (39) results in complete cancellation of the cross-correlation
sidelobes. Thus, achieving complete zero-sidelobes on either side of the mainlobe. This is shown in the
plots of R(t), R′(t) and R(t) + R′(t) for Ng = 8 and N = 16 in Figure 8. Frequency selective fading
between the two bands could result in inexact cancellation of the cross-correlation sidelobes that are
adjacent to the zero-sidelobe region. However, since the cross-correlation sidelobes are very small,
any inexact cancellation due to fading will not create undesirable high magnitude sidelobes.
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The complementary code pair could also be interlaced in the time domain (i.e., a
( t

T
)
+ b
( t

T − T
)
).

This scheme results in a transmission without gaps, while still using the same frequency band as in
the previous scheme. Fishler et al. [18] and Deng [19] describe this scheme using continuous LFM
and PLFM chips. However, for this interlaced code, the zero-sidelobes and the small cross-correlation
sidelobes in the final output are interlaced as well.

4. Doppler Properties

Figure 9a,b shows the 3D ambiguity function (AF) of the proposed code constructed using
DF-LFM chips for Ng = 8 and N = 16 as a function of the normalized Doppler frequency fdT. The AF
can be represented by,

R(t, f ) =
∞∫
−∞

s f (τ)s∗(t− τ)dτ (40)

where s f (t) = s(t)ej2π fdt, for 0 ≤ t ≤ 3NgT, is the transmitted code Doppler shifted by fd, T is the
duration of the DF-LFM/DF-PLFM chips and s(t) is the proposed code.
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It can be observed that Doppler shift adversely affects the cancellation of the sidelobes of the
complementary code pair, resulting in the disappearance of the zero-sidelobe domain on either side of
the mainlobe. The ACF mainlobes of the symmetrical chips shift in opposite directions under Doppler
shift. As a result, ACF of the complementary code pair do not align with each other. Thus, the proposed
codes do not have good Doppler properties. One way to improve the Doppler properties could be to
use triangular FM based waveforms as chips for the complementary code pair in the proposed code
structure. Another method to improve the Doppler properties could be to use the approach discussed
in [27] to construct Doppler resilient Golay complementary code pairs.

5. Effect of Frequency Selective Fading

In the presence of frequency selective fading, the higher frequencies within the frequency sweep
(W = N(N − 1)∆W∆T) of the DF-LFM/DF-PLFM waveforms could be slightly attenuated compared
to the lower frequencies. However, autocorrelations of the DF-LFM/DF-PLFM waveforms remain
identical, since they are symmetrical. Hence, the zero-sidelobe region is not affected. However,
the adjacent region of small cross-correlation sidelobes could vary slightly depending on the
attenuation due to fading. However, its effect on the error in the location of the mainlobe is negligible
as will be shown in the simulation results later in this section.
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In the presence of frequency selective fading, let the lower and the higher frequency components
of the DF-LFM/DF-PLFM chips be attenuated by α1 and α2 respectively, where α2 < α1. The DF-LFM
chips (u f (t) and d f (t)) in the presence of fading can be represented by,

u f (t) =


α1√
∆T

N1−1
∑

n=0
ej2π f [n]∆Wtn

α2√
∆T

N−1
∑

n=N1

ej2π f [n]∆Wtn

(41)

d f (t) =


α2√
∆T

N−1−N1
∑

n=0
ej2π f [N−1−N1−n]∆Wtn

α1√
∆T

N−1
∑

n=N−N1

ej2π f [N−1−n]∆Wtn

(42)

The DF-PLFM chips comprised of two up-chirp segments in the presence of fading can be
represented by,

u f (t) =


α1√
∆T

N
2 −1
∑

n=0
ej2π f1[n]∆Wtn

α2√
∆T

N−1
∑

n= N
2

ej2π f2[N−1−n]∆Wtn

(43)

d f (t) =


α2√
∆T

N
2 −1
∑

n=0
ej2π f2[n]∆Wtn

α1√
∆T

N−1
∑

n= N
2

ej2π f1[N−1−n]∆Wtn

(44)

