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Abstract: The power required by flapping and fixed wing vehicles in level flight is determined and
compared. Based on a new modelling approach, the effects of flapping on the induced drag in flapping
wing vehicles are mathematically described. It is shown that flapping causes a significant increase in
the induced drag when compared with a non-flapping, fixed wing vehicle. There are two effects for
that induced drag increase; one is due to tilting of the lift vector caused by flapping the wings and the
other results from changes in the amount of the lift vector during flapping. The induced drag increase
yields a significant contribution to the power required by flapping wing vehicles. Furthermore, the
power characteristics of fixed wing vehicles are dealt with. It is shown that, for this vehicle type,
the propeller efficiency plays a major role. This is because there are considerable differences in the
propeller efficiency when taking the size of vehicles into account. Comparing flapping and fixed
wing vehicles, the conditions are shown where flapping wing vehicles have a lower power demand
and where fixed wing vehicles are superior regarding the required power. There is a tendency such
that fixed wing vehicles have an advantage in the case of larger size vehicles and flapping wing
vehicles have an advantage in the case of smaller size ones.
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1. Introduction

Vehicles with flapping wings that enable simultaneous lift and thrust generation have gained
significant interest as an alternative flight possibility when compared with fixed wing vehicles [1–3].
Flapping wing vehicles show a variety of aerodynamic configurational designs and constructional
solutions for flapping the wings. The size of flapping wing vehicles ranges from large-scale,
ornithopter-type aircraft powered by an engine or by the muscles of the pilot to small- and even
micro-scale air vehicles.

One issue of flapping wing vehicles—among various disciplinary aspects—is the flight
performance and efficiency that can be achieved with this type of vehicle. There are different topics in
that field. A fundamental one is the power that is necessary to enable level flight and, in particular,
the minimum power required to stay aloft. With regard to fixed wing vehicles, the relations describing
the flight performance and the associated flight condition are well known, e.g., [4].

There is a number of papers and investigations concerned with the flight performance of flapping
wing vehicles, e.g., [5–10]. Thus, significant progress in that field was achieved and important findings
were obtained. This also holds for progress in the area of organisms that fly using wings or fins [11,12].
With respect to the efficiency of flapping wings and the achievable flight performance, there are
differing results. This includes findings according to which flapping wings show a higher efficiency
whereas other cases indicate a lower efficiency.
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With regard to small-scale flapping wing flight, there are additional aspects that are related
to the smallness of those vehicles [1]. Because of the small size, this type of vehicle shows unique
features. One relates to unsteady effects, considered to provide advantages over comparable fixed
wing designs. Another example are separated flow aspects which are assumed to enhance lift and
thrust, and efficiency effects unique for micro-sized vehicles. Such effects will not be addressed because
they are beyond the scope of this paper.

A key factor for the power demand of flapping wing vehicles is the drag. The drag consists of two
parts, one is the drag at zero lift and the other part is the induced drag. In recent papers, it has been
shown that the induced drag is strongly influenced by flapping [13–15]. The presented results reveal
that there is a substantial increase in the induced drag in flapping wings when compared with an
equivalent non-flapping, fixed wing configuration. The profile drag is also an issue [16]. In the present
paper, this drag part is treated as an effective value in terms of an average holding for a flapping cycle.

The question, which is subject of this paper, is how the flight mechanical performance of flapping
wing vehicles can be modelled and what are the mathematical relations describing the performance
characteristics, in particular those describing the engine or muscle power necessary for level flight and
the associated minimum. A further question is how the power required by flapping wing vehicles
compares with that of fixed wing vehicles.

A goal of this paper is to derive explicit solutions in order to show the performance characteristics
of flapping and fixed wing vehicles in a clear manner. Furthermore, emphasis is placed on the
physical mechanisms underlying the performance characteristics of the vehicles. For the addressed
purposes, a pragmatic approach with simplifying assumptions is deliberately made, such as using a
quadratic drag polar or presupposing quasi-steady flow characteristics. In spite of this, the findings
are considered to properly describe the essentials of the performance topics under consideration.

2. Performance Relations

A key factor of the flight performance efficiency of aerial vehicles is the power that the vehicles
require for level flight. This is considered a performance indicator appropriate for comparing flapping
wing and fixed wing vehicles.

