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Abstract: This paper deals with the control of lighter-than-air vehicles, more specifically the design
of an integrated guidance, navigation and control (GNC) scheme that is capable of navigating
an airship through a series of constant-altitude, planar waypoints. Two guidance schemes are
introduced, a track-specific guidance law and a proportional navigation guidance law, that provide
the required signals to the corresponding controllers based on the airship position relative to
a target waypoint. A novel implementation of the extended Kalman filter, namely the scheduled
extended Kalman filter, estimates the required states and wind speed to enhance the performance
of the track-specific guidance law in the presence of time-varying wind. The performance of the
GNC system is tested using a high fidelity nonlinear dynamic simulation for a variety of flying
conditions. Representative results illustrate the performance of the integrated system for chosen
flight conditions.

Keywords: unmanned airship; waypoint navigation; proportional navigation guidance; wind
estimation

1. Introduction

The dream of controlled flight was first realized by the invention of the airship, where it
is claimed that Jean-Baptiste Meusnier designed the first airship in 1748 [1]; it however, lacked
a lightweight, powerful engine. Henri Giffard was the first person to equip an airship with
steam-engine technology successfully. He flew his airship 17 miles in 1852, with a single propeller
driven by a three-horsepower engine [2]. The airship’s golden age was launched by the German
Luftschiff Zeppelin in 1900, which was utilized in commercial and military applications. That
golden age tragically ended in the Hindenburg disaster in 1937. In the past couple of decades,
however, interest in airships arose due to the advancement of technology in many engineering fields.
New demands, which cannot be satisfied by conventional fixed-wing aircraft, have also enthused
interest in airships [3]. Therefore, analyzing the dynamics of airships and implementing control
structures that guarantee high performance and safety are necessary for the continued advancement
of aerospace technology.

An airship’s main source of lift is buoyancy, or static lift. This is based on Archimedes’ principle:
if a body is immersed in a fluid (air), it experiences a force proportional to the volume of the displaced
fluid in the opposite direction of its weight. When the density of the body (airship) is less than that
of the fluid (air), that force is substantial. Due to this, the dynamics of an airship are different from
that of a conventional aircraft, with significant effects from added mass and added inertia and a
much higher sensitivity to wind [4]. Added mass and inertia effects are changes in the dynamics
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of the airship due to the mass and inertia of the air in which it is flying. This is experienced by all
aircraft; however, in heavier-than-air flight, the mass and inertia of air are negligible when compared
to that of the aircraft. In lighter-than-air flight, however, such as airship flight, these effects have too
profound of an effect on the dynamics that they cannot be neglected. Due to this method of operation,
airships have the ability to hover. This ability can transform unmanned airships into data acquisition
platforms ideal for applications, such as surveillance, terrain mapping, climate research, inspection
of man-made structures and GPS [5].

The ability to stabilize and control an airship under wind disturbances is vital in any application.
PID control is a commonly-used control scheme in various applications; the AURORA airship project,
focused on the development of sensing, control and navigation technologies for autonomous or
semi-autonomous airships [6], employs a PID controller for the longitudinal velocity control, a PD
altitude controller and a PD controller for heading control. A different approach, developed to control
the airship heading, incorporates a PID controller with gains designed using H2/H∞ methods [7].
Neural network-augmented model inversion control is also applied to airship control [8]; it is a
combination of feedback linearization and linear control. The theoretical aspect of applying the neural
network is to compensate for the feedback linearization and modeling error. A dynamic inversion
control law, forcing the closed-loop system outputs to follow a position command trajectory, is also
designed to give an airship path-tracking capability [9]. The control law shows fast correction of
trajectory errors. Lyapunov stability-based designs of state-feedback control laws have also been
implemented for the airship control problem [10]. A backstepping methodology is utilized to design
a closed-loop trajectory-tracking controller for an under-actuated airship [11]. The authors state
that backstepping is suitable for the cascaded nature of the vehicle dynamics and that it offers
design flexibility and robustness against parametric uncertainties, which are often encountered
in aerodynamic modeling and air stream disturbances. Other methods, including sliding mode
control [12], and fuzzy logic design, are implemented for airship control [13].

The work presented here focuses on the design of a sub-optimal gain-scheduled feedback control
law based on linear quadratic (LQ) methods. This controller is expected to fly the airship through
a series of planar waypoints based on commands generated by a track-specific navigation algorithm.
The selection of an LQ-based controller design is accredited to its ability to deal with multi-variable
systems in a relatively simple way and its ease of implementation [14]. While the presented work
is similar to [15] and [16], who implement an LQ controller for regulating airship navigated flight,
neither the exact gain scheduling law nor the navigation law used to guide the airship through
flight are discussed in detail. In [16], eleven trim points are required to implement a gain scheduling
law, and the guidance law generates a commanded yaw rate based on the airship heading and the
commanded heading towards the next waypoint. The work presented here introduces a simplistic,
yet highly effective gain scheduling law with the capability of supplying the controllers with the
values of the gain during all flight modes and relies on fewer trim points for achieving similar tasks.

The paper also presents two guidance laws; the first is a path-specific guidance law, commanding
the airship to visit planar waypoints along a specified path. The other is a proportional navigation
guidance law, commanding it to visit the waypoints by rotating its velocity vector. Both [15] and [16]
assume that the required states and state derivatives to implement the control and navigation laws are
available. This is not always true in reality, where some states may not be available by measurement.
This issue is addressed in the work presented in this paper by designing and implementing a novel
scheduled extended Kalman filter (SEKF) to estimate the required states for control and navigation
with a minimal sensor suite on-board the airship. Measurements are only available from an inertial
measurement unit (IMU) and GPS sensors. The EKF is presented in a manner such that the nonlinear
system dynamics’ Jacobians need not be calculated at every instant, but are precalculated for a set of
flight modes, and a “Jacobian scheduling law” is utilized to supply the filter with the needed values
at every instant of the flight. This approach is not computationally intense and does not require the
formulation of expressions for the Jacobian entries; therefore, it is effective and time saving. The
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governing equations of motion for the airship are complex; thus, having numerically-precalculated
Jacobian matrices for every flight segment and scheduling these values allow for a practically effective
approach for applying an EKF algorithm.

