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Abstract: This paper presents an estimation based backstepping like control law design for an
Unmanned Aerial Vehicle (UAV) to track a moving target in 3-D space. A ground-based sensor
or an onboard seeker antenna provides range, azimuth angle, and elevation angle measurements to
a chaser UAV that implements an extended Kalman filter (EKF) to estimate the full state of the target.
A nonlinear controller then utilizes this estimated target state and the chaser’s state to provide
speed, flight path, and course/heading angle commands to the chaser UAV. Tracking performance
with respect to measurement uncertainty is evaluated for three cases: (1) stationary white noise; (2)
stationary colored noise and (3) non-stationary (range correlated) white noise. Furthermore, in an
effort to improve tracking performance, the measurement model is made more realistic by taking
into consideration range-dependent uncertainties in the measurements, i.e., as the chaser closes in on
the target, measurement uncertainties are reduced in the EKF, thus providing the UAV with more
accurate control commands. Simulation results for these cases are shown to illustrate target state
estimation and trajectory tracking performance.
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1. Introduction

Target tracking by Unmanned Aerial Vehicles (UAVs) is an important area of study, especially
when it applies to tracking a target in 3-D space. Tracking capabilities of a UAV depend on
many factors but we focus on how accurately it can obtain the target state information using
onboard sensors, and how effectively it can generate its control commands so as to achieve tracking.
For control laws that require full state information of a target, it is thus necessary that the target
state information be reconstructed based on limited measurements observed by the chaser UAV.
These measurements are often corrupted by external disturbances (wind gust, turbulence). In a
target state estimation problem, the choice of the appropriate model to represent the target motion
is also not clear. The classical approaches either use a constant velocity model leading to an α-β
tracking filter [1,2], or a constant acceleration model that leads to the α-β-γ tracking filter [1,2].
Mehrotra et al. [3] have proposed the use of a constant jerk model that allows for changes in
acceleration of the target thereby accommodating a richer class of target maneuvers. This research
focuses on an extended state kinematic model for the target with the objective to determine the
location, flight path angle and course/heading of the target vehicle when full state information is
not available or achievable due to limitation of sensors and their capabilities. In this study, the
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framework of an estimation based control architecture is presented, and careful considerations are
made to achieve desired tracking performance.

The design of guidance and control algorithms for unmanned vehicles has received considerable
attention in recent years. Many guidance and control techniques have been investigated by
researchers: vector field approach [4–10], line of sight algorithms [11], Serret-Frenet representation
based methods [6,12], feedback linearization [13–15] and thebackstepping approach [16–18].
This paper explores the implementation of a nonlinear guidance and control design technique for
a UAV to track a target in 3D environment. The nonlinear guidance controller requires full-state
information of the target for implementation. We assume only the range, azimuth and elevation angle
to be available. Thus the implementation requires a state estimator and it is the reconstructed target
state that is employed in the guidance and control laws. We use a backstepping like approach for the
controller design, the mathematical development of which is reported in [19,20]. The backstepping
control technique pioneered by Kokotovic [21] et al. has been studied by researchers in areas of
trajectory tracking [16], bank-to-turn control [17], and missile guidance [18]. Ren et. al. [16] have
used the backstepping based control design in a 2D trajectory tracking case. In comparison, the main
contribution of this paper is the implementation of a reconstructed state based nonlinear controller
for 3D case where a chaser UAV tracks an arbitrary moving target in 3D space. The implementation
for the full target state information case was shown in [19,20,22].

For target state estimation, an extended Kalman filter (EKF) is chosen. The Kalman filter
approach is a commonly used estimation technique in many applications that include vision
based estimation and target tracking [23], multi-agent consensus [2,24–26], aerodynamic parameter
estimation [27], relative position and attitude estimation for docking of spacecraft [28], vibration
mitigation associated with sensors placed on vibrating structures [29], and orbital rendezvous [30].
This is integrated with the controller so that it can use the target measurements (range, azimuth and
elevation) received from sensors and estimate the full state of the target (three components of the
position vector, speed, flight path angle and the heading/course angle). The target state estimate is
then fed into the controller so as to achieve tracking successfully. Our initial study in [22] presented
an EKF based target state estimation for the case where the measurements are corrupted by Gaussian
white noise. The EKF linearizes the non-linear state dynamics and measurements around the last
predicted and filtered state estimates at each cycle, which then eventually provides an approximation
of the optimal state estimates. The Kalman filter for linear systems is known to be optimal (minimizes
variance of the estimation errors) under the assumption that the process and measurement noise are
Gaussian white noise and mutually uncorrelated.