The following relation holds for the engine power of a propeller-driven fixed-wing aerial vehicle
equipped with a piston engine or an electrical motor in level flight [4]

Pf ix =
D V
ηprop

(1)

where subscript “fix” is used to denote the fixed wing case. This relation can be expanded using the
lift-weight equation in level flight

mg = CL(ρ/2)V2S (2)

and introducing the non-dimensional power form

P f ix =
Pf ix√

2(mg)3/(ρS)
(3)

to yield

P f ix =
1

ηprop

CD

C3/2
L

(4)

That relation can also be used for flapping wing vehicles in which case ηprop = 1 holds.
Furthermore, the drag and lift coefficients effective in flapping flight apply. Thus, for the power
in flapping flight

P f l =

(
CD

C3/2
L

)
f l

(5)
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where subscript “fl” is used to denote the flapping wing case.
The non-dimensional power forms, Equations (4) and (5), are considered appropriate for showing

more clearly the effects of flapping that manifest in the drag characteristics. Furthermore, these forms
are independent of size, mass and speed.

The minimum power is considered of particular interest because it is the lowest power demand
for staying aloft. It is determined by the following relations

P f ix,min =
1

ηprop

(
CD

C3/2
L

)
min

(6)

and

P f l,min =

(
CD

C3/2
L

)
f l,min

(7)

where it is presupposed that the optimum ηprop value is associated with (CD/C3/2
L )min.

3. Flapping Wing Vehicles

3.1. Modeling of Lift Characteristics of Flapping Wing Vehicles

In flapping wings, the overall lift vector consists of two components, one of which acts at the
left wing and the other at the right wing. This is graphically addressed in Figure 1 where the two
components denoted by L̃l and L̃r are shown. The average amount of the overall lift vector for a
complete flapping cycle can be modelled as

L =
1

t f l

t f l∫
0

(L̃l + L̃r)dt (8)

where t is the time, t f l is the flapping period and the “~” symbol denotes an instantaneous value (here
for L̃l,r and also in the following for other quantities).
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In forward flight, the lift vector is the aerodynamic force that balances the weight. Because of
tilting, the lift vectors at the left and at the right wing do not fully act against the weight, but only a
part of them. That part is given by the vertical components of L̃l and L̃r, as shown in Figure 1. Thus,
for the average overall lift component acting in the vertical direction
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Lvert =
1

t f l

t f l∫
0

(L̃l + L̃r)cosv dt (9)

This relation can be expanded applying the first mean value theorem for integration [17] to yield

Lvert =
cosv∗

t f l

t f l∫
0

(L̃l + L̃r) dt (10)

where v∗ is a value between the flapping angle limits vmin and vmax,

vmin < v∗ < vmax (11)

Using Equation (8), Lvert can be expressed as

Lvert = Lcosv∗ (12)

In terms of lift coefficient notation, the following relations apply according to the corresponding
force relations

CL =
L

(ρ/2)V2S
(13)

and
CL,vert = CLcosv∗ (14)

An insight into the effect of lift vector tilting can be obtained considering the case L̃l,r = const in
the downstroke, L̃l,r = 0 in the upstroke, vmin = −60◦, vmax = 60◦ and

.
v = const where simplifying

assumptions particularly relate to vmin, vmax and
.
v. The assumption that the lift in the upstroke is

zero, L̃l,r = 0, can be considered a possible scenario. This is, for example, a scenario in the flight of
birds [18,19]. For the described case, cosv∗ = 0.83 and CL = 1.21CL,vert. As a result, the amount of lift
that has to be generated is larger by 21% compared to the value which is usable for the vertical force
balance concerning the weight.

A further insight into and a confirmation of the effect of lift vector tilting can be obtained by
investigating the lift characteristics of a wing at a large flapping angle, ν, and applying an aerodynamic
method appropriate for such a complex wing configuration. For this purpose, the FLM-Eu Code was
used, which is an in-house developed computer program of the Institute of Fluid Mechanics of the
Technische Universität München [20,21]. It is a highly efficient aerodynamic method for modelling the
fluid flow around complex geometries and to obtain results of high numerical precision. It provides
comprehensive modelling capabilities for a wide range of steady and unsteady flows of an inviscid,
rotational and compressible nature and for complex two- and three-dimensional forms.