The DF-PLFM chips comprised of an up-chirp and a down-chirp segment in the presence of
fading can be represented by,

u f (t) =


α1√
∆T

N
2 −1
∑

n=0
ej2π f1[n]∆Wtn

α2√
∆T

N−1
∑

n= N
2

ej2π f2[n]∆Wtn

(45)

d f (t) =


α2√
∆T

N
2 −1
∑

n=0
ej2π f2[

N
2 −1−n]∆Wtn

α1√
∆T

N−1
∑

n= N
2

ej2π f1[N−1−n]∆Wtn

(46)

For the DF-LFM waveforms, all the discrete frequencies 0 ≤ n ≤ N1 − 1, are considered as the
lower frequency component which are attenuated by α1, while the discrete frequencies N1 ≤ n ≤ N − 1
will be considered as the higher frequency component which are attenuated by α2. For the DF-PLFM
waveforms, all the discrete frequencies 0 ≤ n ≤ N

2 − 1 are considered as the lower frequency
component and N

2 ≤ n ≤ N− 1, the higher frequency component. Figure 10 shows the autocorrelations
of the DF-LFM chips with and without fading, i.e., u f (t) and d f (t) and u(t) and d(t) for N = 16,
N1 = 12, Ng = 16, α1 = 0.9792 and α2 = 0.8470 (α1 and α2 are randomly generated). Although,

fading results in reducing the mainlobe peaks of the autocorrelations,
∣∣∣Ru f (t)

∣∣∣ and
∣∣∣Rd f

(t)
∣∣∣ (as seen in

the plots), they remain identical.



Aerospace 2017, 4, 28 15 of 24

Aerospace 2017, 4, 28  15 of 24 ݀(ݐ)  for ܰ = 16 , ଵܰ = 12 , ௚ܰ = 16 ଵߙ , = 0.9792  and ߙଶ = 0.8470  ( ଵߙ  and ߙଶ  are randomly 
generated). Although, fading results in reducing the mainlobe peaks of the autocorrelations, |ܴ௨೑(ݐ)| and |ܴௗ೑(ݐ)| (as seen in the plots), they remain identical. 

 
Figure 10. (a,b) Plots in dB of |ܴ௨(ݐ)| and |ܴௗ(ݐ)|; and (c,d) plots of |ܴ௨೑(ݐ)| and |ܴௗ೑(ݐ)|. 

Figure 11 shows the matched filter outputs, ܴ௫ᇲ,௔(ݐ) and ܴ௫ᇲ,௕(ݐ), and their sum ܴ(ݐ) (given 
by Equations (30), (33) and (37), respectively), in the presence of frequency selective fading. Clearly, 
the zero-sidelobe region on either side of the mainlobe is not affected by fading. 

 
Figure 11. Plots in dB of: (a) 

ோೣᇲ,ೌ൫௧ିଶே೒்൯ே೒ ; (b) 
ோೣᇲ,್(௧)ே೒ ; and (c) |ோ(௧)|ଶே೒ , in the presence of frequency 

selective fading. 

Root mean square error (ܴܧܵܯ) in the location of the mainlobe is used as a metric to measure of 
effectiveness in sidelobe cancellation in the presence of frequency selective fading and noise. 
Location of the mainlobe of ܴ(ݐ) is given by, ̂ݐ = argmax௧ ቤܴ(ݐ)2 ௚ܰ ቤ (47) 

where ܴ(ݐ) is the final output, given by Equation (37). ܴܧܵܯ in the location of the mainlobe can be represented by, 

-0.5T 0 0.5T

-60

-20

0

(a) Time [s]
-0.5T 0 0.5T

-60

-20

0

(c) Time [s]

-0.5T 0 0.5T

-60

-20

0

(b) Time [s]
-0.5T 0 0.5T

-60

-20

0

(d) Time [s]

|Ru(t)|

|Rd(t)| |Rdf(t)|

|Ruf(t)|

2NgT 3NgT 4NgT
-70

-20

0

(a) Time [s]

|Rx',a(t-2NgT)|

2NgT 3NgT 4NgT
-70

-20

0

(b) Time [s]

|Rx',b(t)|

2NgT 3NgT 4NgT
-70

-20

0

(c) Time [s]

|R(t)|

Figure 10. (a,b) Plots in dB of |Ru(t)| and |Rd(t)|; and (c,d) plots of
∣∣∣Ru f (t)

∣∣∣ and
∣∣∣Rd f

(t)
∣∣∣.