The paper is organized as follows: the airship nonlinear equations of motion are introduced first
followed by the required linear models for control design, which are presented and discussed. The
control laws and their corresponding navigation laws are designed and discussed. Following this,
a novel EKF implementation for state and parameter estimation is elucidated. Finally, the results
obtained from this research are introduced and discussed to formulate a conclusive argument.

2. Equations of Motion

The unmanned airship selected for this work is the AS500 airship [17–20]. The AS500 has a main
hull engulfing the lifting gas, as can be seen in Figure 1a. The AS500 incorporates aerodynamic tail
fins in an X-configuration; these fins include control surfaces that can be deflected for stability and
control. The tail fin configuration can be seen in Figure 1b, where it is clear that there are two groups
of fins: Groups 1 and 2. The X-configuration implies that the control of the airship flight is achieved
by a coordinated effort between both fin group deflections ∆1 and ∆2.

Tail prop
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Figure 1. Schematic drawing showing the main components of the AS500 airship (not to scale):
(a) hull; (b) tail fins.

The AS500 main propeller, with tilting capability in the x − z plane of the body-fixed frame at
an angle γTm , is positioned below the hull along the gondola, which is illustrated in Figure 1a. A tail
propeller that aids in heading control is also available on the AS500 and is illustrated in the figure.
Numerical values for some of the airship physical parameters are given in Table 1.

Table 1. AS500 airship physical parameters.

Parameter Value

Net mass 21 kg
Surface area 2.8352 m2

Length 7.8 m
Volume 15 m3

Maximum speed 12.5 m/s

The equations of motion presented here are based on the methodology presented in [19–21].
The derivation is omitted here for brevity; however, a detailed one can be found in [22]. The
airship motion in the inertial frame is the sum of the airship motion relative to the atmosphere
and the atmosphere’s inertial motion. Therefore, the translational kinematics of the airship can be
described as:

ṙa = RT
IBV + W (1)
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where RIB is the rotation matrix from the inertial frame to the body frame, ra is the position vector
of the airship’s body frame origin, expressed in the inertial frame, ra = [x y z]T , V is the vector
of airship velocity relative to the atmosphere expressed in the body frame, V = [u v w]T , and W
is the atmosphere inertial velocity vector expressed in the inertial frame, W = [Wx Wy Wz]T . The
prevailing wind field experienced by the airship is simulated using the exponentially correlated wind
model (ECWM) [23]. The equations that govern the change of wind speed, in the inertial frame, are:

Ẇx = −bwWx +
(√

awbw

)
ηx

Ẇy = −bwWy +
(√

awbw

)
ηy

Ẇz = 0

Ẅx = 0

Ẅy = 0

Ẅz = 0

(2)

with aw as a coefficient showing the extent of the mean square value of the wind, bw the inverse time
constant to show the extent of the correlation of the wind and ηx and ηy being the zero-mean Gaussian
white noise. aw and bw are calculated as aw = 2(E{W}2 + σ2

w) and bw = 1
τw

. Wind parameter values
are summarized in Table 2. The wind is assumed to have a zero-mean Gaussian distribution, with
a standard deviation of 0.5 m/s. The Dryden model is utilized to add the turbulence effect to the
wind model.

Table 2. Wind model parameters.

Parameter Value

bw 0.0063 s−1

E{W} 0 m/s
σw 0.5 m/s

The rotation matrix from the inertial frame to the body frame is constructed based on the 3-2-1
Euler angle rotation sequence. The rotational kinematics expresses the mapping of the body angular
velocity to the Euler angle rates.

Ω̇ = Γ(Ω)ωBI (3)

where Ω = [φ θ ψ]T , with φ, θ and ψ being the roll, pitch and yaw angles. Γ(Ω) is shown below.

Γ(Ω) =

1 sin(φ) tan(φ) cos(φ) tan(φ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)


The governing equations of motion for the airship translational and rotational dynamics,
respectively, are:

V̇ = (MI3×3)−1(F0 + F1V̇ + F2ω̇BI︸ ︷︷ ︸
FA

+Tm + Tt + FbgB) + [ωBI ]×V− RIBẆ− [ρcm]×ω̇BI − [ωBI ]
2
×ρcm (4)

ω̇BI = I−1
M (M0 + M1ω̇BI + M2V̇︸ ︷︷ ︸

MA

+Mp + Mbouy + Mg + M[ρcm]×(−[ωBI ]×V + V̇ + RIBẆ) + [ωBI ]× IMωBI) (5)

where M is the scalar mass of the airship, ρcm is the center of mass position vector relative to the body
frame, expressed in the body frame, I3×3 is an identity matrix, IM is the inertia tensor and ωBI is
the airship angular velocity vector with respect to the inertial frame expressed in the body frame as
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ωBI = [p q r]T (the roll, pitch and yaw rates). F0, F1, F2, Tm, Tt, FbgB , M0, M1, M2, Mp, Mbouy and Mg

are variables pertaining to the forces and moments acting on the airship and are to be discussed next.