However, white noise is not a realistic assumption in real world applications and therefore,
an extra effort is required to handle the uncertainties when they are correlated in observations.
The sample to sample measurement noises are correlated for high frequency measurement systems.
One such example of correlated errors associated with GPS measurements is the multipath effect [31].
Recently, a maneuvering target tracking problem has been investigated with observations subject to
colored noise [32]. In this paper, we also design an EKF where measurement uncertainties are highly
correlated in the form of colored noise. The colored-noise filters are designed by incorporating first
order shaping filters driven by Gaussian white noise [2]. The system state is augmented to include
the filter state, and the EKF implementation follows the same procedure as with the white noise
case. We investigate the controller performance when the sensor measurements for range, azimuth
angle, and elevation angle are corrupted by colored noise. The simulation results presented in the
paper cover three interesting scenarios such as: (A) target moving horizontally at constant altitude;
(B) moving vertically upwards at constant speed; and (C) moving in a helical path. Note all three
cases are handled within the same framework and one consistent target model as opposed to using
multiple models. It is worth mentioning that scenario (B) corresponds to an out of the plane tracking
maneuver wherein the chaser needs to maneuver out of the horizontal plane to intercept the target.
Simulation results are also summarized for a case when the measurement covariance associated with
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the target measurement changes as a function of the line of sight range between the chaser and the
target. The main contribution of our work is the aspect of implementation of a nonlinear control
law within a 3-D target tracking framework that makes use of reconstructed states as opposed to full
state feedback.

The rest of the paper is organized as follows: Section 2 describes the problem being solved and
presents the development of estimation based control architecture; Section 3 provides simulation
results of the proposed development for several scenarios; and Section 4 provides a summary and
conclusions based on our work in this paper.

2. Problem Description

The mathematical formulation of the estimation based controller is presented where a chaser
UAV tracks a target autonomously based on the information available from onboard sensors about
the target and the chaser. The chaser UAV is assumed to be equipped with on board sensors which
provide the range (r), azimuth angle (θ), and elevation angle (φ) measurements of the target UAV.
Target measurements are obtained by propagating the following kinematic equation:

ẋr = vgr cos γr cos χr

ẏr = vgr cos γr sin χr

żr = vgr sin γr (1)

where, (xr, yr, zr), vgr, γr and χr denote the reference position, ground speed, flight path angle
and course (ground track) angle respectively. vgr, γr and χr are specified functions of time ∈ C∞.
Note, the ground speed of the target can be also be expressed as vgr =

√
ẋ2

r + ẏ2
r + ż2

r . For a rich set
of trajectories, vgr, γr and χr could be arbitrary functions of time.

The measurement model for the target UAV is considered as follows:

ỹrk = hrk(Xrk) + vrk (2)

where ỹrk(Xrk) = [r̃rk, φ̃rk, θ̃rk]
T are the discrete-time measurements which are assumed to be

available from a ground based sensor or from on-board sensors, hrk(Xrk) = [rrk, φrk, θrk]
T is the

discrete function vector and the expressions for rrk, φrk, and θrk are of the following form:

rrk =
√

x2
rk + y2

rk + z2
rk

φrk = tan−1
(

yrk
xrk

)
θrk = sin−1

(
zrk
rrk

)
(3)

vrk = [vrrk, vφrk, vθrk] is the noise vector where vrrk, vφrk, vθrk are the measurement noises in range,
azimuth, and elevation angle measurements respectively at the k time step.