The computations were performed using the FLMNAV solver. This is an in-house developed
code of the Institute of Fluid Mechanics of the Technische Universität München [20,22]. The solver
is based on a finite-volume approximation to the integral form of the unsteady Euler equations.
The conservation form of Euler equation is written in body fitted co-ordinates given as

∂Q
∂τ

+
∂F
∂ξ

+
∂G
∂η

+
∂H
∂ζ

= 0 (15)

where Q is the vector of conservative variables times the Jacobian transformation, J, and F, G, and H
are the conservative fluxes with respect to the ξ, η and ζ, directions.

As a case representative for complex wing geometry, a pigeon was selected to investigate the
effects of high flapping angles. Furthermore, the pigeon wing is considered as an example for birds
which are of interest for the subject under consideration. To achieve a detailed and realistic modeling
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of the pigeon wing, reference is made to [23], which provides an elaborate description of birds and
presents detailed data concerning their form and mass properties. The geometry of the wing is
presented in Figure 2. In Figure 2a, the planform of the wing and the profile as well as the generated
surface mesh are depicted for zero flapping angle. The geometry of the wing and the generated mesh
for 45.0◦ flapping angle are shown in Figure 2b.
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Figure 2. Wing geometry and generated mesh. (a) Wing planform and wing profile at zero flapping
angle; (b) Wing at 45.0◦ flapping angle.

Results on the effect of the lift vector tilt angle ν on the lift characteristics of the pigeon wing
are presented in Figure 3. The lift coefficient effective for the vertical force balance, CL,vert, is shown
dependent on the angle of attack α for three tilt angle cases, ν = 0, ν = 22.5◦ and ν = 45.0◦. While the
case ν = 22.5◦ yields a small reduction in CL,vert when compared with the wing at zero tilt angle ν = 0,
there is a significant decrease for ν = 45.0◦. The decrease in CLvert corresponds to a cosine-law when
relating the decrease in CL,vert to CL0,vert (Figure 3), yielding

CL,vert ≈ (CL,ν=0 − CL0,vert)cosv
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3.2. Modeling of Drag Characteristics of Flapping Wing Vehicles

Basically, the drag coefficient can be modelled as a quantity that is dependent on the lift coefficient
effective in the vertical force balance, CLvert, and on the tilt angle of the lift vectors at the left and at the
right wing, ν, yielding

CD = CD(CLvert, ν) (16)

To provide an insight into the effects of CLvert and ν on the drag, the above pigeon wing case
is again considered. Results are presented in Figure 4 which shows the drag polar CL,vert(CD) for
the three tilt angle cases dealt with before (ν = 0, ν = 22.5◦, ν = 45.0◦). As a main result, the drag
polar characteristics are changed such that the drag increases with the tilt angle, ν. This effect is
comparatively small in the case of ν = 22.5◦, while the increase in the drag reaches considerably higher
values for ν = 45.0◦.

An important aspect relates to the lift coefficient region in which the influence of lift vector tilting
is large. The form of the curves presented in Figure 4 shows that the drag increase due to lift vector
tilting is the larger the higher the lift coefficient. In the region of small lift coefficients, the influence of
lift vector tilting is small or even negligible. This suggests that lift vector tilting primarily has an effect
on the lift dependent drag.
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To develop an analytical solution on the drag increase due to wing flapping, reference is made to
the well-known quadratic drag polar relation holding for non-flapping wings. This relation can be
expressed as

CD = CD0 + CDi (17)

where CDi is the induced drag coefficient accounting for the effect of the lift on the drag, given by

CDi =
k

πA
C2

L (18)

The term k is called the induced drag factor that accounts for deviations from the elliptical lift
distribution and is the aspect ratio of the wing (A = b2/S).