Forces and Moments on the Airship

The aerodynamic model implemented here is based on published data [20]. The aerodynamic
forces acting on the airship during flight are expressed as:

FA = F0 + F1V̇ + F2ω̇BI (6)

where F1 and F2 are the virtual mass matrices, whose expressions are given in Appendix B (see
Equations (23) and (24)). F0 is the main aerodynamic force vector in the body frame and can be
expressed as:

F0 =

FxB

FyB

FzB

 =

 1
2 ρair||V||2Sre f CT
1
2 ρair||V||2Sre f CL
1
2 ρair||V||2Sre f CN

− Du

[
V

ωBI

]
(7)

CT , CL, CN are aerodynamic force coefficients in the body frame X-direction, Y-direction and
Z-direction, respectively, and the expressions for these coefficients are given in Appendix A.
Sre f is the reference surface area of the airship hull; Du is the translational section of the
Coriolis-centrifugal coupling matrix; and ρ is the air density. Appendix B shows the expression for
the the Coriolis-centrifugal coupling matrix. The aerodynamics moments acting on the airship during
flight can be expressed as:

MA = M0 + M1ω̇BI + M2V̇ (8)

where M1 and M2 are the virtual inertia matrices, whose expressions are given in Appendix B (see
Equations (25) and (26)). M0 is the main aerodynamic moment vector in the body frame and can be
expressed as:

M0 =

MxB

MyB

MzB

 =

 1
2 ρair||V||2Sre f Lre f Cl
1
2 ρair||V||2Sre f Lre f Cm
1
2 ρair||V||2Sre f Lre f Cn

− Dω

[
V

ωBI

]
(9)

Cl , Cm, Cn are the aerodynamic moment coefficients in the body frame X-direction, Y-direction and
Z-direction respectively. Expressions for the aerodynamic moment coefficients are given in Appendix
A, as well. Lre f is the reference length of the airship hull, and Dω is the rotational section of the
Coriolis-centrifugal coupling matrix (see Appendix B).

The AS500 airship has two sources of thrust, the main propeller and the tail propeller. The main
propeller can produce thrust in the body frame X- and Z-directions by rotating at an angle γTm . The
tail propeller only produces thrust in the y-direction of the body frame. The two vectors can be
expressed in the body frame as Tm = [Tm cos(γTm) 0 − Tm sin(γTm)]

T and Tt = [0 Tt 0]T ,
where Tm and Tt are the magnitude of the main and tail thrust, respectively. The moment due
to the propulsive forces acting on the airship in the body frame can be expressed as the sum of
the cross product of the force vectors and their locations as Mp = ρTm

× Tm + ρTt
× Tt, where

ρTm
and ρTt

are the position vectors of the main and tail propeller, respectively, in the body frame.
The buoyancy and weight are both represented in the inertial frame as one buoyancy-weight vector
FbgI = [0 0 (Fg − Fb)]

T; therefore, to express the buoyancy-weight force vector in the body frame, it is
pre-multiplied by the rotation matrix as follows FbgB = RIBFbgI , and the moment due to the buoyancy
force can be expressed as Mbouy = ρcv × RIBFbI , where ρcv is the location of the center of volume in
the body frame, expressed in the body frame, and FbI is the buoyancy force acting on the airship
expressed in the inertial frame. The moment due to the weight can be expressed as the product of the
location of the center of mass and the weight vector in the body frame Mg = ρcm × RIBFgI , where FgI

is the weight of the airship expressed in the inertial frame.
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γTm Main propeller tilt angle
Tm Main propeller thrust vector
ρTm

Main propeller position vector
Tt Tail propeller thrust vector
ρTt

Tail propeller position vector
Mp Moment due to the propulsive forces
FbgI Buoyancy-weight vector in the inertial frame, expressed in the inertial frame
FbgB Buoyancy-weight vector in the inertial frame, expressed in the body frame
Mbouy Moment acting on airship due to buoyancy force
Mg Moment acting on airship due to gravitational force
ρcv Location of the center of volume in the body frame, expressed in the body frame
ρcm Location of the center of mass in the body frame, expressed in the body frame

The defined forces and moments acting on the airship combined with the nonlinear equations of
motions presented earlier can be used to generate a nonlinear simulation of the airship flight.

3. Trim Conditions and the Linear Model

The airship nonlinear model discussed earlier is trimmed at two flight conditions; straight and
level flight and level turn flight. The airship speed is held constant during flight. The airship will
visit planar waypoints pre-programmed into the guidance algorithm in the order they are given,
while maintaining constant altitude. The AS500 airship is capable of speeds up to 12.5 m/s [17];
therefore, it is assumed that it can operate safely at a trim speed of 7 m/s. A trim altitude of 1000 m
can be achieved if the correct mass of helium is loaded into the hull of the AS500. Since the volume
of the AS500 is 15 m3, it is assumed that the helium in the hull will expand to that volume at the trim
altitude, but no more to prevent any damage. To do so, the mass of the helium loaded into the airship
at sea level must account for such expansion; the following calculations show how this is possible.

The volume of the airship at sea level and the volume at 1000 m are related as follows [4], V0 = σV1000,
where σ is the ratio of air density at 1000 m, and the air density at sea level is approximately 0.9.
Setting V1000 equal to 15 m3 gives V0 = 13.5 m3. The volume at sea level is related to the mass of
helium by V0 = MHe/ρH0 , where MHe and ρH0 are the mass of helium and the density of helium at
sea level, respectively. This calculation results in a required mass of 2.4 kg of helium to be loaded into
the airship’s hull. The value of the states and inputs at each trim point are given in Table 3; where
TM, γTM , Tt, ∆1 and ∆2 are the main rotor thrust, main rotor tilt angle, the stern rotor thrust and the
deflections of the aerodynamic control surfaces, respectively.

σ Air density ratio
MHe Mass of helium
ρH0 Density of helium at sea level
∆1 Deflection of control surface on tail fin Group 1
∆2 Deflection of control surface on tail fin Group 2

To employ linear quadratic methods for obtaining the optimal gains for controlling the airship,
a linear state-space model of the airship dynamics is required. Note, the wind terms are set to zero for
trim analysis. The nonlinear model formed by Equations (1), (3)–(5) can be linearized about the two
trim points in Table 3, and the two linear state-space models having the form below are achieved:

δẊ = AδX + BδU (10)

where A is the system matrix, B is the input matrix and δU and δX are the incremental input and state
vectors, respectively, and can be represented as follows:

δX = [δu δv δw δp δq δr δx δy δz δφ δθ δψ]T

δU = [δTM δγTM δTt δ∆1 δ∆2]
T (11)
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u Speed along the body x-direction
v Speed along the body y-direction
w Speed along the body z-direction
p Rotation rate along the body x-direction
q Rotation rate along the body y-direction
r Rotation rate along the body z-direction
x Position in the inertial x-direction
y Position in the inertial y-direction
z Position in the inertial z-direction

Table 3. Trim states.