The following kinematic model is considered for chaser UAV:

ẋ = vg cos γ cos χ

ẏ = vg cos γ sin χ

ż = vg sin γ

v̇ = c1(vc
g − vg)

γ̇ = c2(γ
c − γ)

χ̇ = c3(χ
c − χ) (4)
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where (x, y, z) is the vehicle position in inertial reference frame, vg is the magnitude of the velocity
vector, χ is the course or ground track/heading angle and γ is the flight path angle. c1, c2, and
c3 (> 0) are the time constants associated with the dynamics. The magnitude of the velocity is:
vg =

√
ẋ2 + ẏ2 + ż2. The three control inputs in the model: vc

g, γc, χc are the commanded speed,
flight path angle and course angle respectively that are computed by the controller.

Given the above governing equations for the target and the chaser as well as the measurement
model we seek to implement a nonlinear guidance and control law that was previously shown to
provide asymptotic tracking performance for arbitrary target maneuvers provided complete target
state information was available for feedback. In the present problem, the control commands are
synthesised using a reconstructed target state estimated from the target measurements and the
performance of the estimation based controller is illustrated in simulation.

The nonlinear controller to be employed in this paper is summarized below.

2.1. Backstepping Based Controller

In [19,20], a backstepping based controller was proposed for a UAV that can track a dynamic
moving target in 3D for the case when the target full state information is perfectly known. For this
problem, firstly stable position error dynamics are specified and the desired virtual control commands

are derived for ground speed vd
g =

√
(vd

1)
2 + (vd

2)
2, flight path angle, γd = tan−1

(
vd

2
vd

1

)
, and

ground heading/course angle, χd so as to make the position error to zero exponentially. In the
next step, the same technique is applied again for synthesizing a ground speed command vc

g, to
ensure that the actual ground-speed vg tracks the desired speed vd

g. Similarly a flight path angle
command γc, and ground heading angle command χc are synthesized. The mathematical derivation
of the controller and Lyapunov based stability analysis can be found in [19,20]. Thus, the proposed
controller generates three commands: speed, flight path angle, and ground heading/course angle,
respectively, as follows:

vc
g = vg −

1
c1

[
− cos γ(−v̇d

1 + λ1ṽ1)− sin γ(−v̇d
2 + λ2ṽ2)

]
(5)

γc = γ− 1
c2vg

[
sin γ(−v̇d

1 + λ1ṽ1)− cos γ(−v̇d
2 + λ2ṽ2)

]
(6)

χc = χ− 1
c3
(−χ̇d + λ3χ̃) (7)

We can calculate v̇1
d,v̇2

d and χ̇d from the following:

vd
1 =

√
(−α1ex + ẋr)2 + (−α2ey + ẏr)2

vd
2 = −α3ez + żr

χd = tan−1
(−α2ey + ẏr

−α1ex + ẋr

)
and therefore, the derivatives are as follows:

v̇d
1 =

1
vd

1

[
(−α1ex + ẋr)(−α1v1 cos χ + ẍr + α1 ẋr)

+(−α2ey + ẏr)(−α2v1 sin χ + ÿr + α2ẏr)
]

v̇d
2 = −α3v2 + z̈r + α3żr

χ̇d =
1
vd

1

[
cos χd(−α2v1 sin χ + ÿr + α2ẏr)

− sin χd(−α1v1 cos χ + ẍr + α1 ẋr)
]

(8)
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where v1 = vg cos γ, v2 = vg sin γ, the position errors are: ex = x− xr, ey = y− yr, ez = z− zr, and
the off-manifold errors are: ṽ1 = v1 − vd

1, ṽ2 = v2 − vd
2 are χ̃ = χ− χd and α1 > 0, α2 > 0, α3 > 0,

λ1 > 0, λ2 > 0, λ3 > 0 are user specified control gains associated with the control laws.
As mentioned before, if the presence of full target state information, the above control law

guarantees asymptotic stability of the state tracking errors. In the next subsection, we assume that all
the states of the target are not available for measurement and hence an estimation based controller is
implemented, wherein an EKF is integrated that provides estimates of the target state to be utilized
in the controller.

