Parametric Study on Counterflowing Jet Aerodynamics of Apollo Re-Entry Capsule
Abstract
1. Introduction
2. Numerical Methodology
2.1. Baseline Solver
2.2. Computational Setup
3. Geometric Configuration and Validation
3.1. Model Geometry
3.2. Computational Mesh
3.3. Computational Condition
3.4. Validation of Numerical Results and Characterization of Flow Field
4. Results and Discussion
4.1. Baseline Flow Structure of the Counterflowing Jet
4.2. Effect of Angle of Attack on Flow Structure Deformation
4.3. Impact on Drag Force
5. Conclusions
- (1)
- As the angle of attack increases, the structure of the flow field in the LPM is readily destroyed. In contrast, the structure of the flow field in the SPM is more stable, and there are two types of inward and outward offsets of the detached bow shock and Mach disk on the windward side, which are influenced by the nozzle mass flow rate and the angle of attack. The former phenomenon occurs as the windward side of the Mach disk is subjected to greater squeeze by the freestream, resulting in the Mach disk moving inwards and transforming into a stronger normal shock. This induces the inward movement of the detached bow shock. The latter situation arises because the windward side of the recirculation region undergoes more squeezing, causing the Mach disk to move outwards and turn into an oblique shock. This leads to the outward movement of the detached bow shock.
- (2)
- Within the limited angle of attack, the counterflowing jet under the SPM can significantly reduce the drag of the re-entry capsule. The drag reduction effect is weakened or even disappears as the angle of attack increases. For the 2.6% subscale model of the Apollo capsule investigated in this paper, it has been demonstrated that a drag reduction of approximately 50% can be achieved by the counterflowing jet with a nozzle mass flow of 0.1134 kg/s when the angle of attack is within 10°.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Nomenclature | |
|---|---|
| X | X-coordinate direction |
| Y | Y-coordinate direction |
| Z | Z-coordinate direction |
| area of nozzle inlet | |
| d | body diameter |
| total drag force without jet | |
| drag force on the inner wall surface of nozzle | |
| total drag force with jet | |
| aerodynamic drag | |
| rate of change in drag force | |
| jet reaction thrust | |
| ID | case identifier |
| Ld | diameter of nozzle exit |
| Lj | length of Mach disk |
| Lr | length of recirculation region boundary |
| mass flow rate of nozzle | |
| Mj | nozzle exit Mach number |
| M∞ | freestream Mach number |
| P | static pressure |
| P0 | stagnation pressure |
| Re∞ | freestream Reynolds number |
| Sd | distance from nozzle exit to maximum cross-section |
| Sj | distance between Mach disk and nozzle exit |
| T | static temperature |
| T0 | stagnation temperature |
| α | angle of attack |
| β | angle of recirculation region lateral boundary |
| γ∞ | freestream specific heat ratio |
| γj | jet specific heat ratio |
| θ | angle of jet boundary |
| Abbreviations | |
| CFD | computational fluid dynamics |
| LPM | long penetration mode |
| SPM | short penetration mode |
| DPLUR | data-parallel lower-upper relaxation |
| RANS | Reynolds-averaged Navier–Stokes |
| SST | shear stress transport |
References