State/Input Straight and Level Level Turn

u (m/s) 6.99 6.98
v (m/s) 0 0.194
w (m/s) −0.365 −0.364
p (deg/s) 0 0.27
q (deg/s) 0 −0.02
r (deg/s) 0 5

z (m) −1000 −1000
φ (deg) 0 −0.8
θ (deg) −3 −3
TM (N) 10.2 10.5

γTM (deg) 36.4 35.6
Tt (N) 0.2 1.7

∆1 (deg) 20 −3.7
∆2 (deg) 20 20

4. Linear Quadratic (LQ) Control and Guidance Laws

The linear-quadratic optimal control problem is an optimization problem that finds
a state-feedback control law of the form δU = −KδX, which minimizes a quadratic performance
index subject to a linear dynamical constraint in Equation (10) [14]. The performance index is of the
following form:

J =
∫ ∞

0
(δXTQδX + δUT RδU)dt (12)

where Q is an n× n weighting matrix and is typically positive-semidefinite and n is the number of
states, which in our case is equal to 12. R is an m × m positive-definite weighting matrix, where
m is the number of inputs and is equal to five for the AS500 airship model. Suitable values for Q
and R are selected based on the approaches highlighted in [24–27]. More specifically, we employ the
method of [27] for this work. The control gains are obtained by using the solution of the algebraic
Riccati equation,

ATP + PA + Q− PBR−1BTP = 0 (13)

and, thus, K = R−1BTP. To enable set point tracking, the control law is implemented as,
U = −K(X − Xtrim) + Utrim, where X is the state vector, Xtrim is the value of the trim states at the
current flight condition, Utrim are the trim values for the inputs at the same flight condition and K is
the same gain matrix calculated earlier.

4.1. Track-Specific Guidance Law

A reference signal must be supplied to the controller, in order for it to make the required
adjustments to the inputs and fly the airship in a stable manner towards the next waypoint. This
reference signal, in the work presented here, is based on a required airship heading and its location
relative to the next waypoint. The airship must navigate through a set of constant-altitude, planar
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waypoints; therefore, a track-specific guidance law is developed below. Note, nonlinear path
following strategies using Lyapunov techniques for mini air vehicles are also discussed in [28].
Additionally, trajectory generation for tracking is discussed in [29], wherein Dubin’s model is used.
While Dubin’s model is very helpful in generating smooth planar trajectories, we consider the full
nonlinear model where the altitude and speed of the vehicle change as it goes through the waypoints.
In the present paper, reference paths (trajectories) are not generated; only the waypoints are utilized
to generate heading commands.

If the airship were to visit four waypoints, A, B, C and D, in that order, the guidance law will
track the waypoints in pairs, such that when the airship is flying from A to B, the track-specific (TS)
guidance law will track both the A and B locations. A geometric heading based on the location of
this pair of waypoints is calculated using Ax, Ay, Bx and By, which are the x and y coordinates of

waypoints A and B, respectively. Thus, χgeo = tan−1
(

By−Ay
Bx−Ax

)
.

The heading of the airship is calculated based on its projected ground speed as χa = tan−1
(

ẏ
ẋ

)
.

Using the geometric and airship heading values, a desired heading angle is calculated, i.e.,
χd = π

2 tanh
(

d
Ldes

)
, where d is the normal distance to the virtual straight line path connecting the

waypoints, shown in Figure 2, and is obtained as d = ‖Rt‖ sin
(
χgeo − χa

)
, where ‖Rt‖ is the distance

traveled from waypoint A and Ldes is a design parameter, which is a function of the airship speed and
calculated as, Ldes = ‖V‖τ, with τ being a performance design parameter.

χgeo Geometric heading
χa Airship heading
χd Airship desired heading
ψcomm Commanded yaw angle

The commanded yaw angle provided to the set-point tracking controller is calculated as
ψcomm = χd − β, where β is the airship side-slip angle.

A virtual waypoint proximity zone, with a predefined radius, surrounds each waypoint. As the
airship flies towards a waypoint, it will do so in a straight and level flight manner. When the
proximity zone is breached, the tracked waypoint set changes by looking ahead towards the next
waypoint, and so on. The track-specific guidance law methodology is illustrated in Figure 2.

Figure 2. Illustration of the track-specific guidance law methodology.

4.2. Proportional Navigation Guidance Law

Proportional navigation (PN) is a method of guidance that has been applied to missiles for
terminal guidance [30]. It is one of the most popular guidance methods for short-range intercept [31]
and also has been applied to aircraft collision avoidance problems [32]. In this section, a PN guidance
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law is developed for airship waypoint navigation, where the waypoints are treated as non-moving
targets and the airship is guided towards them. Yaw rate commands are generated by the PN law
and fed into the LQ controller as reference signals. The reference signal is compared to the airship
yaw rate, and the error generates control signals to yaw the airship towards the next waypoint.

χLOS Line-of-sight heading
RLOS Line-of-sight vector
aPN Commanded acceleration by the PN guidance law

A typical planar pursuit engagement geometry is shown in Figure 3. χa, χLOS, RLOS, V and aPN
are the airship heading, line-of-sight (LOS) heading, the LOS vector, the airship velocity vector and
the commanded acceleration by the PN guidance law. The commanded acceleration is dictated by
the PN law to be:

aPN = Nχ̇LOSVc (14)

where N is the navigation constant with values usually ranging from two to five, χ̇LOS is the rate
of rotation of the LOS and Vc is the airship closing velocity on the waypoint. From the engagement
geometry in Figure 3, it can be seen that χ̇LOS = −‖V‖ sin(χa−χLOS)

‖RLOS‖
and Vc = ||V|| cos(χa − χLOS).