In the case of flapping, the average drag coefficient of a complete flapping cycle involving the
down- and upstroke can be obtained in a manner analogue to that for the lift coefficient in the preceding
section. Thus for the average drag coefficient
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CD = CD0 +
1

πAt f l

t f l∫
0

kC̃2
Ldt (19)

Expanding this relation and applying the first mean value theorem for integration [17] to the term
describing the induced drag coefficient yields

CDi =
k∗

πA
1

t f l

t f l∫
0

C̃2
Ldt (20)

where k∗ is a constant. For the following, it is assumed that

k∗ ≈ k (21)

To further expand the induced drag relation in Equation (20), the lift coefficient C̃L is split up into
a constant given by the average, CL, and into a part depending on the time denoted by ∆̃(t). Thus

C̃L(t) = CL + ∆̃(t) (22)

The average induced drag coefficient can then be expressed as

CDi =
k

πA

C2
L +

1
t f l

t f l∫
0

∆̃2dt

 (23)

Expanding the integral term, Equation (23) can be replaced by

CDi =
k

πA

(
C2

L + ∆2
av

)
(24)

where ∆2
av > 0 is the average of ∆̃2.

With reference to Equation (14), the average induced drag coefficient can be expressed as a
function of the lift coefficient effective in the vertical direction, CL,vert = cosv∗CL. Thus

CDi =
k f lap

πA
C2

L,vert (25)

where k f lap is the induced drag factor effective for flapping

k f lap =
1 + ∆2

av/C2
L

cos2v∗
k (26)

This relation shows that there are 2 effects of flapping that increase the induced drag factor k f lap when
compared with the induced drag factor of a non-flapping fixed wing, k:

(1) Tilting of lift vector due to flapping the wings, resulting in the term cos2v∗.
(2) Changes in the amount of the lift vector in the course of the flapping cycle, resulting in the

term ∆2
av.

To provide an estimate of the ∆2
av effect, it is assumed that the lift curve during the flapping cycle,

consisting of the downstroke and the upstroke, is such as schematically presented in Figure 5. This
figure shows that lift is generated in the downstroke whereas there is no lift in the upstroke. A behavior
involving zero lift in the upstroke occurs in birds [18,19]. A possible reason for zero lift in the upstroke
is that, in this case, there are no detrimental effects of the lift on the thrust. That is because a positive
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lift in the upstroke would generate a negative thrust due to its rearwards inclination caused by the
upward movement of the wing [14].

Further to the lift behavior presented in Figure 5, examining Equation (25) with regard to an
arbitrary lift curve shows that the minimum of the induced drag is obtained if the lift coefficient in the
downstroke is constant, yielding

C̃Ldo = const (27)

where subscript “do” is used to indicate that C̃Ldo is referenced to the downstroke time period.
A constant lift coefficient in the downstroke is supposed to hold in the following treatment because this
can be regarded as the most favorable performance reference of a flapping wing vehicle that cannot
be undercut. This constant lift coefficient is considered appropriate for a performance comparison
between flapping and fixed wing vehicles.
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For C̃Ldo = const, the following result is obtained for the induced drag factor described by
Equation (26) in the case of equal down- and upstroke lengths

k f lap =
2

cos2v∗
k (28)

This means that the induced drag is at least doubled when compared with non-flapping, caused by the
changes in the amount of the lift vector during the flapping cycle.

However, the induced drag increase is further enlarged when accounting for the effect of lift
vector tilting, i.e., for the cos2v∗ term in Equation (28). For this purpose, the above simplified case
(L̃l,r = const in the downstroke, L̃l,r = 0 in the upstroke, vmin = −60◦, vmax = 60◦ and

.
v = const) is

considered, resulting in cos2v∗ = 0.68 to yield

k f lap = 2.92k (29)

In summary, the results on the effects of lift vector tilting (cos2v∗) and lift amount changes (∆2
av)

show that there is a substantial increase in the induced drag due to flapping when compared with the
induced drag of non-flapping, fixed wings.