2.2. Estimation Based Controller (Partial Target Information)

Case 1: Target measurements corrupted by stationary white noise

The measurements for range, azimuth angle, and elevation angle are available from on-board or
ground based sensors. We utilize these measurements in the EKF to estimate the target’s six states
that include the three position states xr, yr, zr, flight path angle γr, and course angle χr. The EKF
provides the estimates of the system states using available measurements and a suitable target model
while assuming a priori known statistical models for the system and measurement noises. The control
algorithms developed as described above use these state estimates to generate the control commands
for target tracking.

We consider the discrete-time measurement model as in Equation (2) which is affected by the
measurement uncertainties, assumed to be zero-mean Gaussian white noise with known covariance.
We also consider that the dynamic model for target UAV is corrupted by white noise with known
covariance. Therefore, the continuous-time state model and the discrete-time measurements for target
UAV can be written as follows:

Ẋr(t) = fr(Xr(t), ur(t), t) + Gr(t)wr(t)

ỹrk = hr(Xrk) + vrk (9)

where Xr = [xr, yr, zr, vgr, γr, χr]T is the state vector; ur(t) =
[
vc

gr, γc
r , χc

r

]T
is

the control input vector, where vc
gr is the commanded ground speed, γc

r is the commanded
flight path angle, and χc

r is the commanded heading angle; ỹrk is the measurement vector;
wr = [0, 0, 0, ωvgr, ωγr, ωχr]T ∼ N(0, Qr(t)) where, Qr(t) = E{wr(t)wT

r (t)} and ωvgr, ωγr,
and ωχr are Gaussian white noise components that represent the dynamic uncertainties affecting the
system; vrk = [vrrk, vφrk, vθrk]

T ∼ N(0, Rrk) where, Rrk = E{vrkvT
rk}. We further assume that the

process noise and the measurement noise are uncorrelated.
The expression for the nonlinear continuous-time function vector fr(Xr(t), ur(t), t) used in

Equation (9) is:

fr(Xr(t), ur(t), t) =



vgr cos γr cos χr

vgr cos γr sin χr

vgr sin γr

vc
gr − vgr

γc
r

χc
r


(10)

and the matrix Gr(t) = [03×3 I3×3]
T where I is the Identity matrix. The standard EKF equations

used for target state estimation based on reference [2] are listed in Table 1. The system state X in the
EKF for this case is replaced by Xr.
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Table 1. Extended Kalman filter (EKF) equations.

Kalman gain: Kk = P−k HT
k (X̂

−
k )
[
Hrk(X̂−k )P

−
k HT

k (X̂
−
k ) + Rk

]−1

State update: X̂+
k = X̂−k + Kk [ỹk − h(X̂−k )]

Covariance update: P+
k = [I−KkHk(X̂−k )]P

−
k

Estimated state propagation is governed by: ˙̂X(t) = f(X̂(t), u(t), t)
Error covariance is propagated by: Ṗ(t) = F(X̂(t), t)P(t) + P(t)F(X̂(t), t)T + G(t)Q(t)G(t)T

Output estimate equation: ŷk = h(X̂k)

Assume, fr(.), and hr(.) are locally differentiable. We can determine the state Jacobian matrix
Fr(X̂r(t), t) = ∂fr

∂Xr
|X̂r(t) as:

Fr(X̂r(t), t) =

[
03×3 Frd1
03×3 Frd2

]

where

Frd1 =

 cos γ̂r cos χ̂r −v̂gr sin γ̂r cos χ̂r −v̂gr cos γ̂r sin χ̂r

cos γ̂r sin χ̂r −v̂gr sin γ̂r sin χ̂r v̂gr cos γ̂r cos χ̂r

sin γ̂r v̂gr cos γ̂r 0



Frd2 =

 −1 0 0
0 0 0
0 0 0


and the measurement Jacobian matrix Hk(X̂r(k)) = ∂hr

∂Xr
evaluated at X̂rk as follows:

Hrk(X̂
−
rk) =

[
Hrd 03×3

]
where

Hrd(X̂
−
rk) =


xr
rr

yr
rr

zr
rr

− yr√
x2

r+y2
r

xr√
x2

r+y2
r

0

− xrzr

r2
r
√

x2
r+y2

r
− yrzr

r2
r
√

x2
r+y2

r

√
x2

r+y2
r

r2
r


X̂−rk

The EKF estimator above will synthesize, x̂r, ŷr, ẑr, v̂gr, γ̂r, χ̂r. Additional derivatives needed
by the controller in Equations (5)–(7) are obtained by using a ‘derviative estimation filter’ that
synthesizes the numerical derivatives [33]. To synthesize the derivative of any state, say, z f , the
following derivative state estimation filter equations are augmented,

z̈d f = a f żd f + b f z f

ż f = c f żd f + d f z f

where żd f and z̈d f are the filter states for the derivative state estimation. The values of the constants
a f , b f , c f , d f are determined numerically using simulations to improve the signal to noise ratio of
the derivative estimates. The above-mentioned “derivative estimation filter” is applied to the EKF
synthesized state vector to obtain the necessary state derivatives that are then used in the nonlinear
controller shown in Equations (5)–(7).
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Case 2: Target measurements corrupted by stationary colored (non-white) noise

A continuous-discrete EKF is designed when partial target information is available to the chaser
to estimate the target full states. Assume that the target measurements are corrupted by colored
noise. Colored noise is propagated by solving a first order differential equation with band limited
white noise as an input into it. We can write the augmented system dynamics which includes the
target kinematic model and colored noise dynamics.

Assume the measurements are corrupted by Gaussian non-white uncertainties. The following
three measurements about the target, i.e., (range (r), azimuth angle (φ), and elevation angle (θ)) are
available to the chaser and the associated noise vector vrk (Equation (9)) is non-white. This non-white
measurement noise vector vrk is modeled by the following first-order shaping filter equation which
is driven by zero-mean band limited white noise, νr f k:

Żr = Fr f Zr + ϑr f wr f wr f (t) ∼ N(0, Qr f )

vrk = Hr f Zrk + νr f k νr f k(t) ∼ N(0, Rr f k) (11)

where, Zr = [zrr zφr zθr]
T is the state vector of the shaping filter (zrr for the range

measurement, zφr for the azimuth angle measurement and zθr for the elevation angle measurement).

Fr f =

 −brr 0 0
0 −bφr 0
0 0 −bθr

, ϑr f =

 brr 0 0
0 bφr 0
0 0 bθr

, Hr f = I3×3, all b(.)’s are positive constants.

wr f ∈ R3 is the Gaussian white noise vector in the shaping filter dynamics, and vr f k ∈ R3 is the
Gaussian white noise vector in the measurement noise equation above. The terms fr f = Fr f Zr and
hr f = Hr f Zr are defined for convenience to integrate the above into the model to be used to set up
the EKF.

Thus the state and measurement equations for the augmented system can be re-written as
follows:

Ẋra = fra(Xra(t), ur(t), t) + Gra(t)wra(t)

ỹrk = hrk(Xrk) + vrk

= hrk(Xrk) + hr f (Zrk) + νr f k

= hra(Xrak) + νr f k (12)

where, wra(t) ∼ N(0, Qra(t)), Xra = [Xr Zr]T , fra = [fr fr f ]
T , Gra =

[
Gr 06×3

03×3 ϑr f

]
,

wra = [wr wr f ]
T and hra(Xrak) = hrk(Xrk) + hr f (Zrk).

