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Abstract

Conventional fixed-gain PID controllers face inherent limitations in maintaining optimal
performance across the diverse and dynamic flight phases of cruise missiles. To overcome
these challenges, we propose Time-Fusion Proximal Policy Optimization (TF-PPO), a novel
adaptive reinforcement learning framework designed specifically for cruise missile control.
TE-PPO synergistically integrates Long Short-Term Memory (LSTM) networks for enhanced
temporal state perception and phase-specific reward engineering enabling self-evolution
of PID parameters. Extensive hardware-in-the-loop experiments tailored to cruise missile
dynamics demonstrate that TE-PPO achieves a 36.3% improvement in control accuracy over
conventional PID methods. The proposed framework provides a robust, high-precision
adaptive control solution capable of enhancing the performance of cruise missile systems
under varying operational.

Keywords: cruise missile; attitude control; reinforcement learning; PID; Proximal
Policy Optimization

1. Introduction

Cruise missiles are missiles that fly within the atmosphere in a cruising state, and their
flight process can be divided into multiple stages such as altitude adjustment, cruise, and
dive, each with different aerodynamic characteristics and control requirements [1]. The
control system must ensure that the missile maintains a stable attitude and precise trajectory
tracking in complex and variable flight environments. Cruise missile controllers commonly
use PID controllers for attitude control [2,3]. However, the traditional proportional-integral—
derivative (PID) control method, due to its static design [4—6], exhibits significant limitations
in addressing nonlinear systems and external disturbances [7]. Studies indicate that tra-
ditional PID control struggles to accurately model the dynamic characteristics of missiles,
and parameter tuning requires iterative adjustments, which is a cumbersome process [8,9].
Furthermore, the multi-stage flight requirements of cruise missiles necessitate compromises
in control parameters across different phases, making it impossible to achieve optimal
control across the full speed range, full airspace, and under large maneuver conditions [10].

In order to improve the adaptability and tedious parameter adjustment problems
caused by fixed-gain PID, real-time adaptive control schemes with dynamic parameter
adjustment functions have received widespread attention. Adaptive PID control typically
encompasses rule-based [11,12], and model-based approaches [13,14]. Rule-based methods,
such as Ziegler-Nichols tuning [15] and fuzzy logic adaptive PID control, adaptively adjust
gains by leveraging control signal characteristics like overshoot and PID error. Model-
based techniques, like Model Reference Adaptive Control [16], neural adaptive sliding
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mode guidance for UAV piloting [17] and three-dimensional sliding pursuit guidance
for surface-to-air missiles [18], utilize mathematical models to adjust PID parameters,
accommodating changes in system dynamics or external disturbances, thereby improving
tracking performance and stability. Although many methods [19,20] have made significant
progress in their respective fields, they still have shortcomings for missile attitude control
with strong nonlinearity. Rule-based methods rely heavily on predefined rules or expert
knowledge, limiting their adaptability to unforeseen conditions in highly dynamic missile
flight scenarios. Model-based approaches face challenges in highly nonlinear systems
where design complexity increases significantly, and unmodeled dynamics or model errors
lead to performance degradation. These challenges are particularly pronounced in the
rapidly evolving field of cruise missile control. A novel approach is needed to enhance
adaptability to dynamic systems and environments.

With advancements in artificial intelligence, reinforcement learning (RL) [21-23] of-
fers a promising direction for missile attitude control [24-27]. Especially for unmanned
aerial vehicle attitude control, RL performs better than traditional control methods. By
leveraging deep reinforcement learning techniques combined with PID controllers [28]
and designing a reinforcement learning framework [29], they achieved online optimization
of network parameters, enhanced the control performance of the aircraft, and attained
satisfactory tracking accuracy and robustness. Similarly, Zhao [30] designed a PPO based
attitude control framework for unmanned aerial vehicles in a simulation environment
demonstrating superior sample efficiency and stability in attitude control. The integration
of RL with missiles has primarily focused on guidance law design for autonomous obstacle
avoidance [31] and target tracking [32]. For missile attitude control, Zhang [33] developed
a DDPG-based longitudinal controller for missile attitude control. Through longitudinal
plane simulations, the study demonstrated the feasibility of this data-driven control method
in stabilizing the nonlinear angle of attack dynamics in the missile’s longitudinal motion.
Lee [34] designed an RL-based PID control strategy for large angle-of-attack commands,
achieving improved tracking performance.

Despite these developments, current research has certain limitations: existing methods
often train in specific scenarios, limiting validation across diverse flight conditions. Simul-
taneously, they overlook the inherent non-Markovian nature of PID controllers—existing
RL controller designs discard crucial historical state information. Additionally, as RL-based
Al systems become more general and autonomous, designing reward mechanisms to elicit
desired behaviors becomes increasingly important and challenging. Current researchers
often focus solely on system design and straightforward objectives, thereby neglecting the
design of reward engineering [35], which results in inadequate adaptability of algorithms
in multi-stage tasks [32].