The value of the commanded heading rate for the airship can be calculated from Equation (14),
χ̇comm = aPN

Vc
. To supply the controller with a commanded yaw rate, it is assumed that

the commanded heading rate from the PN law is equal to a commanded yaw rate; therefore,
ψ̇comm = χ̇comm. ψ̇comm is used as a reference signal in the previously designed LQ controller to force
the airship to track the yaw rate commands generated by the PN-law, therefore guiding it through
any series of waypoints.

Figure 3. Engagement geometry for planar pursuit of a waypoint.

4.3. Gain Scheduling Law

The need for a gain scheduling law arises from the fact that when a controller is designed to
work at a specific trim point and the system largely deviates from that point, the controller no longer
functions efficiently. Therefore, the controller gains are calculated for multiple trim points, and then,
the gain scheduling law is used to interpolate the gain values for specific flight conditions. The
proposed gain scheduling law for acquiring the value of the gain matrix for the LQ control laws
is K = (1− σK)KSL + σKKLT , where σK is the scheduling parameter, and is a function of a scheduling
variable, the turn rate ψ̇. The turn rate is selected as a scheduling variable based on the fact that the
airship is only required to fly in a straight line towards the current waypoint, and upon breaching the
waypoint proximity zone, it would turn towards the next waypoint. This translates into σK having
a value between zero and one, where at σK = 0, the airship is flying straight and level, and at σ = 1,
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the airship is turning. A linear function is proposed for the scheduling parameter as a function of the
scheduling variable in the following form σK = − 1

ψ̇SL−ψ̇LT
ψ̇ + ψ̇SL

ψ̇SL−ψ̇LT
. Since for a straight and level

flight, the turn rate is required to be zero, σK =
˙|ψ|

ψ̇LT
.

KSL Straight and level flight control gains
KLT Level turn flight control gains
σK) Scheduling parameter
ψ̇LT Level turn flight rate of turn
ψ̇SL Straight and level flight rate of turn

A saturation limit is imposed, where when the value of ˙|ψ| is larger than ψ̇LT , the value of σK = 1.
It should be noted that the value of ˙|ψ| while flying straight and level should, theoretically, be zero.
However, due to sensor imperfections, while measuring the turn rate and as a consequence of the
dynamics of the closed-loop feedback system, the value of ˙|ψ| during straight and level flight will
not be exactly zero. This causes the scheduling parameter σK to not strictly be equal to zero during
straight and level flight, as well. This generates an interpolated value of the gains during straight and
level flight, which in turn introduces additional modeling errors. This effect will also be amplified
later on when the estimated values of the states are fed back to the controller from a Kalman filter.

5. State and Wind Estimation Using a Scheduled Extended Kalman Filter

A novel implementation of the scheduled extended Kalman filter (SEKF), with a minimal sensor
suite on-board the airship, for estimating the full state vector of the airship along with the wind field
in which it is flying, is implemented. Measurements are provided only from an IMU and a GPS
sensor. The system Jacobians need not be calculated at every instant and are precalculated for the
different flight modes that the airship will encounter. A “Jacobian scheduling law” is introduced to
supply the filter with the needed values at every instant of the flight. This version of the filter, referred
to as the scheduled extended Kalman filter (SEKF), is shown to work very well, especially when the
dynamics does not change very rapidly, with the added advantage of reduced computational effort.
The process dynamics is governed by Equations (1)–(5) and can be put in compact form as follows:

Ẋw = f(Xw, U) (15)

where Xw = [u v w p q r x y z φ θ ψ Wx Wy Wz Ẇx Ẇy Ẇz]T and
U = [TM γTM Tt ∆1 ∆2]

T . The measurements are obtained from the available sensors, i.e., GPS and
IMU. No air data sensors are assumed available. Such sensors are available in a conventional suite of
on-board UAV avionics [33]. The GPS will provide measurements for the inertial position vector, and
the IMU will provide measurements for the angular rates along with the Euler angles. This leads to
the following measurement vector:

Ỹ = [ p̃ q̃ r̃ x̃ ỹ z̃ φ̃ θ̃ ψ̃]T (16)

Ỹ Measurement vector

Further, the measurements of p , q , r , x , y , z , φ , θ and ψ are assumed to be corrupted with
bias and zero-mean Gaussian white noise. The bias and white noise standard deviation values are
summarized in Table 4.

Table 4. Standard deviations and bias of the measurement vector.

Measurement p̃ q̃ r̃ φ̃ θ̃ ψ̃ x̃ ỹ z̃
(deg/s) (deg/s) (deg/s) (deg) (deg) (deg) (m) (m) (m)

SD 1 1 1 1 1 1 3 3 3
Bias 2 2 2 0 0 0 0 0 0
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The state and wind estimates are propagated according to Equation (15) as ˙̂Xw = f (X̂w, U) with
X̂w representing the estimate of the composite state vector that includes the wind velocity and the
wind acceleration estimates.