Assume that wr, and wr f are uncorrelated, i.e., the process noise covariance matrix Qra(t) for the
augmented system can be written by:

Qra(t) = E

[
wr

wr f

] [
wT

r wT
r f

]
=

[
Qr 0
0 Qr f

]
(13)

The measurement covariance matrix associated with the augmented measurement model is:

E
[
νr f kνT

r f k

]
= Rr f k (14)
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We can then essentially apply the same set of filter equations which are listed in Table 1 for the
augmented system. In this case, for the augmented system, X is replaced by Xra. The corresponding
Jacobian matrices are given below:

State Jacobian matrix: Fra(X̂ra(t), t) = ∂fra
∂Xra
|X̂ra(t) is written as follows:

Fra =

[
Fr 03×3

06×6 Fr f

]

The measurement Jacobian matrix, Hrak(X̂rak) = ∂hra
∂Xrak
|X̂rak

and can be expressed as:

Hrak(X̂
−
rk) =

[
Hrk Hr f k

]
where, Hr f k = I3×3

Case 3: Target measurements corrupted by non-stationary white noise with range dependent
covariance

In practice, the measurement covariance is not necessarily constant. To implement a more
realistic scenario for target tracking, we include the following variance function associated with the
target range measurement:

σ2
r = a2(r− a1)

2 + a0 (15)

where a0 > 0, a1 > 0 a2 > 0, and r is the distance between the target and chaser.

Figure 1. Measurement error variances as a function of the range.

The above function in Equation (15) is utilized in [34] to represent the variance of range
measurement noise. Note, the error variance is getting smaller as the chaser closes onto the target
and when it reaches to the target it has minimum error variance a0. The variances for azimuth angle
and elevation angle measurements are also affected as the angular resolution of the target improves
as the chaser comes closer to the target. Hence, the variances for azimuth and elevation angle can be
written as follows:

σ2
φ = αφ

(
a2(r− a1)

2 + a0

)
σ2

θ = αθ

(
a2(r− a1)

2 + a0

)
(16)
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where αφ > 0, and αθ > 0. The covariance matrix for target measurement becomes
R = diag([σ2

r σ2
φ σ2

θ ]). If the parameters are chosen as a0 = 1 m2, a1 = 1 m2, a2 = 0.0024 m2,
αφ = 0.01(rad/m)2, αφ = 0.01(rad/m)2, and r varies from 0 to 100 m, we can easily see from Figure 1
that the variances for range, azimuth angle, and elevation angle become minimum at r = 1 m.

3. Simulation Case Studies

The estimation based controller is implemented for the three cases as before. The estimation
errors are shown together with the 3 − σ bounds obtained from the estimation error
covariance matrix.

Case 1: Target measurements corrupted by stationary white noise

For this case, we simulate the tracking scenario for three different types of trajectories

A Straight line trajectory at constant altitude,
B Straight line trajectory along the z-axis(out-of-plane maneuver), and
C Helical trajectory

The parameters used in simulation: c1 = 100, c2 = 100, c3 = 100, α1 = 1, α2 = 1, α3 = 1,
λ = 50, λ2 = 50, λ3 = 50. For each case, the simulation was run for 60 s and the data was updated
at ∆t = 0.05 s interval, i.e., the update rate is 20 Hz. The controller continuously updates three
control commands based on the estimated target and chaser UAV states. The transfer function used
to approximate the estimated target state derivatives is chosen to be:

ż f (s)
z f (s)

= H(s) =
0.1s + 55

s + 50

The parameters used for the target and chaser UAV are as follows: For the target UAV, the initial
position for all these cases are: xr(0) = 100 m, yr(0) = 100 m, zr(0) = 100 m; the initial speed is:
vgr(0) = 10 m/s. We choose the following parameters to generate 3 different target trajectories:

A Trajectory at constant altitude: vgr = 10 m/s, γ̇r = 0◦/s, χ̇r = 0◦/s, γr(0) = 0◦, χr(0) = 0◦;
B Trajectory along the z-axis: vgr = 10 m/s, γ̇r = 0◦/s, χ̇r = 0◦/s, γr(0) = 90◦, χr(0) = 0◦;
C Helical Trajectory: vgr = 10 m/s, γ̇r = 0◦/s, χ̇r =

2π
30
◦
/s, γr(0) = 45◦, χr(0) = 0◦.

The variance and standard deviation of noise associated with the sensors for target
measurements are listed in Table 2.

Table 2. Minimum variances and standard deviations of measurement noises used in simulation
(target).