To address these limitations, we developed an adaptive PID tuning framework uti-
lizing the Time-Fusion Proximal Policy Optimization (TF-PPO) algorithm. TE-PPO is an
enhancement of the established Proximal Policy Optimization (PPO) [22] algorithm, whose
stability and efficiency have been demonstrated in adaptive PID tuning applications [36].
Our approach integrates long short-term memory (LSTM) [37] network, robust training
method, and adaptive reward function, which can effectively perceive historical states and
adaptively adjust parameters to cope with changes in flight states in different scenarios.
Specifically, we construct a PPO-based adaptive PID parameter tuning algorithm for missile
attitude control, incorporating LSTM networks to capture historical state dependencies and
achieve precise attitude regulation. This approach employs a full six-degree-of-freedom
aerodynamic model, trained through interactions with a game-based adversarial simula-
tion system. This approach utilizes a full six-degree-of-freedom aerodynamic model and
trains through adversarial interactions within a simulation environment. During optimiza-
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tion, PID controller gains function as policy parameters in the RL actor network, updated
through online environment interactions. For characterizing flight-phase dynamics, we
implement reward engineering with specialized functions for altitude adjustment, cruise,
descent and terminal guidance phases. Through these designs, optimal parameters for each
phase can be automatically identified without relying on initial values. Table 1 compares
our method with existing approaches.

Table 1. Comparative Summary of Controller Performance.

o Rule-Based Model-Based RL-PID
Feature Traditional PID 4. tive PID AdaptivePID  (e.g, DDPG PPO) T TPO
Nonlinear System Handling Moderate Moderate Limited Good Good
Paramete.r Tuning High Moderate Moderate Low Low
Complexity
Multi-Phase Adaptability Poor Moderate Moderate High High
Historical State Utilization None Limited Limited None Good

To experimentally assess the proposed framework, a rapid-prototyping missile control
system was engineered. This verification infrastructure integrated step-response test-
ing with full-trajectory simulation, with experimental data confirming robustness under
divergent initial conditions and wind disturbances. We designed and constructed a rein-
forcement learning-based rapid prototyping system for missiles, establishing a verification
framework that combines step response testing and full envelope simulation. By evaluating
attitude tracking performance under varied initial conditions and different wind distur-
bances, we demonstrated the robustness and effectiveness of the proposed algorithm. This
study advances reinforcement learning applications in missile attitude control, providing
robust and adaptive solutions for nonlinear dynamics and multi-phase flight scenarios.

The rest of this paper is organized as follows: Section 2 presents system modeling
and missile attitude control architecture. Section 3 details the TF-PPO algorithm, including
reward engineering and implementation workflow. In Section 4, all experimental results are
presented, including step response tests, offline training, and comparative experiments on
the missile rapid prototyping system. Section 5 summarizes contributions and future work.

2. System Modeling and Control System Architecture

For high-fidelity missile dynamics modeling, aerodynamic parameter estimation of a
cruise missile was performed. Parameters are assumed representative of a generic subsonic
cruise missile, which utilizes aerodynamic controls, scaled for simulation purposes based
on typical values from literature [38]. The following key parameters from Table 2 are
utilized in the missile system model.

Table 2. Missile parameters.

Symbols Parameter Explanation Units Values

Moet / Mgy Fully Loaded /Unloaded mass kg 675/580

Umax Maximum cruise speed (3000 m) Ma 0.7
R Range km 270
Pitch moment of inertia (Fully

Lyaoet /Ty ary Loaded/Unloaded) 1400/1350
Tiax Maximum thrust N 2700
Niax Service ceiling m 8000

This paper conducts numerical modeling and analysis of missile aerodynamic char-
acteristics using ANSYS FLUENT (v2022 R2). Combined with key parameters in Table 1
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and six-degree-of-freedom rigid-body equations of motion [39-41], a nonlinear dynamic
model of the pitch channel is established. Given the similarity in control logic across pitch,
roll, and yaw channels, this study focuses exclusively on the self-evolutionary parameter
analysis of the pitch loop. Under the assumption of small angles of attack (« < 15°) [42]
and symmetric missile configuration, the coupling from yaw and roll channels can be
reasonably neglected [43]. Neglecting coupling effects from yaw and roll channels, the
nonlinear pitch dynamics can be described by

0=q
& =q+ n}?[ﬁS(Czw + Czs0e) — Tsina — mg cos 6] (1)
§ = 1 754(Conatt + Csde + Cong 39|

The symbols used in Equation (1) are defined in Table 3.