- Raj, C.A.S.; Narasimhavaradhan, M.; Vaishnavi, N.; Arunvinthan, S.; AL Arjani, A.; Pillai, S.N. Aerodynamics of ducted re-entry vehicles. Chin. J. Aeronaut. 2020, 33, 1837–1849. [Google Scholar] [CrossRef]
- Khan, S.B.; Maqsood, A.; Akhtar, S.; Xie, D.; Riaz, R. Causation of Supersonic Limit Cycle Oscillations in Atmospheric Entry Vehicles. AIAA J. 2022, 59, 960–974. [Google Scholar]
- Ahmed, M.Y.M.; Qin, N. Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective. Prog. Aerosp. Sci. 2020, 112, 100585. [Google Scholar] [CrossRef]
- Placco, L.; Cogo, M.; Bernardini, M.; Aboudan, A.; Ferri, F.; Picano, F. Large-Eddy Simulation of the unsteady supersonic flow around a Mars entry capsule at different angles of attack. Aerosp. Sci. Technol. 2023, 143, 108709. [Google Scholar] [CrossRef]
- Pollock, R.D.; Hodkinson, P.D.; Smith, T.G. Oh G: The x, y and z of human physiological responses to acceleration. Exp. Physiol. 2021, 106, 2367–2384. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Tian, X.; Song, J.; Hu, B. Establishment process of spiked lateral jet in hypersonic flows. Aerosp. Sci. Technol. 2022, 124, 107507. [Google Scholar] [CrossRef]
- Su, Y.; Sun, P.; Cui, Y.; LE, G. Re-entry rocket basic flow characteristics and thermal environment of different retro-propulsion modes. Chin. J. Aeronaut. 2024, 37, 190–203. [Google Scholar] [CrossRef]
- Liu, S.; Yan, C.; Kang, D.; Jiang, Z.; Sun, M. Opposing jets for heat flux reduction and uncertainty analysis on a V-shaped blunt leading edge. Aerosp. Sci. Technol. 2023, 138, 108353. [Google Scholar] [CrossRef]
- Farr, R.; Chang, C.-L.; Jones, J.H.; Dougherty, N.S. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX, USA, 22–26 June 2015; p. 3126. [Google Scholar]
- Fan, B.; Huang, J. Coupled Fluid-Thermal Investigation on Drag and Heat Reduction of a Hypersonic Spiked Blunt Body with an Aerodisk. Aerospace 2022, 9, 19. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, C.; Meng, Y.; Huang, W.; Liang, Y.; Zhao, Z. Drag reduction mechanism based on the aerospike-jet composite approach under different incoming dynamic pressures. Acta Astronaut. 2024, 225, 741–757. [Google Scholar] [CrossRef]
- Chang, C.-L.; Venkatachari, B.S.; Cheng, G. Effect of Counterflow Jet on a Supersonic Reentry Capsule. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006; p. 4776. [Google Scholar]
- Zhang, W.; Wang, X.; Zhang, Z.; Su, T. Numerical Investigation on the Jet Characteristics and the Heat and Drag Reductions of Opposing Jet in Hypersonic Nonequilibrium Flows. Aerospace 2022, 9, 554. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Wang, Q.; Ju, S.; Yan, C. Reverse jet parameters study on aerodynamic thermal uncertainty of a blunt body. Aerosp. Sci. Technol. 2020, 107, 106260. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, H.; Cao, X.; Zhou, Y.; Xie, W.; Song, W.; Wang, Y. Investigation into Shock Control and Drag Reduction Characteristics of Opposing Plasma Synthetic Jet in Mach 8 Flow. Aerospace 2024, 12, 17. [Google Scholar] [CrossRef]
- Venkatachari, B.S.; Ito, Y.; Cheng, G.; Chang, C.-L. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows. In Proceedings of the 42nd AIAA Thermophysics Conference, Honolulu, HI, USA, 27–30 June 2011; p. 4030. [Google Scholar]
- Guo, X.; Zhou, C. Behaviors of the long penetration mode with a hot counterflowing jet. Aerosp. Sci. Technol. 2022, 130, 107941. [Google Scholar] [CrossRef]