Parameter r φ θ

Variance — σ2 1 m2 1e−4 rad2 1e−4 rad2

Std. Dev. — σ ±1 m ±0.01 rad ±0.01 rad

The chaser UAV is initialized as follows: vg(0) = 8 m/s, γ(0) = 0◦, χ(0) = 0◦,
x(0) = 50 m, y(0) = 50 m, z(0) = 50 m. For Case 1, the target state estimation filter is implemented
using a constant measurement and process covariance. The initial error covariance for target:
P0 = I6×6 where I is an identity matrix. The covariance matrix of process noise for the target is:
Qr = 2× diag([1, (0.57π/180)2, (0.57π/180)2]), and the covariance matrix of measurement noise
for target is: Rrk = 0.75diag

[
1, (0.57π/180)2, (0.57π/180)2].
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The simulation results shown in Figures 2–6, Figures 7–11, and Figures 12–16 show that tracking
is achieved with reasonable accuracy. The EKF provides the target state estimate closer to the target
true value, and all errors are within 3− σ error bounds, i.e., the filter shows satisfactory performance
with reasonable accuracy.

Figure 2. Position tracking errors (true-estimated) with 3− σ bounds for target UAV (Case 1A).

Figure 3. Speed, flight path angle and heading angle errors (true-estimated) with 3− σ bounds for
target (Case 1A).
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Figure 4. Position tracking (Case 1A).

Figure 5. Speed, flight path angle and heading angle tracking (Case 1A).
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Figure 6. Chaser trajectory while tracking the estimated target (Case 1A).

Figure 7. Position tracking errors (true-estimated) with 3− σ bounds for target UAV (Case 1B).

Figure 8. Speed, flight path angle and heading angle errors (true-estimated) with 3− σ bounds for
target UAV (Case 1B).
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Figure 9. Position tracking (Case 1B).

Figure 10. Speed, flight path angle and heading angle tracking (Case 1B).

Figure 11. Chaser trajectory while tracking the estimated target (Case 1B).
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Figure 12. Position tracking errors (true-estimated) with 3− σ bounds for target UAV (Case 1C).

Figure 13. Speed, flight path angle, and heading angle errors (true-estimated) with 3− σ bounds for
target UAV (Case 1C).

Figure 14. Position tracking (Case 1C).
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Figure 15. Speed, flight path angle, and heading angle tracking (Case 1C).

Figure 16. Chaser trajectory while tracking the estimated target (Case 1C).

Case 2: Target measurements corrupted by stationary colored (non-white) noise

Range and line-of-sight measurements (e.g., on-board seeker antenna) are typically corrupted
due to uncertainties typically arising from eclipsing, radar cross section variation, and variation
in the line-of-sight rate at high chaser-target ranges. It is common practice to model these
uncertainties using colored (non-white) noise. The simulation results for target tracking with the
target measurements corrupted by colored noise are shown in Figures 17–21. We only show the results
for trajectory C (helical trajectory). The power spectral density associated with the colored noise
uncertainties are exponentially correlated functions as we can see in Figure 19. The filter performance
is quite good, i.e., all state errors (true-estimated) are within 3− σ bounds as shown in Figures 17–18.
The controller gains and actuator constants used in simulation are the same as in the previous case.
The variances associated with measurement noises are: σ2

r = 4 m2, σ2
φ = (0.65π/180)2 rad2, and

σ2
θ = (0.65π/180)2 rad2. The initial error covariance for target is Pr0 = 10× I9×9. The process noise

covariance matrix Qra(t) for target is calculated using Equation (13). The following matrices are
needed to calculate Qra(t), and the simulation is executed for parameters listed in Table 3:
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Qr(t) = 2× diag
(
[σ2

vgr, σ2
γr, σ2

χr]
)

Qr f (t) = 2× diag
(
[σ2

zrr, σ2
zφr, σ2

zθr]
)

The measurement noise covariance matrix used in EKF for target:

Rrk = 0.75diag
[
4, (0.65π/180)2, (0.65π/180)2

]
Table 3. Variances of process noises used in simulation (target).