Table 3. Symbols used in pitch channel dynamics equations.

Symbols Parameter Explanation Units
0 Pitch angle rad
Angle of attack rad
q Pitch rate Rad/s
m Missile mass kg
Vv Missile velocity m/s
q Dynamic pressure Pa
S Reference area m?
d Reference length m
Cza Normal force coefficient due to angle of attack -
Cys Normal force coefficient due to elevator defection -
Cia Pitch moment coefficient due to angle of attack -
Cus Pitch moment coefficient due to elevator defection -
Cing Pitch moment damping coefficient -
e Elevator defection angle rad
T Thrust N
g Gravitational acceleration m/s?
Ly Pitch moment of inertia kg-m?

The trajectory of a cruise missile consists of a planned trajectory and a guided trajec-
tory. Before launch, the missile’s flight plan is predetermined and cannot be altered once
launched [1]. The input to the missile’s attitude controller is the desired attitude angle
generated by a fixed control law. The task of attitude control is to track the desired angle,
minimizing the attitude angle error 6,. The PID controller for the pitch loop attitude can be
expressed as

@md=@@+h/@m—@% @)

In the equation, J, ;g represents the elevator command, and the steering gear model
is represented by a second-order model [44]:

e w?

Se emd T2 20wps + w?

)

To address the attitude control requirements of cruise missiles with complex motion
characteristics, this paper designs an RL-PID intelligent control system that integrates deep
reinforcement learning with classical PID control. Through an online parameter tuning
mechanism, optimal control is achieved under different flight conditions.
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The overall system architecture, as shown in Figure 1, consists of the RL-PID agent
and the missile system model. The RL-PID agent utilizes a deep neural network to real-
time parse missile state information s;, calculates rewards based on a designed reward
function, and dynamically outputs the optimal tuning values a; for PID parameters. It can
be expressed as

t ot et T
ay = 7'(9(St) = [Kp' Ki'Kd} (4)
flight state
Agent RL Algorithm Plant »
@Train/Optimize Disturbance
Sy Tt K, PID Missile
x| atitude ;Zr;'e"l 6-DOF
' controller model
K,
Neural Network

control feedback

Figure 1. Architecture of the RL-PID Intelligent Control System. The agent adaptively adjusts PID
parameters based on the current state s; and environmental rewards 7; to optimize its policy.

The reinforcement learning algorithm is divided into a training phase and an online
optimization phase. During the training phase, a maximum reward mechanism drives the
agent to learn parameter tuning strategies. In online operation, the network parameters are
fixed, and the K, K;, and K; coefficients are updated based on real-time flight data, enabling
the PID controller to achieve condition awareness and parameter evolution capabilities.

3. Method

TE-PPO algorithm is an optimized framework for missile attitude control, developed
on the basis of the Proximal Policy Optimization (PPO) algorithm. Its innovations involve
reconstructing the state space, incorporating a temporal network to capture historical state
dependencies, tailoring the algorithm workflow specifically for missile autopilot dynamics,
and introducing a meticulously designed reward function that accounts for stage-specific
characteristics of the cruise missile’s flight.

The complete TF-PPO implementation necessitates comprehensive design specifica-
tions for states, rewards, actions, and network architecture. As specified in Section 2, the
RL-PID controller’s action outputs are formally defined. Subsequent sections will elaborate
on the design methodology for each component.

3.1. State Space Reframing

Missile control system design relies on long-period observable parameters (e.g., Mach
number M,, angle of attack «, flight altitude H) as states tailored to specific flight phases.
Given that the attitude controller’s output consists of pitch angle commands, the com-
manded pitch angle 6405 and the current body pitch angle 6., must be incorporated. The
state variables selected in this study are

SZ[H Ma « Gcmd HbOdy] (5)

During missile flight, frequent PID adjustments may induce undesirable oscillations.
We select t = 5s as the control interval for the RL-PID system. However, since PID response
constitutes a dynamic process, the state space design for missile attitude control must satisfy
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dual constraints: dynamic response representational completeness and computational
feasibility. Considering both missile performance characteristics and state information
within control intervals, this paper proposes a sliding-window based temporal state space
construction method. The complete 13-dimensional state vector is defined as follows:
t—4 pt-3 t t—4  gt-3 t
0 6 e, 0 Gbody’ ebody’ 4 Gbody

cmd’ “emd’ cmd

s = | May, Hy, a4, eRB (6)

5—stepdesiredpitch 5—stepactualpitch

cmd
time t — k, respectively, forming a raw temporal sequence spanning a 5 s time window.

where ' K and Glt)ggy denote the commanded pitch angle and actual body pitch angle at