- Shen, B.; Liu, W.; Yin, L. Drag and heat reduction efficiency research on opposing jet in supersonic flows. Aerosp. Sci. Technol. 2018, 77, 696–703. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Parametric research on drag reduction and thermal protection of blunt-body with opposing jets of forward convergent nozzle in supersonic flows. Acta Astronaut. 2022, 190, 218–230. [Google Scholar] [CrossRef]
- Daso, E.O.; Pritchett, V.E.; Wang, T.-S.; Ota, D.K.; Blankson, I.M.; Auslender, A.H. Dynamics of Shock Dispersion and Interactions in Supersonic Freestreams with Counterflowing Jets. AIAA J. 2009, 47, 1313–1326. [Google Scholar] [CrossRef]
- Cheng, G.; Neroorkar, K.; Chen, Y.-S.; Wang, T.-S.; Daso, E. Numerical Study of Flow Augmented Thermal Management for Entry and Re-entry Environments. In Proceedings of the 25th AIAA Applied Aerodynamics Conference, Miami, FL, USA, 25–28 June 2007; p. 4560. [Google Scholar]
- Shahid, H.; Maqsood, A.; Xie, D. Shock Reduction through Multiple Opposing Jets in Atmospheric Entry Vehicle. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA and Online, 23–27 January 2023; p. 2116. [Google Scholar]
- Bharghava, D.S.N.; Mali, A.K.; Jana, T.; Kaushik, M. Implementation of concavity over heat shield of a reentry vehicle in reducing aerodynamic heating. Int. J. Heat Fluid Flow 2024, 107, 109413. [Google Scholar] [CrossRef]
- Deng, F.; Xie, F.; Huang, W.; Zhang, D.; Jiao, Z.; Chen, J.; Liu, S. Applications of counterflowing jet technology in hypersonic vehicle. Acta Aerodyn. Sin. 2017, 35, 485–495. [Google Scholar]
- Xu, H.; Li, J.; Li, X.; Ren, J. Drag and heat reduction mechanism in long and short penetration modes of opposing jet under high-speed flow. Acta Aerodyn. Sin. 2025, 43, 1–17. [Google Scholar]
- Zhang, J.; Dai, Z.; Li, R.; Deng, L.; Liu, J.; Zhou, N. AcceleSration of a production-level unstructured grid finite volume CFD code on GPU. Appl. Sci. 2023, 13, 6193. [Google Scholar] [CrossRef]
- Cui, P.; Li, H.; Jia, H.; Li, L.; Qin, F.; Wu, X.; Zhang, Y. An improved Harten–Lax–Leer–Einfeldt plus plus scheme for unstructured grid and cell-centred finite-volume method. Phys. Fluids 2025, 37, 076130. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Y.; Zhang, Y.; Li, W. Simulation Research on the Effect of Reynolds Number on the Aerodynamic Characteristics of High Lift Device. J. Phys. Conf. Ser. 2022, 2280, 012010. [Google Scholar] [CrossRef]
- Jiang, Q.F.; Chen, S.S.; Yang, H.; Zhang, Z.G.; Gao, Z.H. Unsteady aerodynamic characteristics of a morphing tail configuration. Phys. Fluids 2024, 36, 036133. [Google Scholar] [CrossRef]
- Cui, P.; Wu, X.; Chen, J.; Jia, H.; Qin, F.; Zhang, J.; Zhang, Y.; Zhou, G.; Tang, J. A Viscous Boundary Layer Mesh Adaptation Method and Its Application in High-Angle-of-Attack Separated Flows. Appl. Sci. 2025, 15, 11615. [Google Scholar] [CrossRef]
- Menter, F.R.J.A.J. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Korzun, A.M.; Cordell, C.E.C., Jr.; Braun, R.D. Computational Aerodynamic Predictions of Supersonic Retropropulsion Flowfields. J. Spacecr. Rockets 2013, 50, 950–960. [Google Scholar] [CrossRef]
- Ried, R.C., Jr.; Rochelle, W.C.; Milhoan, J.D. Radiative Heating to the Apollo Command Module: Engineering Prediction and Flight Measurement. 1972; No. MSC-06834. Available online: https://ntrs.nasa.gov/citations/19720017314 (accessed on 1 April 1972).