Figure 11 shows the matched filter outputs, Rx′ ,a(t) and Rx′ ,b(t), and their sum R(t) (given by
Equations (30), (33) and (37), respectively), in the presence of frequency selective fading. Clearly,
the zero-sidelobe region on either side of the mainlobe is not affected by fading.
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Figure 11. Plots in dB of: (a)
Rx′ ,a(t−2NgT)

Ng
; (b) Rx′ ,b(t)

Ng
; and (c) |R(t)|2Ng

, in the presence of frequency
selective fading.

Root mean square error (RMSE) in the location of the mainlobe is used as a metric to measure of
effectiveness in sidelobe cancellation in the presence of frequency selective fading and noise. Location
of the mainlobe of R(t) is given by,

t̂ = argmax
t

∣∣∣∣R(t)2Ng

∣∣∣∣ (47)

where R(t) is the final output, given by Equation (37).
RMSE in the location of the mainlobe can be represented by,

RMSE =
1
T

(
1
K

K

∑
i=1

(
t̂i − t

)2
)0.5

(48)
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where K is the number of trials, t is the actual timing of the mainlobe, t̂i is the estimated timing of the
mainlobe for the ith trial in the presence of noise and T is the chip duration.

RMSE vs. signal-to-noise ratio (SNR) plots for the proposed codes are shown in Figure 12.
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Figure 12. Plots of root mean square error (RMSE) vs. SNR for the proposed codes.

SNR is given by 20 log10
2Ng
σ2 , where 2Ng is the code energy and σ2 represents the noise power.

SNR is varied by changing σ2 and K = 1000 iterations are performed for each SNR value. α1 and α2

are randomly chosen such that 0.6 ≤ α1, α2 ≤ 1. From these plots it can be observed that the RMSE
curve with fading stays very close to the RMSE in the absence of fading. This is true for the DF-LFM
and the DF-PLFM chips.

As discussed in the Introduction, complete sidelobe cancellation can be achieved using
a complementary code pair. However, it requires transmission and reception of the complementary
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code pair at two frequencies/channels as shown in Figure 1. In the presence of frequency selective
fading, the cancellation of sidelobes is inexact which results in increasing the probability of false alarm.
This can be seen in the plots of RMSE vs. SNR in Figure 13 for a Golay complementary code pair (A, B)
of length Ng = 16 and 64. A is attenuated by α1 and B is attenuated by α2 such that 0.6 ≤ α1, α2 ≤ 1.
It can be observed that frequency selective fading results in increasing the RMSE in the location of the
mainlobe. The proposed codes are resistant to the effect of frequency selective fading, as shown in the
RMSE plots in Figure 12.
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Figure 13. Plot of root mean square error (RMSE) vs. signal-to-noise ratio (SNR) for complementary
code pair using sinusoidal chip.

6. Good Code Sets from Complementary Pair Using DF-LFM and DF-PLFM Waveforms as Chips

A good code set is constructed by changing the slopes of the instantaneous frequency (shown in
the plots in Figure 3) of the DF-LFM/DF-PLFM waveforms used as chips for the same complementary
code pair. The parameter γl , as shown in the Equations (20)–(25), is varied carefully to result in DF-LFM
and DF-PLFM chips with different slopes. The resulting good code set has a zero domain on either
side of the mainlobe and an adjacent region of small sidelobes. The cross-correlation between any code
pair in the set is very small. The lth code in the set can be represented by,

sl(t) = al(t) + bl
(
t− 2NgT

)
(49)