3.2. Neural Architecture Design

The TF-PPO algorithm operates on an Actor-Critic [45] framework to collaboratively
optimize control policies. Although the Actor—Critic architecture inherently assumes a
Markov Decision Process (MDP), the missile PID control system exhibits non-Markovian
characteristics due to its integral and derivative components requiring historical signal
information prior to the current timestep. To address these non-Markovian properties,
we embed a shared LSTM layer within the conventional Actor—Critic structure, thereby
constructing a temporal feature fusion network. The detailed architecture is depicted in
Figure 2.

actor network

| Shared hidden _ertor error
LSTM unit | state

State —

critic network

environment action

e cruise = \
adjustment —

%scent accelerate

-

Figure 2. LSTM-Enhanced Actor-Critic Architecture.

The input layer receives a 13-dimensional state vector s;, which undergoes Batch
Normalization preprocessing before entering the shared feature extraction layer. The shared
LSTM module employs a unidirectional structure. The temporal dependency between
commands and responses is formulated as

(Zt, Ct) = LSTM(S/Zt—l,Ct—l) (7)

where z; denotes the hidden state output from the LSTM network, c; represents the cell
state in long-term memory. The hidden state is concurrently fed into both Actor and Critic
networks, where two distinct fully connected layers generate the action a; and state-value
function Vi (s;), respectively, achieving historical feature reuse.
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3.3. Reward Engineering

Reward engineering in reinforcement learning is the process of designing reward
systems. Through deliberate reward structuring, it provides agents with discriminative
signals that indicate behavioral correctness [35]. The missile control system represents a
highly nonlinear precision engineering system. Prior to reinforcement learning deployment,
the identification of reward-shaping metrics critical to optimizing control precision is
essential for RL-driven controllers. Addressing distinct dynamic characteristics during
altitude adjustment, cruise, and descent phases of cruise missiles, this section proposes
an adaptive stage-strength quantified reward function. This framework reconstructs RL
rewards through phase-strength quantification, enabling stable optimization trajectories
for control policies.

3.3.1. Stage-Strength Quantification

The stage-strength ¥ € [0, 1] parameter characterizes the dominance of the current
flight phase, where a higher value indicates greater priority for phase-specific control
objectives. This parameter depends solely on instantaneous flight states, eliminating
inter-phase coupling complexities while ensuring global adaptability with seamless phase
transitions. The quantification mechanism is defined as follows:

] _ 1
Fadjust (ht) = ehli
_ ) 1
Y= Fdescend (ht) T ikt ®)

chruise (ht) =1- (llfadjust + lIfdescend)

where the shape parameter k1, k; > 0 controls the function slope, J1,J, > 0 denotes the
phase offset and /1 represents the rate of change of altitude. To eliminate dimensional dispar-
ities and establish probabilistic weight allocation, we apply a softmax normalization, this
guarantees ) &; = 1, thereby ensuring continuous transitions of phase dominance rights.

[{fv,c/ 1?r/ {f?d] = SOftmaX( [Yadjustl Feruises 11Udescend] ) )

The schematic of the stage-strength evolution is shown in Figure 3.

1.0 . L
i i = Wadjust
0.8 ! k1 =0.5, 6;=15.0 = Wenise
2 I ky=0.5, 5,=10.0 — o
£ 0.6 1 | Wenise = 1 = (Wadjust + Pdescend)
= ]
g i !
% 0.4 ! !
3 ! |
0.2 4 1 1
| |
| |
0.0 - -
0 100 200 300 400
Time (s)

Figure 3. Schematic of Stage-Strength Evolution.

3.3.2. Adaptive Reward Function Formulation

The RL-PID system targets high-precision tracking of guidance-commanded pitch
attitudes. Therefore, pitch angle error 6, and pitch rate error g, should be considered
in the reward function. To mitigate unnecessary oscillations induced by frequent PID
adjustments, the elevator deflection angle J, is incorporated into the reward function. The
global reward function is formulated around three core components: pitch angle error 6,,
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pitch rate error q., and elevator deflection é,. Phase-adaptive optimization is achieved
through the weighting matrix A € R3*3. Tts mathematical form is

R =YFA¢T (10)

where ¢ = [0, g, J,] denotes the parameters considered for the reward function. Tailored
to distinct phase characteristics, the weighting matrix A is architected as

778 ,adjust Tg,adjust 0
A= 116, cruise 0 15 cruise (1 1)
1o, descent ﬂq,descent 15, descent

Each column weight must meet the normalization constraint }_7; ; = 1(Vi € {0,9,0}),
The values of the weight matrix are manually designed based on the characteristics of the
flight phase. Through explicit functional coupling between the stage-strength ¥ parameter
and weight matrix A, adaptive prioritization switching of control objectives is achieved.