3.3. Power Requirements of Flapping Wing Vehicles

Introducing k f lap, a relation describing the power required by flapping wing vehicles can be
derived such that a direct comparison with fixed wing vehicles is possible. With reference made to
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Equations (12) and (14) for incorporating the lift-weight balance, and to Equation (25) for incorporating
the drag, the power relation Equation (5) can be expanded to yield

P f l =
CD0√
C3

L,vert

+
k f lap

πA
√

CL,vert (30)

Examining this relation with regard to its minimum, the following result is obtained

P f l,min = 4
4

√
CD0

27

( k f lap

πA

)3

(31)

4. Fixed Wing Vehicles

To expand the relation describing the engine power required by fixed wing vehicles, Equation (4),
reference is made to the quadratic drag polar, Equations (17) and (18), which holds also for fixed
wing vehicles. Thus, the following result is obtained for the power required by fixed wing vehicles in
level flight

P f ix =
1

ηprop

 CD0√
C3

L

+
k

πA

√
CL

 (32)

Examining this relation yields for the minimum power

P f ix,min =
4

ηprop

4

√
CD0

27

(
k

πA

)3
(33)

where it is assumed that the optimal value of ηprop is associated with the minimum power
flight condition.

Concerning the comparison with flapping wing vehicles, Equations (32) and (33) show that the
propeller efficiency ηprop is a key factor with respect to fixed wing vehicles. Therefore, an overview on
possible ηprop values is provided in the following, related to fixed wing vehicles that are comparable in
size with flapping wing vehicles.

In regard to a comparison with large flapping wing vehicles, reference is made to the experience
in the field of small propeller-driven aircraft. For this purpose, representative cases for achievable
propeller efficiencies of such aircraft are presented in Figures 6 and 7. The case of Figure 6 relates to a
light aircraft, the propeller efficiency of which is shown dependent on the advance ratio

J =
V

nDprop
(34)

where n is the rotation rate (in revolutions per second) and Dprop is the propeller diameter. Effects of
the blade pitch angle are also graphically addressed. The point that is of primary interest in the present
context is the level of high ηprop values that can be reached. The curves plotted in Figure 6 show that
this level is close to ηprop = 0.9, holding for all blade pitch angles.

The case of Figure 7 relates to an ultralight vehicle where the propeller efficiency dependent on
the speed for different propeller diameters is presented. Here again, the point of primary interest is the
high ηprop level that can be reached. The curves depicted in Figure 7 show that the level here is above
ηprop = 0.8, holding in all propeller diameter cases.
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In regard to a comparison with small and mini flapping wing vehicles, reference is made to the
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of such vehicles are plotted in Figures 8 and 9. The results presented in Figure 8 show that the
propeller efficiency is lower than that of the larger vehicles considered before, attaining a level of about
ηprop = 0.7. A case with a considerably smaller level is depicted in Figure 9, where the highest ηprop
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As a résumé of the considerations on fixed wing vehicles, a possible range of propeller efficiencies
is from 0.4 to 0.9.

5. Comparison of Power Required by Flapping and Fixed Wing Vehicles

To compare the power required by flapping and fixed wing vehicles, it is assumed that
the aerodynamic configuration of the fixed wing vehicle is equivalent to the basic aerodynamic
configuration of the flapping wing vehicle at a zero flapping angle ν = 0. Accordingly, the CD/CL
values of the fixed wing configuration and the flapping wing configuration at ν = 0 are considered to
agree. This means with reference to Equations (29) and (31) that differences in the required power are
caused by the propeller efficiency ηprop on the side of the fixed wing vehicle and by the induced drag
factor k f lap on the side of the flapping wing vehicle.

As regards the vehicle mass, this does not explicitly appear in the non-dimensional form of the
power, Equations (29) and (31). A possible difference in that regard between flapping and fixed wing
vehicles can be accounted for by considering the relationship between the non-dimensional power
forms with the dimensional power relation given in Equation (1).

Results on the comparison of flapping and fixed wing vehicles are presented in Figure 10 where
the required power dependent on the speed is shown. For the speed applied in the diagram of
Figure 10, the following non-dimensional form is used

V = V/V∗ (35)

where V∗ is the speed at minimum drag given by

V∗ =

√
2mg

(πACD0/k)1/2ρS
(36)

Basically for the results presented in Figure 10, both power curves show the usual characteristic
according to which the required power decreases initially with the speed until a minimum is reached
and increases thereafter at higher speeds. The dotted lines in the low speed range are considered
possible extensions with regard to the maximum lift coefficient.