where al(t) =
Ng

∑
n=1

a[n]ul(t− (n− 1)T), bl(t) =
Ng

∑
n=1

b[n]dl(t− (n− 1)T), and ul(t) and dl(t) represent

the two symmetrical DF-LFM/DF-PLFM waveforms.
ul(t) and dl(t) for the good code sets from complementary pairs using DF-LFM chips can be

represented by,

ul(t) =
1√
∆T

N−1

∑
n=0

ej2π fl [n]∆Wtn (50)

dl(t) =
1√
∆T

N−1

∑
n=0

ej2π fl [Nl−1−n]∆Wtn (51)

where fl [n] = round
(

2γl(N−1)n
N

)
for n = 0, 1, 2, . . . , N− 1, γl = k + (l−1)(1−3k)

L−1 , l = 0, 1, 2, . . . , L− 1,

k ∈ (0, 0.5], ∆W = 1
∆T and n∆T ≤ tn ≤ (n + 1)∆T.

ul(t) and dl(t) for the good code sets from complementary pairs using DF-PLFM chips comprised
of two up-chirps can be represented by,
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ul(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π fl,1[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π fl,2[N−1−n]∆Wtn

(52)

dl(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π fl,2[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π fl,1[N−1−n]∆Wtn

(53)

where fl,1[n] = round
(

2γl(N−1)n
N

)
for n = 0, 1, 2, . . . , N

2 − 1, γl = k + (l−1)(1−2k)
L−1 ,

fl,2[n] = round
(
(N − 1)

(
1− (1−γl)2n

N−1

))
for n = N

2 , N
2 + 1, . . . , N − 1 and k ∈ (0, 0.5].

ul(t) and dl(t) for the good code sets from complementary pairs using DF-PLFM chips comprised
of an up-chirp and a down-chirp are given by,

ul(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π fl,1[n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π fl,2[n]∆Wtn

(54)

dl(t) =


1√
∆T

N
2 −1
∑

n=0
ej2π fl,2[Nl−1−n]∆Wtn

1√
∆T

N−1
∑

n= N
2

ej2π fl,1[N−1−n]∆Wtn

(55)

The receiver for each code is as shown in Figure 6. The ACFs of all the codes in the set are as
shown in the plots in Figure 7. Thus, the autocorrelation sidelobe peak (ASPl) of the lth code in the set
is given by,

ASPl = CCPal ,bl
(56)

where CCPal ,bl
is the same as CCPa,b which is defined in Equation (38) and shown in the plots

in Figure 7.
Maximum cross-correlation peak (MCCP) and average cross-correlation peak (ACCP) are used

as measures to compare the different good code sets introduced in this paper.

MCCP = max
l, k=1,2,..,L

{
max

t

∣∣Rsl ,sk (t)
∣∣} (57)

ACCP =
∑L

l=1 ∑L
k=l max

t

∣∣Rsl ,sk (t)
∣∣(

L
2

) (58)

where Rsl ,sk (t) is the normalized cross-correlation between the code pair {l, k} in the set.
The table (Column 2) in Figure 14 shows the plots of MCCP and ACCP for each set for different

values of N, Ng and L.
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Figure 14. Plots of instantaneous frequencies, i.e., ful (t) and fdl
(t) vs. time in Column 1; and (a,b) Plots

of maximum cross-correlation peaks (MCCP) and (c,d) average cross-correlation peaks (ACCP) vs.
number of codes (L), for various values of code length (Ng) and number of discrete frequencies (N)
in Column 2.



Aerospace 2017, 4, 28 20 of 24

From the plots in Figure 14, it can be observed that the good code sets constructed using DF-LFM
chips have better MCCP and ACCP properties compared to those constructed using DF-PLFM chips.
However, the time bandwidth products of all the codes in the sets constructed using DF-PLFM chips is
the same (i.e., N(N − 1)∆W∆T), while those of the codes in the set constructed using DF-LFM chips
are different. In addition, for a given complementary code pair code length (Ng), the cross-correlation
sidelobe peaks could be reduced by increasing the number of discrete frequencies (N) in the chips.