X̂w = [û v̂ ŵ p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂ Ŵx Ŵy Ŵz
˙̂Wx

˙̂Wy
˙̂Wz]T

˙̂Wx = −bwŴx
¨̂Wx = −bw

˙̂Wx

˙̂Wy = −bwŴy
¨̂Wy = −bw

˙̂Wy

˙̂Wz = 0 ¨̂Wz = 0

(17)

Since the measurement biases are constant, we augment them to the estimator system dynamics
equations as,

[ ˙̂bp
˙̂bq

˙̂br]
T = [0 0 0]T (18)

where b̂p, b̂q and b̂r are the estimated values of the bias in p̃, q̃ and r̃, respectively. The description for
the propagation models above leads to an augmented estimated state vector,

X̂bw = [û v̂ ŵ p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂ Ŵx Ŵy Ŵz
˙̂Wx

˙̂Wy
˙̂Wz b̂p b̂q b̂r]

T (19)

The error covariance matrix is propagated through the continuous-time Riccati equation

(Equation (20)); however, the need to calculate the Jacobian F(x̂(t), t) =
∂ f
∂x

∣∣∣
x̂k

at every instant

is computationally expensive and can be a complicated process for highly nonlinear systems.
In the SEKF framework, we precalculate the Jacobian at the two trim flight conditions and use the
scheduling law proposed for the controller gains presented earlier, to acquire the value of the Jacobian
during flight. In this novel implementation of the filter, only the elements pertaining to the change of
the linear velocities (u v w) and angular rates (p q r) with respect to the wind acceleration need to
be computed each time. The following “Jacobian scheduling law” is used, F = (1− σK)FSL + σKFLT .

Ṗ(t) = FP(t) + P(t)FT + GQGT (20)

FSL Straight and level flight state Jacobian
FLT Level turn flight state Jacobian
H Measurement Jacobian
P Error covariance matrix

whereQ is a 15× 15 diagonal matrix with elements shown in Table 5 and:

G =


I6×15

[0]6×15

[0]3×6 I3×3 [0]3×6

[0]3×9 I6×6


The state estimates and the error covariance are updated every time a measurement is obtained

using the Kalman gain from Equation (21). From the measurement model, it is seen that the Jacobian
Hk

T(x̂−k ) =
∂h
∂x |x̂−k has a constant value for all time.

Kk = Pk
−HT [HPk

−HT +Rk]
−1 (21)

where:

H =

[0]3×3 [I]3×3 [0]3×6 [I]3×3 [0]3×6

[0]3×6 [I]3×3 [0]3×4 [0]3×4 [0]3×4

[0]3×9 [I]3×3 [0]3×3 [0]3×3 [0]3×3


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andRk is a 9× 9 diagonal matrix with elements shown in Table 6.

Table 5. Q diagonal elements.

Qi,i Value Qi,i Value

Q1,1 1e-2 Q9,9 1e-6
Q2,2 1e-2 Q10,10 1e-6
Q3,3 1e-2 Q11,11 1e-6
Q4,4 1e-2 Q12,12 1e-6
Q5,5 1e-2 Q13,13 1e-6
Q6,6 1e-2 Q14,14 1e-6
Q7,7 1e-6 Q15,15 1e-6
Q8,8 1e-6 – –

Table 6. R diagonal elements.

Ri,i Value Ri,i Value Rii Value

R1,1 (π/180)2 R4,4 32 R7,7 (π/180)2

R2,2 (π/180)2 R5,5 32 R8,8 (π/180)2

R3,3 (π/180)2 R6,6 32 R9,c9 (π/180)2

After the Kalman gain has been calculated, the estimate vector and the error covariance matrix
are updated as follows:

X̂+
k = X̂−k + Kk[ỹk − ŷ(X̂−k )]

Pk
+ = [I − Kk Hk(X̂−k )]Pk

− (22)

where ŷ(X̂−k ) = [ p̂ q̂ r̂ x̂ ŷ ẑ φ̂ θ̂ ψ̂]T ; X̂−k is the propagated estimate vector in Equation (19), and
Pk
− is the propagated value of the error covariance matrix at the previous instant.

6. Results and Discussion

6.1. Flight in Zero Wind Condition

The simulation is initialized with the airship at the origin of the inertial frame; the airship will
then travel to four pre-programmed waypoints until it has visited each one. The radius of the
waypoint proximity zone around each waypoint is set to 50 m; the altitude is held at 1000 m; and
the speed is kept constant at a value of 7 m/s. The simulation is carried out for both guidance laws
first without wind effects.

Figures 4 to 7 show the time history of the airship states throughout the simulation. It is noticed
from Figure 4 that there are three distinct peaks in the value of the side-speed during the simulation.
This is indicative of the airship slipping while turning; this is due to the fact that unlike fixed wing
aircraft, since airships generate lift through buoyancy they do not bank to turn. Hence, a side-slip
is induced during a turn. Figure 5 shows a zero pitch rate for all simulation time, along with three
visible peaks of the yaw rate. These peaks correspond to the turns executed by the airship after
arriving at each waypoint.

In Figure 6, it is noticed that while banking in one direction (left, negative), the airship yaws
in the other (right, positive). This is explained by the location of the tail thrust source. Since it is
located above the center of gravity, the tail thruster induces a “negative” roll moment when operated
to generate a “positive” yaw moment. Therefore, yawing the airship to the right induces a negative
roll to the left. This is also another illustration of how airship operation differs substantially from
conventional aircraft. The altitude of the airship is kept constant by the LQ controller during the
simulation. This result can be seen in Figure 7.
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Figure 4. Time history of velocity vector components in the body frame: track-specific (TS) guidance
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Figure 5. Time history of angular velocity vector components in the body frame: TS guidance
(no wind).
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Figure 6. Time history of airship roll, pitch and yaw angles: TS guidance (no wind).
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Figure 7. Time history of airship inertial position: TS guidance (no wind).

Figures 8 to 11 show the time history of the states of the airship while executing a simulation
similar to the one whose results are displayed in Figures 4 to 7; however, these results display the
achieved output when using the PN guidance law in combination with the LQ controller designed
earlier. It is clear from Figure 8 that the airship also undergoes a side-slip while turning; however,
this time, the turn is somewhat continuous. This is due to the continuously-generated acceleration
commands by the PN guidance law. This can be confirmed by examining the yaw rate (r) in Figure 9,
which is non-zero for the entire flight time.

