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Abstract

Aerodynamic ablation of external control surfaces and structural complexity in hypersonic
reentry vehicles (HRVs) pose significant challenges for maneuverability and system reli-
ability. To address these issues, this study develops a novel bank-to-turn (BTT) control
strategy integrating a single internal moving mass with differential ailerons, eliminating
reliance on ablation-prone elevators/rudders while enhancing internal space utilization. A
coupled 7-DOF dynamics model explicitly quantifies inertial-rolling interactions induced
by the moving mass, revealing critical stability boundaries for roll maneuvers. To ensure
robustness against aerodynamic uncertainties, aileron failures, and high-frequency mass-
induced disturbances, a dynamic inversion controller is augmented with an L1 adaptive
layer decoupling estimation from control for improved disturbance rejection. Monte Carlo
simulations demonstrate: (1) a 20.6% reduction in roll-tracking error (L2-norm) under
combined uncertainties compared to dynamic inversion control, and (2) a 72% suppression
of oscillations under aerodynamic variations. Comparative analyses confirm superior
transient performance and robustness in worst-case scenarios. This work offers a practi-
cal solution for high-maneuverability hypersonic vehicles, with potential applications in
reentry vehicle design and multi-actuator system optimization.

Keywords: hypersonic reentry vehicle; aerodynamic ablation mitigation; moving mass-
aileron integration; L1 adaptive control; inertial-rolling dynamics

1. Introduction
Hypersonic reentry vehicles (HRVs) demand precise attitude control systems capable

of withstanding extreme aerodynamic heating, parametric uncertainties, and cross-channel
coupling effects. Traditional control actuators—aerodynamic surfaces and reaction con-
trol systems (RCS)—face inherent limitations: elevators and rudders suffer from thermal
ablation during reentry, whereas RCS implementations require substantial fuel reserves
that increase system mass and complexity. Recent advances in fault-tolerant spacecraft
attitude control, such as incremental optimization on SO(3) manifolds [1] and geometric
sliding-mode methods [2], demonstrate remarkable resilience to actuator failures. However,
these approaches encounter unique challenges in hypersonic regimes due to: millisecond-
scale dynamics exceeding real-time optimization capabilities, and high-frequency flow
disturbances (>10 Hz) disrupting smooth manifold convergence.
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Internal moving mass control, which generates control moments by manipulating
the vehicle’s center of mass, has emerged as a promising alternative. This approach offers
higher efficiency than aerodynamic surfaces and maintains compatibility with streamlined
hypersonic shapes [3–6]. Despite the theoretical promise of moving mass control, two crit-
ical challenges hinder its practical implementation in hypersonic systems: (1) achieving
multi-axis maneuverability without compromising structural simplicity, and (2) maintain-
ing stability under inertial coupling effects.

Existing studies on moving mass control primarily focus on configurations with
multiple actuators for longitudinal/lateral control [7,8] or single-mass systems for roll
stabilization [9,10]. While multi-actuator designs enable versatile maneuvers, their imple-
mentation in compact HRV airframes remains impractical due to spatial constraints and
increased mechanical complexity. Conversely, single-moving-mass systems, though struc-
turally simpler, exhibit limited control authority and are susceptible to inertial coupling
during aggressive maneuvers [11]. Frost and Costello [12] pioneered spin-stabilized projec-
tile control using rotating masses but limited their analysis to subsonic regimes. Recent
work by Li et al. [13] attempted to address this by integrating jet thrusters with moving
masses, but introduced new complexities in fuel management and actuator coordination.
Crucially, prior studies fail to resolve two interconnected challenges in composite moving
mass-aileron systems: (1) high-frequency disturbance transmission from mass motion to
roll dynamics, and (2) nonlinear inertia modulation during aggressive BTT maneuvers.

This paper addresses two fundamental challenges in HRV control: (1) Configuration
innovation: current composite control systems either prioritize structural simplicity at the
cost of maneuverability or achieve multi-axis control through overly complex actuator
arrangements [14]. (2) Control robustness: the strong inertial coupling induced by mov-
ing masses and the high-frequency disturbances from hypersonic flow dynamics render
conventional Model Reference Adaptive Control (MRAC) strategies inadequate [15], par-
ticularly in handling unmodeled cross-channel interactions. To address these gaps, we
introduce a novel bank-to-turn (BTT) architecture that integrates a single moving mass with
differential ailerons, as shown in Figure 1. This configuration achieves three synergistic
advantages: (1) Eliminates ablation-vulnerable pitch/yaw surfaces, (2) Utilizes dead space
along the central axis. (3) Enables independent thermal management.

