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Abstract: Acoustic radiation emitted by three-dimensional (3D) vortex rings in air has 

been investigated on the basis of the unsteady Navier–Stokes equations. Power series 

expansions of the unknown functions with respect to the initial vorticity which is supposed 

to be small are used. In such a manner the system of the Navier–Stokes equations is 

reduced to a parabolic system with constant coefficients at high derivatives. The initial 

value problem is as follows. The vorticity is defined inside a toroid at t = 0. Other gas 

parameters are assumed to be constant throughout the whole space at t = 0. The solution is 

expressed by multiple integrals which are evaluated with the aid of the Korobov grids. 

Density oscillations are analyzed. The results show that the frequency band depends on the 

initial size of the vortex ring and its helicity. The presented data may be applied to the 

study of a flow in a wake region behind an aerodynamic body. 
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1. Introduction 

Vortical structures (vortex rings and cylindrical vortices) play an important role in the sound 

radiation of gaseous flows. These structures convert a fraction of their rotational energy into sound 

waves [1]. The case of the three-dimensional (3D) vortex is of special interest. In this case we have 
three velocity components ( , ,rv v vϕ θ ), with , ,r ϕ θ  being spherical coordinates. The aim of the present 

investigation is to determine the frequency band of acoustic radiation emitted by 3D vortex rings in air. 
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The analysis is based on the unsteady Navier–Stokes equations. A new method for solving the 

equations is set forth. It uses power series expansion of the unknown functions with respect to the 

initial vorticity which is supposed to be small. By applying this procedure the Navier–Stokes equations 

are reduced to a parabolic system with constant coefficients. As a result we get the solution in the form 

of a power series, with multiple integrals being appropriate coefficients. The first term of the series is 

the main one that determines the properties of acoustic radiation at small vorticity. General questions 

of sound generation by vortex structures were considered in [2,3]. Acoustic radiation by a solitary 

vortex ring in incompressible and weakly compressible fluid was analyzed in [4]. There are investigations 

of the acoustic radiation during the interaction of two vortex rings [5,6]. Linear problems of sound 

production by vortices are considered in [1]. The influence of vortex rings on properties of turbulent 

flows is confirmed by numerous experiments [7,8] and by computations [9,10]. Nevertheless, further 

investigations are necessary in the field of acoustic radiation by a solitary vortex ring in viscous  

heat-conducting gas. The topic of this paper is the study of the frequency band of acoustic radiation by 

a 3D solitary vortex ring in air and the evolution of the radiation. 

2. Governing Equations 

We use the Helmholtz decomposition of the velocity field as a potential part and a solenoidal one: 
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Taking into account Equation (1), the Navier–Stokes equations in dimensionless form can be 

written as follows: 
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Here, ijlε  is the antisymmetrical tensor; , ,T vρ  are the dimensionless density, temperature, velocity 

(divided by 0 0 0, , ,T cρ  respectively); , , , cμ ν λ are the viscosity, kinematic viscosity, heat conductivity, 

and low-frequency sound speed; γ  is the adiabatic exponent; Pr is the Prandtl number. The functions 

1 2 3, ,if f f  are non-linear terms with respect to the first derivatives over coordinates. Subscript “0” 

refers to the initial state. The system Equation (2) was made dimensionless by using the characteristic 
length 0 0 0l cν=  and the characteristic time 2

0 0 0 .t cν=  

2.1. Initial Value Problem 

At the initial instant the vorticity has non-zero values only within a gaseous toroid [11]: 

( ) ( )1 00 1 2 3 2 00 1 2 3 3 00 1 2sin cos , sin sin , cos ,c cx r u u R u x r u u R u x r u u= + = + =  
(3)

1 2 30 1, 0 , 2 ,u u u π< < < <  

00 , cr R  being the initial dimensions of the vortex ring, namely 00r is the radius of its cross-section, cR  is 

the radius of the ring. The problem is considered under the assumption that the dimensionless initial 
vorticity 0ω is small: 0 1.ω <<  The initial conditions are 

1 0 3 2 0 3 3 0sin , cos ,u uω ω α ωΩ = − Ω = Ω =  (4)

inside the initial toroid, 

( ) ( ) ( ),0 ,0 ,0 0w x s x h x= = =  (5)

in the whole space. The parameter α  refers to helicity. The value of α  is 0α =  (no helicity) and 

1α =  (there is the presence of helicity). 

2.2. Solution to the Problem 

Equation (2) represents a non-linear parabolic system. We seek the solution of the parabolic system 

as a power series expansion. Taking into account Equation (1) and the initial conditions, we get: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3, , , , ...i i i ix t x t x t x tε ε εΩ = Ω + Ω + Ω +  
(6)

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3, , , , ...i i i iv x t v x t v x t v x tε ε ε= + + +  

Inserting Equation (6) into Equations (1) and (2) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3 4, , , , ...w x t w x t w x t w x tε ε ε= + + +  

(7)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 4 32 3, , , , ...s x t s x t s x t s x tε ε ε= + + +  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3 4, , , , ...h x t h x t h x t h x tε ε ε= + + +  
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We have for the lowest-order functions: 
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From Equation (1) one deduces: 
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The system Equation (8) consists of three homogeneous parabolic equations with respect to ( )1
iΩ  and a 

non-homogeneous parabolic subsystem. All equations have constant coefficients at higher derivatives. 