Parameter Value Unit

σ2
vgr 1 (m/s)2

σ2
γr (0.65π/180)2 rad2

σ2
χr (0.65π/180)2 rad2

σ2
zrr 4 m2

σ2
zφr (0.65π/180)2 rad2

σ2
zθr (0.65π/180)2 rad2

Figure 17. Position errors with 3− σ bounds (Case 2C).

Figure 18. Speed, flight path angle, and heading angle error with 3− σ bounds (Case 2C).
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Figure 19. Power spectral density function over the frequency range (Case 2C).

Figures 20 and 21 clearly show satisfactory tracking performance of the controller.

Figure 20. Position tracking error (Case 2C).

Figure 21. Chaser trajectory while tracking the estimated target (Case 2C).
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Case 3: Target measurements corrupted by non-stationary white noise with range dependent
covariance

The simulation is performed for the case when the measurements are corrupted by
non-stationary white noise uncertainties with range dependent covariance. The parameters chosen
to calculate the variances for range, azimuth angle, and elevation angle as: a0 = 1 m2, a1 = 1 m2,
a2 = 0.0024 m2, αφ = 1e−5 (rad/m)2, αφ = 1e−5 (rad/m)2. The initial position of target UAV
and chaser UAV: Xr(0) = [100 m, 100 m, 100m]T , X(0) = [50 m, 50 m, 50 m]T . Therefore, the
initial range vector: ~r0 = [50 50 50]T , and its magnitude is |r0| = 86.6 m. The initial variances for
range, azimuth angle, and elevation angle measurement noise: σ2

r = 18.9 m2, σ2
φ = 0.62 deg2, and

σ2
θ = 0.62 deg2, i.e., the standard deviations are σr = ±4.34 m, σφ = ±0.79 deg, and σθ = ±0.79 deg.

The process noise covariances for target and chaser are: Qr(t) = diag([1 (m/s)2, 3.28 deg2, 3.28deg2]),
and Q(t) = diag([1e−3 (m/s)2, 3.28 deg2, 3.28 deg2]) respectively. Additionally, vgr = 10 m/s,
γr(0) = 30◦, χr(0) = 0◦, vg(0) = 8 m/s, γ(0) = 10◦, and χ(0) = 10◦. The target trajectory
is a segment of an expanding helix, with γ̇r = 1◦/s and χ̇r = 1◦/s. From Figures 22–26, it is
seen that the chaser achieves satisfactory tracking performance with varying target measurement
noise variances. At the end of simulation time the target measurement noise variances become:
σ2

r = 1.02 m2, σ2
φ = 0.03 deg2, and σ2

θ = 0.03 deg2.

Figure 22. Position errors with 3− σ bounds (Case 3).

Figure 23. Speed, flight path angle and heading angle error with 3− σ bounds (Case 3).
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Figure 24. Estimated target and chaser position (Case 3).

Figure 25. Estimated target and chaser (vg, γ, χ), (Case 3).

Figure 26. Estimation based target tracking in 3D (Case 3).
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4. Conclusions

This work presented an estimation based nonlinear controller for UAVs which can track
3D trajectories using imperfect state knowledge of the target. A continuous-discrete extended
Kalman filter was designed to estimate the states of a target UAV and the controller generates the
control signals for speed, flight path angle, and course angle to propagate the chaser motion for
tracking. The controller performance is shown for three different target trajectories. The proposed
architecture can be generalized to track arbitrary target trajectories. We can conclude that the
proposed estimation based controller achieves the tracking of target UAV defined in 3D space and
shows robust performance to stationary/non-stationary white and colored measurement noise.

Author Contributions: Kamesh Subbarao conceived the initial problem of target tracking with uncertain
measurements. Mousumi Ahmed developed the problem to include non-stationary noise in measurements as
well as range dependent noise. Mousumi Ahmed also wrote the preliminary version of the paper. Kamesh
Subbarao subsequently revised and completed the paper. Mousumi Ahmed performed all the simulations. The
two authors jointly performed the analysis.
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