(e) Differential
 airelon

c.g. of the system

c.g. of the body

by

bz

bx

δs

b

(b) Vehicle body B 

(c) Moving mass p      (a) System S 

(d) Mass rail 

 

Figure 1. Configuration sketch of the combination BTT control mode with a single moving mass
and differential aileron: (a) Entire system S, (b) Vehicle body B, (c) Moving mass, (d) Mass rail,
(e) Differential ailerons. Centers of gravity: s (system CG), b (body CG), p (moving mass CG).

To handle the aforementioned complexities and uncertainties that are encountered
in flight, adaptive control technology, which has an admirable ability to adjust accord-
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ing to the parameters and uncertainty of the system, has been explored as a possible
option for controller design. Early implementations of MRAC demonstrated promise in
handling slow-varying uncertainties through online parameter estimation. However, as
highlighted by Mohseni et al. [16], MRAC systems exhibit inherent limitations in high-
frequency disturbance rejection due to their reliance on persistent excitation conditions—a
critical shortcoming for hypersonic vehicles subjected to rapid aerodynamic transitions and
actuator-induced vibrations. Unlike classical MRAC, L1 architecture decouples estimation
and control loops via low-pass filtering [17,18]. This enables the independent compen-
sation of slow parametric drift (e.g., ablation) and fast disturbances (e.g., mass-induced
vibrations), and preserves robustness margins via strict gain constraints [19]. Subsequent
studies have validated L1 adaptive control’s superiority in aerospace applications. For a
flexible hypersonic flight vehicle, Khankalantary et al. [20] demonstrated a 40% reduction
in tracking error compared to MRAC under thruster failures, attributing this improvement
to the L1 method’s ability to compensate for actuator saturation. In multi-rotor systems,
Wang et al. [21] achieved sub-degree attitude precision despite propeller damage by inte-
grating L1 adaptation with dynamic inversion—a synergy that inspired its adoption in the
X-48B aircraft’s flight trials [22]. Notably, Banerjee et al. [23] extended these principles to
hypersonic gliders, proving that L1-augmented controllers could maintain stability during
Mach 8 transitions with ±25% aerodynamic coefficient variations. These advancements
collectively underscore L1 control’s versatility in handling broad-spectrum uncertainties,
yet a critical research void persists in its application to moving mass-actuated systems.

The key theoretical contributions of this paper are as follows: (1) Derivation of a
coupled 7-DOF dynamics model that explicitly quantifies inertial coupling effects between
the moving mass and rolling motion, providing new insights into cross-channel interaction
mechanisms. Established stability criteria for inertial coupling mitigation, proving that
roll rates induce catastrophic mode coupling—a critical design boundary for future HRVs.
(2) First application of L1 adaptive control to moving mass-aileron composite systems,
enabling robust tracking under simultaneous parametric uncertainties, aileron failures,
and high-frequency mass-induced disturbances. The remainder of this paper is organized
as follows: Section 2 formulates the coupled dynamics model, Section 3 analyzes inertial
coupling mechanisms and the effect of rolling motion on the dynamics of moving mas,
Section 4 details the L1 adaptive controller design, Section 5 validates performance through
comparative simulations, and Section 6 concludes with engineering implications.

2. Formulation of the Dynamical Equations
The internal structure of the maneuverable vehicle controlled by a single moving mass

and a differential aileron is shown in Figure 1. The system S, whose center of gravity is
denoted by s, is composed of the vehicle body B, whose center of gravity is denoted by b,
and the internal moving mass whose center of gravity is denoted by p. The rail of moving
mass is parallel to the axis yb of the body coordinate system b − xbybzb.

The following notation is used in deriving the equations of motion:

(1) mB and mp are the mass of the vehicle body B and the moving mass p, respectively.
The mass of system S is mS = mB + mp. µ = mp/mS is the mass ratio of the moving
mass relative to the system.

(2) rs and rp are the position vectors of the system center of gravity s and the actuator
mass p with respect to the inertial reference frame, respectively.

(3) rbp =
[
l δ 0

]T
is the position vector of the actuator mass in the body frame. l is

the axial coordinate of the moving mass p in the body frame, and the variable δ is
the displacement of the moving mass along the rail.

.
δ and

..
δ are the velocity and
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acceleration of the actuator mass along the rail. The position vector of the total system
in the body frame is rbs = µrbp.

(4) VB is the inertial velocity vector of the center of mass of the vehicle body B.