7. Construction of a Good Code Set from the Mates of a Complementary Code Pair

Consider the complementary code pair: B
(
z−1) and −A

(
z−1). The sum of the cross-correlation

of A(z) with B
(
z−1) and that of B(z) with −A

(
z−1) will be,

A(z)B(z)− B(z)A(z) = 0 (59)

Thus, the code pair: B
(
z−1) and −A

(
z−1), are orthogonal to the complementary code pair: A(z)

and B(z). Such code pairs are called complementary code pair mates, as described in [23,24].
Let S1(z) = A

(
zNc
)
C(z)+ z−DB

(
zNc
)
γC
(
z−1) and S2(z) = B

(
z−Nc

)
C(z)− z−D A

(
z−Nc

)
γC
(
z−1)

be the codes constructed by concatenating the complementary code pair mates (A(z), B(z) and B
(
z−1),

−A
(
z−1)) using C(z) and its symmetrical/anti-symmetrical mirror image (γC

(
z−1), where γ = ±1)

as chips, as described in Section 2. Their autocorrelations can be represented by,

RS1(z) = γRA,B

(
zNc
)

C2(z) + 2Ngz−DRc(z) + γz−2DRB,A

(
zNc
)

C2
(

z−1
)

(60)

RS2(z) = γRA,B

(
z−Nc

)
C2(z) + 2Ngz−DRc(z)− γz−2DRB,A

(
z−Nc

)
C2
(

z−1
)

(61)

Both the autocorrelations consist of a zero-sidelobe region on either side of the mainlobe and
an adjacent region of small cross-correlation sidelobes, as shown in Equation (37) in Section 2.
Their autocorrelation sidelobe peaks (i.e., CCP, given by (38)) vary with N and Ng as shown in
the plots in Figure 7. The cross-correlation between S1(z) and S2(z) can be represented by,

RS1,S2(z) =
(

A
(

zNc
)

C(z) + z−DB
(

zNc
)

γC
(

z−1
))(

B
(

zNc
)

C
(

z−1
)
− zD A

(
zNc
)

γC
(

z1
))

(62)

Simplifying Equation (62) results in,

RS1,S2(z) = −A2
(

zNc
)

C2(z) + 0 + γz−2DB2
(

zNc
)

C2
(

z−1
)

(63)

Clearly, the cross-correlation consists of a zero-sidelobe region and an adjacent region of small
cross-correlation sidelobes. Thus, S1(z) and S2(z) are quazi-orthogonal in the convolution sense.
The zero-sidelobe domain in the cross-correlation is due to the symmetry/anti-symmetry property of
the chips. Since, the symmetry/anti-symmetry property is immune to frequency selective fading, the
zero-sidelobe domain in the cross-correlation is also immune to frequency selective fading. Figure 15
show the autocorrelations S1(z) and S2(z) and their cross-correlation. For these plots, S1(z) and
S2(z) are constructed using DF-LFM chips with N = 8 and Ng = 16. These plots clearly show
the zero-sidelobe domain in the cross-correlation between the proposed code constructed using
a complementary code pair and the one constructed using its mate.

Varying the slopes of the DFCW chips in both S1(z) and S2(z), as shown in Section 6, results in two
good code sets. Since these two sets are quasi-orthogonal to each other, they could be combined to form
a larger set with twice the number of codes, while maintaining the same cross-correlation properties
as those of the individual sets. This can be seen in the plots of maximum cross-correlation peaks
(MCCP) and average cross-correlation peaks (ACCP) in Column 1 of the table in Figures 16 and 17.
When compared to the plots in Figure 14, clearly the cross-correlation properties remain the same,
while doubling the number of the codes in the set.
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Figure 15. Plots in dB of: (a) RS1 (z); (b) RS2 (z); and (c) RS1,S2 (z), for N = 8 and Ng = 16 using
DF-LFM chips.
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Figure 17. Plots of (a,b) MCCP vs. L and (c,d) ACCP vs. L.