3.4. Training Process

The training process of the TF-PPO algorithm introduces an adaptive exploration
mechanism to optimize stability within the canonical PPO framework. Parameters of
the Actor and Critic networks are initialized orthogonally [46], ensuring the initial policy
satisfies Gaussian distribution properties. The agent generates PID parameters K, K;,
K, through the Actor network, with adaptive Gaussian noise superimposed to maintain
exploratory behavior:

ar ~ N (mt(u|st), 0?) (12)

Traditional PPO algorithms typically employ fixed-decay exploration strategies, which
cannot guarantee convergence. This paper proposes an adaptive exploration strategy based
on advantage functions. When substantial policy advantage exists, it reduces randomness
in action sampling to guarantee stable convergence to optimal policies. If the current
strategy has strong advantages, reduce the randomness of exploration. This ensures that
the algorithm converges to the optimal strategy.

ae+1:(73~<1§~M)~(1ﬁ~§) (13)

In the formula, o is the standard deviation of action sampling for the current episode,
A(se, a¢) is the dominant function value in state s,.7, B is the relevant attenuation coefficient
(0 < g, B < 1), used to control the influence of the number of training episodes on the
standard deviation. E is the total number of training episodes or the preset upper limit of
training times.

During this process, the interaction between the missile autopilot and the environment
forms a closed-loop control loop. The PID parameter increment output by the intelligent
agent is applied in real-time to the six degrees of freedom dynamic model of the missile,
generating elevator deflection commands ¢, and driving flight trajectory adjustment. The
observation includes the attitude angle error 6., altitude change rate f1, and other critical
state variables at the next moment under environmental feedback. Next, the scalar reward
signal will be calculated using the reward function designed in the previous section. After
each training round, the system calculates discount returns G; = kio v*r,, and advantage
functions A; = G; — Vj(s¢) based on accumulated rewards, Where.V(p(st) is the state value
estimated by the critic network, ¥ represents the discount factor and 7, ; Instant reward
obtained from time step ¢.
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For the process of strategy optimization, the objective function of TF-PPO algorithm is
designed as:

(14)

Lactor = E¢ | min <7T9(a|s)At,clip (”9(“'5) 1—¢1+ s> At>
Tty

old(a|s) 7T9old(a|s)

The actor network employs a clipped policy ratio mechanism to constrain parameter
updates and prevent abrupt policy shifts. Simultaneously, the critic network updates by

minimizing value estimation errors:
2
Leritic = E[(Vip(st) — Gr)7] (15)

During algorithm training, reinforcement learning agents exhibit high sensitivity to
training data quality in their parameter optimization. When suboptimal control trajectories
are significantly present in the experience replay buffer, agents risk acquiring detrimental
control patterns through policy gradient updates, leading to convergence toward subopti-
mal solutions or even divergence. This study incorporates dynamic early termination (DET)
into the training process, enhancing operational robustness to mitigate this vulnerability.

The early termination criterion is mathematically defined as

1, Zf‘9€|> eth/\eg‘qg > O
= 16
Tstop {0, otherwise (16)

When Tstop = 1, terminate the current training round and adjust the termination time

reward to
Rierm = Rbase - )\Rﬁxed (17)

where Ry,¢e denotes the raw reward value at termination, A > 1 represents the penalty
coefficient, and Rgyeq is a predefined constant penalty term. This design ensures training
stability through policy exploration constraints and bounded reward scaling, achieving a
62% reduction in reward variance, as shown in Figure 4.

80 -
70

60

wn
(e}
1

Reward Value
o~
(e)

301
201
10 Without DET
o4 With DET
0 100 200 300 400 500

Training Episode

Figure 4. DET mechanism reduces training reward variance by 62%.

The pseudocode for the TF-PPO algorithm procedure is presented in Algorithm 1.
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Algorithm 1: TF-PPO

Initialize policy network 7 and value network V
Set hyperparameters: learning rate «, discount factor -, clip parameter ¢, episodes E,
update interval U

foric {1,--- ,N} do

forje {1,---,M} do

Run policy 71y, collecting {s, a¢, 1+ }

Check termination condition via DET

Estimate discountreturns G; and advantages A; = G; — Vj(s¢)

Decay action selection noise:

— A(Se/e) e
Ue+1 = e (1_€' max(A)) ' (1_18' f)
if j%T = 0 then
Update 7ty according to the objective function

Lactor = E¢ |min ("WMAt, clip <7T9(”5), 1—¢1+ £> At>
neold(a‘s) oy (a‘s)
end if
end for
end for

4. Experimentation and Evaluation

To validate the performance of the proposed TF-PPO algorithm, this section presents
comprehensive mathematical simulations and hardware-in-the-loop (HIL) experiments.
The validation is conducted in two parts: First, mathematical simulations using step
response prove that the TF-PPO algorithm offers faster convergence and better performance
than other RL algorithms under large step signal excitation. Second, a missile control
rapid prototyping system is designed. The attitude tracking performance of TE-PPO
and traditional PID methods is evaluated under different initial conditions and wind
disturbances. This verifies the robustness and self-evolution capability of parameters of the
proposed method.