Again, the opposite direction roll phenomenon discussed earlier can also be seen in Figure 10.
The inertial position of the airship while guided by the PN guidance law is shown in Figure 11. The
path is indicated to be of circular nature, which is again attributed to the mode of operation of a PN
guidance law.
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Figure 8. Time history of velocity vector components in the body frame: proportional navigation (PN)
guidance (no wind).
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Figure 9. Time history of angular velocity vector components in the body frame: PN guidance
(no wind).
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Figure 10. Time history of airship roll, pitch and yaw angles: PN guidance (no wind).
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Figure 11. Time history of airship inertial position: PN guidance (no wind).
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6.2. Flight under Time-Varying Wind

North-east wind, generated using the wind model discussed earlier, is introduced into the
simulation. The wind inertial speeds can be seen in Figure 12. As a result of the wind presence,
the airship flight path, generated from the TS guidance law simulation, is shifted when compared
to the no-wind flight path, as shown in Figure 13. The wind effect on the airship dynamics can be
substantial in many situations, and this may lead to undesired performance; therefore, this is an issue
worthy of solving. This is done by implementing the SEKF designed earlier in order to estimates
the wind speed and feed it back to the TS guidance law. This will allow it to generate signals, with
knowledge of the wind, to the controller in order to achieve enhanced performance. For the PN
guidance law, the trajectory is also shifted, as can be seen in Figure 14. However, since the purpose
of the PN law is to reach each waypoint traveling on any trajectory possible, it has less performance
constraints; therefore, it is more robust to wind disturbances.
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Figure 12. Time-varying wind field.
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Figure 13. Airship flight trajectory in both no wind and time-varying wind conditions: TS guidance.
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Figure 14. Airship flight trajectory in both no wind and time-varying wind conditions: PN guidance.

For the next set of results, the SEKF is now implemented in the simulation. First the simulation
is run under the zero wind condition to capture the performance of the TS guidance law and LQ
controller with the presence of uncertainty in the estimated states. Figures 15 to 18 show the time
history of all of the airship states along with their estimates. It is clear that the introduction of
uncertainty into the simulation has altered the results. However, the results indicate that the LQ
controller is capable of keeping the airship stable and navigating it through the desired waypoints
based on the signals from the TS guidance law. It is also noticed that in Figures 15 to 17, there are
small amplitude oscillations in lateral states, such as the side-speed, yaw rate and bank angle. These
oscillations occur after the airship has executed a turn. This can be attributed to the nature of the
gain scheduling law derived earlier. The gain scheduling law is a function of the airship’s turn rate
ψ̇, which, due to the uncertainties added to the system by measurement noise and bias, does not go
back to zero exactly after an airship has executed a turn. The turn rate fed into the gain scheduling
law is generated by estimates provided by the Kalman filter, and the fact that it is not perfectly zero
causes such oscillations to occur.
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Figure 15. Velocity vector components and their estimates in the body frame: TS guidance (no wind).
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Figure 16. Angular velocity vector components and their estimates in the body frame: TS guidance
(no wind).
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Figure 17. Airship roll, pitch, and yaw angles and their estimates: TS guidance (no wind).
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The SEKF was also able to estimate the bias in the angular velocity measurements; the result is
shown in Figure 19. Error between the estimated value and true value of the bias is shown in Figure 20
along with the three-σ bounds. The estimation errors and three-σ bounds for the body-frame velocity
components are also shown in Figure 21. From the figure, it can be stated that the body-frame
velocity components are estimated with operationally-acceptable levels of uncertainty; this shows
the effectiveness of the implemented SEKF. The three-σ bounds are not shown for all of the estimated
states and parameters for brevity; the ones shown however are to serve as an indication of the
filter’s convergence.
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Figure 19. Angular rate measurement bias: true and estimate.
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Figure 20. Angular rate measurement bias estimation error and three-σ bounds.
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Figure 21. Velocity vector components estimation error and three-σ bounds.
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The same wind field, previously introduced, is integrated into the simulation with the SEKF
implementation. Figure 22 shows the true and estimated values of the wind speeds. It is clear that
the Kalman filter is capable of estimating the wind speed with acceptable levels of uncertainty, given
the minimal number of sensors on-board the airship. This information can now be used to enhance
the controller and TS guidance law’s performance. The values of the estimated wind speeds are fed
into the TS guidance law in such a way that the inertial velocities used to calculate the vehicle heading
can account for the wind information. This enables the TS guidance law to generate more signals that
enhance the controller performance in the presence of wind. Examining Figure 23, it can be seen that
from both simulations, the performance of the TS guidance law is enhanced when the estimated wind
speeds are available at its disposal.
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Figure 22. Wind velocity estimates.
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Figure 23. Wind velocity estimates feedback effect on TS guidance law performance.

7. Conclusions

From the work presented in this paper on the control of an unmanned airship through waypoint
navigation under time-varying wind conditions, we observe that the dynamics of lighter-than-air
flight are substantially different from those of conventional heavier-than-air flight in that airship
dynamics are significantly affected by wind. A simple LQ controller receiving navigation commands
from a track-specific or a proportional navigation guidance law is capable of navigating the AS500
airship through a series of waypoints under zero wind condition and the presence of time-varying
wind. A scheduled extended Kalman filter that uses pre-computed system Jacobians works quite
well and yields acceptable estimates of the states, measurement biases and prevailing wind while
receiving measurements from only the GPS and IMU sensors. It is found that the information of the
estimated wind speeds can be used to enhance the guidance commands sent to the LQ controller,
which in turn delivers an enhanced performance.
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Appendix A

The aerodynamic force and moment coefficients for the airship are represented based on three
different cases that correspond to the deflections of the tail fin aerodynamic surfaces ∆1 and ∆2 [20]
and are summarized below.