- Venkatachari, B.S.; Cheng, G.; Chang, C.-L.; Zichettello, B.; Bilyeu, D.L. Long Penetration Mode Counterflowing Jets for Supersonic Slender Configurations—A Numerical Study. In Proceedings of the 31st AIAA Applied Aerodynamics Conference, San Diego, CA, USA, 24–27 June 2013; p. 2662. [Google Scholar]
- Chen, L.; Wang, G.; Lu, X. Numerical investigation of a jet from a blunt body opposing a supersonic flow. J. Fluid Mech. 2011, 684, 85–110. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.J.; Huh, H. Drag reduction analysis of counterflow jets in a short penetration mode. Aerosp. Sci. Technol. 2020, 106, 106065. [Google Scholar] [CrossRef]

















| Freestream Conditions | ||||||
|---|---|---|---|---|---|---|
| M∞ | P0 (atm) | P (atm) | T0 (K) | T (K) | Re∞, 1/d | |
| 3.48 | 3.061 | 0.04129 | 333.33 | 97.406 | 1.63 × 106 | |
| Counterflowing nozzle jet conditions | ||||||
| Case ID | (kg/s) | P0 (atm) | P (atm) | T0 (K) | T (K) | |
| Baseline | ||||||
| 1 | 0.0227 | 3.0340 | 2.9526 | |||
| 2 | 0.0453 | 6.0680 | 5.9052 | |||
| 3 | 0.0681 | 9.1020 | 8.8578 | |||
| 4 | 0.0815 | 10.9224 | 10.6294 | |||
| 5 | 0.0907 | 12.1360 | 11.8104 | 300.00 | 297.68 | |
| 6 | 0.1134 | 15.1701 | 14.7630 | |||
| 7 | 0.1589 | 21.2381 | 20.6682 | |||
| 8 | 0.2268 | 30.3402 | 29.5261 | |||
| 9 | 0.4536 | 60.6803 | 59.0521 | |||
| CaseID | Lj/Ld | Lr/Ld | Sj/Ld | tan(θ) | θ | tan(β) | β |
|---|---|---|---|---|---|---|---|
| 6 (0.1134 kg/s) | 2.3492 | 0.9465 | 3.2674 | 0.2065 | 11.6676° | 0.2465 | 13.8473° |
| 7 (0.1589 kg/s) | 2.9756 | 0.8225 | 3.5605 | 0.2774 | 15.5040° | 0.1770 | 10.0374° |
| 8 (0.2268 kg/s) | 3.9206 | 0.7753 | 3.7268 | 0.3918 | 21.3952° | 0.1313 | 7.4801° |
| 9 (0.4536 kg/s) | 6.4048 | 0.7117 | 4.6752 | 0.5302 | 27.9325° | 0.0298 | 1.7069° |
| Case | Total Drag Force (N) | Total Drag Force (N) (UNIC Code [21]) | |
|---|---|---|---|
| α = 0° | Baseline | 433.2 | 434.4 |
| 9 (0.4536 kg/s) | 323.0 | 334.0 | |
| α = 10° | Baseline | 414.0 | 416.0 |
| 9 (0.4536 kg/s) | 329.7 | 326.0 |
| α | 0° | 5° | 10° | 20° | Influence | |
|---|---|---|---|---|---|---|
| <0.0907 kg/s | Highly unstable | High | ||||
| 0.0907 kg/s | Outward Significant | Outward Significant | Destruction Significant | Destruction Limited | High | |
| 0.1134 kg/s | Outward Significant | Outward Significant | Destruction Significant | Destruction Limited | High | |
| 0.1589 kg/s | Outward Significant | Outward Significant | Outward Significant | Destruction Limited | High | |
| 0.2268 kg/s | Inward Significant | Outward Significant | Outward Significant | Destruction Limited | Low | |
| 0.4536 kg/s | Inward Limited | Inward Limited | Inward Limited | Outward Limited | Low | |
| Influence | High | High | High | Low | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, Z.-K.; Liu, Y.-L.; Liu, S.-S.; Li, L.-F. Parametric Study on Counterflowing Jet Aerodynamics of Apollo Re-Entry Capsule. Aerospace 2026, 13, 4. https://doi.org/10.3390/aerospace13010004
Liu Z-K, Liu Y-L, Liu S-S, Li L-F. Parametric Study on Counterflowing Jet Aerodynamics of Apollo Re-Entry Capsule. Aerospace. 2026; 13(1):4. https://doi.org/10.3390/aerospace13010004
Chicago/Turabian StyleLiu, Zhi-Kan, Yi-Lun Liu, Shen-Shen Liu, and Long-Fei Li. 2026. "Parametric Study on Counterflowing Jet Aerodynamics of Apollo Re-Entry Capsule" Aerospace 13, no. 1: 4. https://doi.org/10.3390/aerospace13010004
APA StyleLiu, Z.-K., Liu, Y.-L., Liu, S.-S., & Li, L.-F. (2026). Parametric Study on Counterflowing Jet Aerodynamics of Apollo Re-Entry Capsule. Aerospace, 13(1), 4. https://doi.org/10.3390/aerospace13010004