4.1. Step Response Experiment

To evaluate the core contribution of the Temporal Feature Fusion mechanism, this
part of the experiment uses a simplified reward function vy = —6, to compare TF-PPO
with other algorithms. First, a 6-DOF mathematical simulation model of the missile is
constructed. Then, different RL algorithms are connected to this mathematical model. We
designed a fixed scenario where a large step command is given to the control system every
15 s. Using this scenario, each algorithm is trained for 5000 episodes. The convergence
effectiveness of the different algorithms is assessed.

This paper uses three algorithms, TF-PPO, PPO, and DDPG, for comparative step
response experiments. Table 4 describes the relevant algorithm training parameters. The
PPO algorithm uses the same training parameters. For DDPG, the parameter 7 is set to
0.005, while other parameters remain consistent. The training results are shown in Figure 5,
where a moving average is applied to the results. The shaded area represents the variance
of the reward.

From the results, it can be seen that the TF-PPO and PPO algorithms, due to the
existence of the clip method, avoid drastic changes in strategy and have relatively stable
training processes. Compared to the classical PPO algorithm, TF-PPO exhibits faster
convergence speed and learns better results. The trained models are reconnected to the
simulation system to compare the effects of the different algorithms.



Aerospace 2025, 12, 849

11 0f 19
Table 4. TF-PPO hyperparameter settings.
Symbols Parameter Explanation Reference Range Selected Value
€ Clip ratio (limits policy update magnitude) 0.1~0.3 0.1
Haction Actor learning rate 0.00001~0.001 0.00005
Teritic Critic learning rate 0.00001~0.001 0.0001
0% Discount factor 0.8~0.999 0.99
N Sample size per training step 64~512 128
K Optimization passes per batch 1~100 10
T Update interval steps 10~10,000 500

100

Reward

0 1000 2000

3000 4000 5000

Training Steps

Figure 5. Comparison of Algorithm Convergence.

The specific effects are shown in Figure 6. The control accuracy of the TE-PPO algo-
rithm is superior to the other algorithms. Compared with the traditional PPO algorithm,
TF-PPO achieves an average control accuracy improvement of 14.3% with similar settling
time, as summarized in Table 5. This demonstrates that the proposed algorithm has better
training effectiveness for the missile guidance and control system.

Attitude Angle (deg)

Attitude Angle (deg)

0 20 40 60 80 100 10,00 1025 10.50 10.75 1100 1125 1150 11.75 12.00
Time (s) Time (s)
(a) (b)

Figure 6. Comparison of response performance under step signal excitation: (a) attitude angles under

different algorithms; (b) detailed drawing.
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Table 5. Numerical simulation results.

Algorithm é o? t
PPO 0.1487 0.5297 0.6627
DDPG 0.2091 0.5675 1.5323
TE-PPO 0.1274 0.4998 0.6250

4.2. Offline Training

The online optimization of the TF-PPO algorithm relies on high-quality offline training.
Although TF-PPO is an on-policy algorithm, its missile-borne deployment on cruise missiles
requires training the network parameters within the ground segment beforehand. Therefore,
constructing a training environment that approximates real missile application conditions
is essential. We use the AFSIM simulation platform as the training environment, deploy
our six degrees of freedom missile model in AFSIM, and train the missile reinforcement
learning control system by designing different initial conditions and flight plans.

This experiment constructed a cruise trajectory plan based on a simulation platform,
which includes an acceleration phase, an altitude adjustment phase, a cruise phase, a
descent phase, and a terminal guidance phase. The missile was launched by air launch,
and Figure 7 shows a typical trajectory plan for missile flight. Based on typical trajectory
schemes, the initial launch conditions and cruising altitude for each training round are
determined through uniformly distributed random sampling, and the missile control
system network is trained accordingly.

3000

2500

2000

1500

Attitude(m)

1000

500

¢ NJ \Y \

€ NN
Q7 & NI

QP & o s &

O <&
Time (s)

Figure 7. Cruise Missile Planned Trajectory.

Table 6 describes the specific parameter design of offline training parameters. The
TF-PPO algorithm was trained using an adaptive reward function, and the model training
hyperparameters were consistent with Table 4. After completing offline training of the al-
gorithm, the trained algorithm was reconnected to a typical trajectory through a simulation
system for full trajectory flight simulation. The simulation results are shown in Figure 8.