1. When ∆1 = ∆2 = 0:

CL = 0.1226 cos(α) sin(2β) + 0.372 sin(β)
√

sin(α)2 cos2(β) + sin2(β)

+0.937 cos(α) sin(2β) + 1.855 sin(β)
√

sin(α)2 cos2(β) + sin2(β)

CN = 0.024 + 0.937 sin(2α) cos2(β) + 1.855 sin(α) cos(β)
√

sin2(α) cos2(β) + sin2(β)

CT =
[
0.1111− 0.2045(CN + 0.2) tan

(α

2

)]
cos2(α) cos2(β)

Cl =
[0.548 sin(α) + 1.045ρ cos(α)] sin(2β)

ρSre f Lre f

Cm = −0.04− 0.173 sin(2α) cos2(β)− 1.234
√

sin2(α) cos2(β) + sin2(β) sin(α) cos(β)

Cn = 0.185 cos(α) sin(2β) + 1.165
√

sin2(α) cos2(β) + sin2(β) sin(β)

2. When ∆1 and ∆2 are of the same sign, δeq = ∆1+∆2
2 :

K1 = −0.0553− 0.0129δeq + 0.0488δ2
eq

K2 = −0.061− 0.4132δeq + 0.06899δ2
eq − 1.27δ3

eq

K3 = 0.1069− 0.0087δeq + 0.0932δ2
eq

CL = 0.1226 cos(α) sin(2β) + 0.372 sin(β)
√

sin2(α) cos2(β) + sin2(β)

+0.937 cos(α) sin(2β) + 1.885 sin(β)
√

sin2(α) cos2(β) + sin2(β)

CN = 0.024 + 0.937 sin(2
[
α + 0.085δeq

]
) cos2(β)

+1.855 sin(α + 0.085δeq) cos(β)
√

sin2(α + 0.085δeq) cos2(β) + sin2(β)

CT =

[
K1

(
sign (CN)

√
C2

N + C2
L + K2

)2
+ K3

]
cos2(α) cos2(β)

Cl =
0.548 sin(α) + 1.045ρ cos(α) sin(2β)

ρSre f Lre f

Cm = −0.04− 0.173 sin(2
[
α + 0.2δeq

]
) cos2(β)

−1.234
√

sin2(α + 0.2δeq) cos2(β) + sin2(β) sin(α + 0.2δeq) cos(β)

Cn = 0.185 cos(α) sin(2β) + 1.165
√

sin2(α) cos2(β) + sin2(β) sin(β)
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3. When ∆1 and ∆2 are of different signs, δeq = −∆1+∆2
2 :

K1 = −0.0553 + 0.0129δeq + 0.0488δ2
eq

K2 = −0.061 + 0.4132δeq + 0.06899δ2
eq + 1.27δ3

eq

K3 = 0.1069 + 0.0087δeq + 0.0932δ2
eq

CL = 0.1226 cos(α) sin(2β) + 0.372 sin(β)
√

sin2(α) cos2(β) + sin2(β)

+0.937 cos(α) sin(2
[
β− 0.085δeq

]
)

+1.885 sin(β− 0.085δeq)
√

sin2(α) cos2(β− 0.085δeq) + sin2(β− 0.085δeq)

CN = 0.024 + 0.937 sin(2α) cos2(β) + 1.855 sin(α) cos(β)
√

sin2(α) cos2(β) + sin2(β)

CT =

[(
K1

√
C2

N + C2
L + K2

)2
+ K3

]
cos2(α) cos2(β)

Cl =
0.548 sin(α) + 1.045ρ cos(α) sin(2β)

ρSre f Lre f

Cm = −0.04− 0.173 sin(2α) cos2(β)− 1.234
√

sin2(α) cos2(β) + sin2(β) sin(α) cos(β)

Cn = 0.012 cos(α) sin(2β)− 0.069 sin(β)
√

sin2(α) cos2(β) + sin2(β)

+0.173 cos(α) sin(2
[
β− 0.2δeq

]
)

+1.234 sin(β− 0.2δeq)
√

sin2(α) cos2(β− 0.2δeq) + sin2(β− 0.2δeq)

where α and β are the angle of attack and side-slip angle.

Appendix B

The Coriolis-centrifugal coupling matrix as given by [20] is:

D =



D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66


The virtual mass and inertia matrices are given as:

F1 =

a11 0 0
0 a22 0
0 0 a33

 (23)

F2 =

 0 0 0
a24 0 a26

0 a35 0

 (24)

M1 =

a44 0 a46

0 a55 0
a46 0 a66

 (25)
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M2 =

0 a42 0
0 0 a53

0 a62 0

 (26)

where:
D11 = 0 D21 = pm13 + r(xm11 − a11) D31 = (a11 − xm22)q
D12 = a22r D22 = 0 D32 = −a22 p
D13 = −a33q D23 = a33 p D33 = 0
D14 = a24r D24 = a35q D34 = −a24 p− a26r
D15 = −a35q D25 = −a15q D35 = a15q
D16 = a26r D26 = 0 D36 = 0

D41 = pm33 + r(a15 + xm13) D51 = (a35 + x2m22)q
D42 = −(a62 + a35)q D52 = −a42r + a62 p
D43 = (a62 + a35)q + a24 p D53 = −a15q
D44 = −a64q D54 = a64 p + (a66 − a44)r
D45 = (a55 − a66)r D55 = 0
D46 = 0 D56 = −a64r
D61 = −(a51 + a24 − xm13)p− (a26 − x2m11)r
D62 = (a15 + a42)q
D63 = −a53 p
D64 = (a44 − a55)q
D65 = a46r
D66 = 0

and:

a11 = 1.247ρ a22 = 17.219ρ a26 = −56.893ρ a35 = 55.269ρ

a15 = 0 a24 = −1.231ρ a33 = 16.671ρ a42 = a24

a44 = 13.38ρ a51 = a15 a55 = 311.942ρ a64 = a46

a46 = 3.658ρ a53 = a35 a62 = a26 a66 = 316.814ρ

m13 = 1.045ρ xm11 = 20.973ρ xm22 = 19.337ρ

m33 = −40.573ρ xm13 = −3.721ρ x2m11 = −141.625

where ρ is the air density.
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