Besides that general characteristic, there are distinct differences between the two power curves.
This is related to the selected values of k f lap and the propeller efficiency ηprop. The fixed wing vehicle
involves a higher power demand in the entire speed range. This is basically due to the low propeller
efficiency assumed to apply in that case. The superiority of the flapping wing vehicle in terms of a
lower power demand increases at higher speeds.
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A further effect is that the minimum power of the flapping wing vehicle is at a higher speed than
that of the fixed wing vehicle. This is a general characteristic caused by the effect of k f lap. For the
minimum-power speeds of the flapping wing vehicle, VP f l,min

, and the fixed wing vehicle, VP f ix,min
,

the following relations hold

VP f l,min
= 4
√
(1/3) k f lap/k

VP f ix,min
= 1/ 4

√
3

(37)

These expressions show that VP f l,min
> VP f ix,min

generally holds because of k f lap/k > 1.
A change such as that graphically addressed in Figure 11 holds for the power relationship between

both vehicle types if the induced drag factor effective for flapping and the propeller efficiency are at
higher values. Because of the higher propeller efficiency, the performance of the fixed wing vehicle
is improved to the effect that it shows a lower power demand. This applies notably at lower speeds,
while in the high speed range the curves are nearer to each other.
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Figure 11. Power required in level flight (k f lap = 2.5, ηprop = 0.9).

In the case graphically addressed in Figure 12, ηprop and k f lap were intentionally selected such that
both vehicle types have about the same minimum power level. For this ηprop and k f lap scenario,
the differences in the power characteristics between flapping and fixed wing vehicles becomes
particularly apparent, yielding a lower power demand for fixed wing vehicles at low speed and
lower power demand for flapping wing vehicles at high speed.
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The propeller efficiency values applied in Figures 10–12 are supposed to be constant. This implies
a corresponding adaptation of the propeller-blade pitch angle to the speed (e.g., according to the
characteristic presented in Figure 6). In the case that the propeller-blade pitch angle is constant,
the required power of the fixed wing vehicle increases relative to the power curve involving constant
propeller efficiency. This effect is schematically indicated in Figure 12, using a dotted line for addressing
the constant propeller-blade pitch angle case. Both the dotted and solid power curves coincide at the
point where the propeller efficiency values agree.

An important aspect of the required power is the flight condition that shows the minimum power
sufficient for the vehicle to stay aloft. Using Equations (31) and (33), the following relation is obtained

P f l,min

P f ix,min
= ηprop

( k f lap

k

)3/4

(38)

Examining this relation yields results graphically presented in Figure 13. There are two regions,
one of which shows that flapping wing vehicles require lower power for level flight while in the other
region fixed wing vehicles are superior. The dividing line of the two regions is given by

ηprop = ( k/k f lap)
3/4 (39)

At low induced drag factors k f lap, flapping wing vehicles show a high aerodynamic efficiency
so that they achieve a correspondingly high level of overall performance. Thus, fixed wing vehicles
need to have a high propeller efficiency in order to yield a comparable flight performance. An increase
of k f lap leads to a reduction in the performance of flapping wing vehicles, more pronounced in the
initial part of the curve depicted in Figure 13 compared with the remaining part. As regards fixed wing
vehicles, they have a comparable performance for propeller efficiencies showing a correspondingly
reduced level.
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6. Conclusions

Comparing flapping and fixed wing vehicles, it is shown that there are two effects which have a
decisive influence on the power requirements, specific for each vehicle type. For flapping wing vehicles,
there is an increase in the drag that yields a negative effect on their flight performance. The drag
increase, which is not existent with fixed wing vehicles, is due to an increase in the induced drag
caused by flapping. For fixed wing vehicles, the propeller efficiency plays a major role. Experience
with propeller efficiencies shows that these are lower for small sized vehicles. As a result, there is a
tendency such that fixed wing vehicles show a power requirement advantage in the case of larger size
vehicles and flapping wing vehicles in the case of smaller size ones.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

b wing span
CD drag coefficient
CL lift coefficient
D drag
g acceleration due to gravity
k, k f lap lift dependent drag factor
L lift
m mass
P power
S reference area
t time
V speed
V∗ minimum-drag speed
V non-dimensional speed, V = V/V∗

A aspect ratio, = b2/S
ν tilt angle of lift vector
ηprop propeller efficiency
ρ air density
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