Table 6. Random Sampling Parameters for Offline Training.

Names Values Units
Training epochs 5000 -
Launch height 1000-5000 m
Launch elevation angle —5~5 °
Initial Mach number 0.5~0.7 -

Cruising altitude 3000~5000 m
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] = » —— Desired Pitch
—-—- PID Pitch
---- TF-PPO Pitch

Angle (deg)

=24

T T
0 50 100 150 200 250
Time (s)

Figure 8. Performance Comparison of Trained TF-PPO Algorithm vs. PID Control.

The TF-PPO algorithm trained offline can automatically adjust the PID parameters
of the pitch loop without prior knowledge. The results show that the missile pitch loop
attitude control system under the TF-PPO algorithm exhibits good tracking performance,
and in the stage transition stage, the algorithm outperforms the PID control system based
on static design. Figure 9 illustrates the dynamic adjustment of PID parameters by RL-PID
during missile flight. The PID parameters will be adaptively adjusted according to the
stage characteristics.
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Figure 9. Response of PID Parameters Under TF-PPO Control.

4.3. Rapid Prototyping System

To validate the performance of the RL-PID algorithm in practical control, this study
constructed a missile rapid prototyping system consisting of a simulation computer, missile-
borne mission computer, and simulation platform, as shown in Figure 10. Hardware-in-
the-loop (HIL) simulation was implemented to achieve closed-loop verification of multi-
phase trajectories.

Rapid prototyping is a prototype development methodology that focuses on creating
prototypes early in the development cycle [47]. This enables early feedback and analy-
sis to support the development process. The rapid prototyping system described in this
paper integrates three components: a Simulation Control Station for initial parameter
configuration and mission programming that exchanges data bidirectionally with the core
systems; a Missile-Borne Mission Processor (MBMP) implementing DSP + FPGA architec-
ture to emulate physical missile control hardware, where this embedded processor executes
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the full missile control algorithm suite by receiving real-time missile states, computing
aerodynamic surface commands, and transmitting control signals; and a Virtual Combat
Environment leveraging the U.S. Air Force Research Laboratory’s AFSIM [48] platform,
within which our six-degree-of-freedom missile model operates to execute received control
commands, simulate adversarial engagements, and provide continuous state feedback.
Table 7 describes the hardware configuration of MBMP.

Simulation Control Station

Parameter binding

Simulation Control Station ’

A | '»
DisplayStatus(s) LOéldMIiSSIOH() pagﬁfe‘?é}s()
MBMP_ | v
a e B
DSP | EMIF | FPGA 1
state, reward, done, info= step(action) 1
r Task
t t oo
Missile‘ state Elevator Command binding
Environment |  _ _ _ _ _ _ Y =

' Aircraft Plugin !
e e s 1 Virtual Combat Environment
Attitude/Position
Missile status
feedback

Control parameters

(a) (b)

Figure 10. Rapid-prototyping missile control system: (a) Hardware Architecture; (b) Physical
Implementation Diagram.

Table 7. Hardware configuration of MBMP.

Component Values
DSP (TMS320C6678) 8-core, 1.25 GHz clock speed, 4 GB DDR3
FPGA (Xilinx Kintex-7 XC7K325T) 326 K logic cells, 1.4 Gb/s transceiver speeds
Gigabit Ethernet 100 Mb/s bidirectional data exchange
LVDS Serial Links End-to-end latency < 0.5 ms

To validate the control algorithm’s adaptability to various flight profiles, multiple
distinct planned trajectories were randomly generated within the parameter boundaries
specified in Table 6 for simulation. Concurrently implemented two control groups demon-
strate algorithm and reward engineering advantages: the first group utilizes a manually
tuned PID controller with fixed gains for standard flight profiles, and the second group
employs a TF-PPO algorithm with r; = —0, as its reward function (also trained offline for
5000 iterations under identical conditions; no reward engineering, labeled no RE in figures).
Both groups were validated under identical randomized initial condition configurations as
the experimental group.

The experimental framework was designed around a simulated test scenario featuring
an air-launched cruise missile deployed by a fighter aircraft. The missile’s objective is to
strike a designated maritime target in a simulated maritime environment.

Due to different control strategies employed in the terminal guidance phase, data
collection was limited to the launch-to-descent phase. Statistical results from all experiments
are shown in Table 8. Representative experimental runs are depicted in Figure 11, which
illustrates the missile flight altitude and attitude angle error.
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Table 8. Pitch Angle Error Statistics.