If a better good code set with the smaller MCCP and ACCP is required, then the best
candidates from the two sets could be selected. This could be achieved by using only half the slope
options for the DFCW waveforms used as chips for the complementary code pair and its mates
i.e., the DF-LFM/DF-PLFM waveforms with l = 0, 2, . . . , L− 1 in Equations (52)–(57). This results in
a good code set with significantly better MCCP and ACCP values, as shown in the plots in column
2 of the table in Figures 16 and 17. These are significantly smaller than the MCCP and the ACCP
values in Figure 14 for the same number of codes in the set. Thus, constructing the proposed codes
from complementary code pair and their mates, while using the same chips for both pairs, offers the
aforementioned flexibility of choosing between a better good code set and a larger good code set.

Table 1 shows the average autocorrelation and average cross-correlation values for the Deng’s
polyphase [28] good code set and the Deng’s discrete frequency [20] set designs. The autocorrelation
and cross-correlation sidelobe peaks of the codes introduced in this paper are smaller, as shown
in the plots in Figures 7 and 17 respectively. The proposed codes constructed via concatenating
biphase Golay complementary code pairs and using discrete frequency chips results in a zero-sidelobe
domain and an adjacent region of very small cross-correlation sidelobes. In [28], it is shown that the
average autocorrelation sidelobe and cross-correlation peaks decrease with increase in code length and
approach O

(
1√
N

)
for large N. Their discrete frequency good code set [20] being wideband, achieve

much smaller sidelobe peaks. In the case of the good code set design proposed in this paper, for a given
code length (Ng), increasing the number of discrete frequencies (N) in the chips results in a better
code set.

Table 1. Table containing the average autocorrelation and cross-correlation peaks for the proposed set
in comparison with Deng’s polyphase and discrete frequency code sets.

Good Code Set Average Autocorrelation
Peak (dB)

Average Cross-Correlation
Peak (dB)

Deng’s polyphase set
(code length = 128 and L = 3 codes) −20.9606 −19.1525

Deng’s discrete frequency set
(# of discrete frequencies = 128 and L = 3 codes) −32.2641 −32.2522

Proposed code set with Ng = 16,
N = 32 and L = 4 −39.8280 −37.9926
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8. Conclusions

In this paper, it is shown that, by replacing the sinusoidal chips in the complementary code
pair with waveforms that satisfy two conditions, symmetry/anti-symmetry and quazi-orthogonality
in the convolution sense, allows for concatenating them in the time domain using one frequency
band/channel. This results in a zero sidelobe domain around the mainlobe and an adjacent region
of small cross-correlation sidelobes. Symmetry/anti-symmetry property results in the zero-sidelobe
region, while the quasi-orthogonality property makes the adjacent region of cross-correlation sidelobes
small. Discrete frequency coding waveform (DFCW) based on LFM and PLFM waveforms are used as
chips, since they satisfy both the symmetry/anti-symmetry and quasi-orthogonality conditions. Since,
frequency selective fading does not affect the symmetry/anti-symmetry property, the zero-sidelobe
region is resistant to the effects of fading. A good code set with a zero-sidelobe region is then
constructed by varying the slopes of the DFCW chips, while using the same complementary code
pair. Such good code sets are constructed using a set of quasi-orthogonal DFCW chips based on LFM
and PLFM waveforms. It is also shown that mates of the complementary code pair could be used
to generate a second good code set using the same DFCW chips. These two sets are shown to be
quasi-orthogonal with a zero-sidelobe domain. Thus, resulting in a larger good code set with twice the
number of codes, while maintaining the same cross-correlation properties. Or a better good code set
could be constructed by choosing the best candidates from the two sets.

As a topic for further research, the proposed codes could be constructed using polyphase
versions (as shown in [29,30]) of the LFM/PLFM waveforms as chips with the complementary
code pairs and their mates. Exploring other waveforms or codes that satisfy the two conditions
of symmetry/anti-symmetry and quazi-orthogonality and improving the Doppler properties of these
codes are the other topics of future research.
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