The solution to the subsystem can be obtained with the aid of the Fourier transform. 

The first Equation (8) yields 
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Equation (9) allows us to determine the terms ( ) ( )1 1
3 4, .ψ ψ  The Fourier transform of the homogeneous 

parabolic subsystem in Equation (8) gives 

( )
( )

1
1 ,

dw
s

dt
=

   

(11)
( )

( ) ( ) ( )
1 2 2

1 1 124
,

3

ds k k
w k s h

dt γ γ
= − − +

    

( )
( ) ( ) ( )

1
1 12 1

Pr

dh
k h s

dt

γ γ γ= − − −
    

The wavy line denotes the Fourier transform, k being the wave number. 

The characteristic equation of the system in Equation (11) is [12] 
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At 0 , 1k k k∗ ∗< < ≈  for air, the roots of Equation (12) are 

( ) ( ) ( )1 1 2,3 2 1 2, ; , 0rf k f k i kσ σ ω σ σ= = ± <  (13)

At k k∗>  all roots are real ones and decay rapidly in a very short time, so we do not take this case into 

account. The dispersion curve ( ) , 0r k k kω ∗< <  has two branches. We consider only the branch that 

refers to smaller values of the attenuation coefficients 1 2, .σ σ  

The fundamental solution matrix A of the subsystem in Equation (11) is given by 

( ) ( ) ( )( ){ }1 1 1, , exp ,jl j jA a a k t c k k tτ σ τ = − = −   

(14)( ) ( ) ( )( ){ } ( )( ){ }2 2 2, exp cos ,j j ra k t c k k t k tτ σ τ ω τ− = − −  

( ) ( ) ( )( ){ } ( )( ){ }3 3 2, exp sinj j ra k t c k k t k tτ σ τ ω τ− = − −  

Here ( )jmc k  must be defined from the initial conditions. Our goal is to investigate the density 

evolution. We get for the function ( )1w : 
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Let us introduce a new variable: 

{ }3 3 3 3 3 3 3 3, sin cos , sin sin , cosX x X R R Rξ θ ϕ θ ϕ θ= − =  (16)

The change of the variables yields: 
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The density deviation from its initial value can be written as: 

( ) ( )12
0 0 0d w wρ ρ ρ ω− ≈ − ≈ −  (18)

Here the subscript “d” denotes a dimensional value. 

The function ( )1w  does not depend on 0ω  and neither does the frequency of density oscillations. The 

functions ( ) ( ) ( ) ( ) ( ) ( ), , , , , , 1n n nw x t s x t h x t n > can be obtained analogously. Thus, the Navier–Stokes 

equations have been reduced to a parabolic system with constant coefficients at the derivatives. As a 

result, we get a power series in ω0. The coefficients of the series are known functions of x,t (multiple 

integrals). The first terms of the series can be used for the analysis of the frequency band of the density 

oscillations in the case of small vorticity. 

3. Results and Discussion 

Equation (17) was used for the investigation of density evolution. The multiple integral was 

evaluated with the aid of the Korobov grids [13]. The density field has been studied in the 

neighborhood of a vortex ring. The parameters of the ring are as follows: Rc = 0.15 cm; r00 = 0.03 cm, the 

ratio of the radius of the ring cross-section to the ring radius is equal to 0.2. The value ω0 = 0.000045 
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was used in computations. The density values were analyzed within the initial domain of the toroid (at 

the point x1 = r00, x2 = x3 = 0) as well as outside it (at the point x1 = x2 = 0, x3 = 0.046 cm). 

Figures 1 and 2 show the dependence of the density on time at the point outside the initial toroid for 

two cases: (i) there is no helicity (Figure 1); (ii) the helicity is present (Figure 2). 
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Figure 1. Density oscillations for the case of no helicity. 
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Figure 2. Density oscillations for the case of present helicity. 
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As seen, density oscillations arise. High-frequency oscillations (f = 266 kHz) are modulated by a 

low-frequency signal (f = 3.3 kHz). First of all, the amplitude of the oscillations increases, then 

decreases. Later on, the amplitude of the low-frequency oscillations grows and the picture becomes a 

chaotic one. Figures 3 and 4 show the density oscillations as they decay. 
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Figure 3. Density oscillations at the final stage of the process (no helicity). 
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Figure 4. Density oscillations at the final stage of the process (helicity is present). 
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Figures 5 and 6 represent the density oscillations inside the initial domain of the toroid. 
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Figure 5. Density oscillations inside the initial vortex ring (no helicity). 
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Figure 6. Density oscillations inside the initial vortex ring (helicity is present). 
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One can see that the high-frequency component of the oscillations does not depend on helicity.  

The presence of helicity has an effect only on the amplitude of the oscillations increasing it. The value 

of high frequency remains constant during the whole process excluding the final stage of the process 

(see Figures 3 and 4). The value of high frequency corresponds satisfactorily to the experimental data 

in [14]. In these experiments an unstable vortex ring appeared behind a shock wave reflected from a 

concave body. The radius of the ring was equal to 0.1 cm, the frequency of oscillations was 170–220 kHz. 

4. Conclusions 

A new method is set forth which allows us to investigate the frequency of acoustic radiations by  

3D vortex rings. As shown, helicity has no effect on the frequency of the high-frequency component. 

The results may be of interest for aeroacoustics. 
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