Evaluation Scope Control Method Mean (95% CI) (°) Std (°) Max (°)
PID 0.0212 (0.0186-0.0234) 0.1215 4.9703

Entire trajectory TF-PPO (no RE) 0.0144 (0.0131-0.0162) 0.0494 29721
TF-PPO 0.0135 (0.0126-0.0151) 0.0235 1.4233

PID 0.1204 (0.0913-0.1495) 0.1701 4.9703

Transition phase TF-PPO (no RE) 0.0667 (0.0561-0.0783) 0.0853 29721
TF-PPO 0.0528 (0.0421-0.0615) 0.0690 1.4233
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Figure 11. Representative Results: (a) Missile flight altitude; (b) Attitude angle error of experiments.

Figure 12 shows simulation snapshots capturing key moments of the engagement
scenario within the AFSIM environment. The results indicate that the TF-PPO algorithm
demonstrates significant improvement over the empirically tuned PID controller, achieving
a 36.3% increase in pitch angle control accuracy across the entire trajectory. Analysis of
maximum values reveals that control errors predominantly concentrate during transitional
phases. During these transitional phases, compared to TF-PPO without DET, the TF-PPO
algorithm reduced the maximum attitude tracking error by 52.1%.

()

Figure 12. Simulation snapshots capturing key moments of this engagement scenario: (a) Missile air
launch; (b) Missile climb; (c) Missile enters fixed altitude cruise; (d) Missile hits target.

Furthermore, reward engineering constraints on elevator deflection prevent excessive
PID adjustments, reducing control error variance by 54% throughout the flight. These
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findings demonstrate the practical utility and robustness of the reward engineering-based
TE-PPO algorithm.

To further validate the disturbance rejection capability of the TF-PPO-controlled
longitudinal channel, wind disturbance profiles were applied during altitude adjustment,
cruise, and descent phases in typical simulation scenarios, verifying the algorithm’s attitude
stabilization performance under external disturbances. Table 9 details the design matrix for

wind disturbance variations.

Table 9. Wind Disturbance Variation Matrix.

Duration (s) Steady-State Wind Bias Gust Wind Bias (East,
(East, North, Up; m/s) North; m/s)
20~40 - - - (20, -)
20~60 (-, —6) ()
120~140 =) (20, 20)
150~200 (-, -, 10) --)
370~390 ¢ =-) (- 20)
390~430 (-,-, 8 (-,-)

The results demonstrate that TF-PPO’s adaptable reward mechanism effectively miti-
gates attitude fluctuations induced by external disturbances. Under wind disturbances, the
TE-PPO algorithm exhibits significantly lower average error than conventional PID control,
as quantitatively compared in Table 10 and Figure 13. Compared to the version without
reward engineering, the complete TF-PPO algorithm achieves 31.6% higher comprehen-
sive accuracy, confirming its practical value for engineering implementation in complex
battlefield environments.

Table 10. Error Statistics Comparison Under Wind Disturbance Variation Tests.

Evaluation Scope Control Method Mean Std Max
Wind disturbance period PID 0.2489 0.2202 0.8249
disturbance TF-PPO (no RE) 0.0569 0.0474 0.5622
period TF-PPO 0.0389 0.0359 0.2628
—:= PID
0739 ——— TE-PPO(no RE)
h 1 —— TE-PPO

o
wn
S

i
=

S
<
S

Attitude Error (deg)

-0.25

-0.50

-0.75

Time (s)

Figure 13. Error Comparison Under Wind Disturbance Variation Tests.

5. Conclusions

(1) An expert-free RL-PID architecture is proposed for missile control parameter self-
evolution through autonomous online optimization, eliminating manual tuning de-
pendency during complex flight maneuvers while ensuring real-time adaptation
across all mission phases.
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(2) The TE-PPO framework incorporating LSTM networks to enhance reinforcement
learning adaptability for PID parameter tuning, where strategic reward engineering
and adaptive exploration strategies effectively identify optimal parameters across
distinct missile flight phases.

(3) A modular rapid-prototyping missile control platform integrates hardware-in-loop
simulation with combat-realistic environments, enabling direct validation of controller
performance under stochastic disturbances through rapid iteration capability.

(4) Established quantifiable verification methodology combining step-response analysis
and rapid prototyping experiments objectively evaluates transient response improve-
ment and disturbance rejection superiority over conventional methods.

6. Limitations and Future Work

Our study has several limitations: the system modeling overlooks the coupling effects
between different attitude channels, potentially leading to deviations from actual missile
dynamics; the application of reinforcement learning in missile control requires stronger
interpretability to meet the high safety standards of the field; and the proposed method lacks
comprehensive comparisons with state-of-the-art algorithms. To develop more reliable and
practical solutions, our future research will prioritize creating a unified framework for the
simultaneous and coordinated optimization of all three attitude channels.
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