ω = [ωx ωy ωz]
T

is the inertial angular velocity vector of the body B, where ωx,
ωy, and ωz are the roll, yaw, and pitch rates, respectively, expressed in the body-fixed
coordinate system.

(5) IB/b is the 3 × 3 inertia tensor of the body B about its center of gravity. Where
Ix, Iy, Iz are the principal moments of inertia about the body-fixed x-, y-, z-axes,
respectively. The inertia tensor is defined in the body-fixed principal axes (Iij = 0
for i ̸= j), eliminating cross-product terms. This alignment is maintained throughout
bank maneuvers.

(6)
Bd(·)

dt and
Bd2 (·)

dt2 are taking the first and second derivatives of the vector with respect

to the body-fixed reference frame, respectively.
Bd(·)

dt and
Id2 (·)

dt2 are taking the first and
second derivatives of the vector with respect to the inertial reference frame, respectively.

If a vector is expressed in the frame as r = [rx ry rz]
T

, then the cross-product
operator acting on r expressed in the frame is:

r× =

 0 −rz ry

rz 0 −rx

−rx rx 0

 (1)

The 7-DOF model encompasses:

• Three translational degrees of freedom for the system’s center of mass (x, y, z in the
inertial frame)

• Three rotational degrees of freedom for vehicle attitude (roll γ, pitch θ, yaw ψ)
• One degree of freedom for moving mass displacement δ along the body-axis rail

(Figure 1).

This complete formulation captures both rigid-body dynamics and internal actua-
tion coupling.

2.1. Forces and Moments Model

The hypersonic vehicle can be regarded as a system of particles with constant mass
that is only impacted by the force of gravity and aerodynamics. The detailed specifications
of the forces and moments exerted on the vehicle are expressed as follows.

(1) Fa is the vector of aerodynamic force acting on the body’s center of pressure. MB is
the vector of aerodynamic moments relative to the vehicle body’s center of mass. The aero-
dynamic forces and moments are expressed in the body frame as the following expressions:

Fa =

−X
Y
Z

 =

−Cx

Cα
y α

Cβ
z β

qSB (2)

MB =

MBx

MBy

MBz

 =


mδa

x δa +
mωx

x L
v ωx

mβ
y β +

m
ωy
y L
v ωy

mα
z α + mωz

z L
v ωz

qSBL (3)

where α and β are the angle of attack (AOA) and sideslip angle, respectively. Consistent
with hypersonic reentry vehicle literature [9,13], we employ missile-axis aerodynamic
coefficients: Cx is the drag coefficient, and Cα

y and Cβ
z are the partial derivatives of the

normal forces coefficients with respect to the angle of attack and sideslip angle, respectively.
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mα
z and mβ

y are the partial derivatives of the pitching moment and the yawing moment
coefficients with respect to the angle of attack and sideslip angle, respectively. mωx

x , m
ωy
y and

mωz
z are the aerodynamic damping coefficients, respectively. q = ρ|VB|2/2 is the dynamic

pressure, ρ is the atmospheric density, SB is the cross-sectional area, L is the reference
length. δa is the deflection angle of the aileron, and mδa

x is the control coefficient of the
differential aileron.

The aerodynamic reference area SB (0.5 m2) corresponds to the vehicle’s planform
area. The nominal flight condition (Mach 10 at 15 km altitude) yields a dynamic pressure
of: q = ρ|VB|2/2 = 814,000 Pa. This high dynamic pressure (approximately 17,000 lbf/ft2)
corresponds to an equivalent airspeed (EAS) of approximately 1041 m/s (2024 knots) and a
calibrated airspeed (CAS) of approximately 1037 m/s (2018 knots). Such extreme dynamic
pressure conditions are characteristic of the lower hypersonic flight corridor and result
in significant aerodynamic loads. The control surfaces must overcome these high loads,
which pose a challenge for the control authority, especially when combined with the high
inertial coupling effects.

(2) GS is the gravity vector of the system. Mab = [M f x 0 0]
T

is the disturbance roll
moment caused by the asymmetric ablation of the vehicle.

(3) N is the force exerted by the vehicle body on the actuator mass, whose body-axis

components are N =
[

Nx Fu Nz

]T
. Where Nx and Nz are the forces in the direction of

the body-axis xb and zb exerted by the vehicle body on the actuator mass, and Fu is the
driving force generated by the servo motor on the actuator mass.

2.2. System Dynamical Equation

According to the momentum theorem, the system’s translational dynamics are given
by Equation (4)

mS

Id2rs

dt2 = ∑ Fs ⇒ mS

(
BdVB

dt
+ ω × VB + µ

Id2rbp

dt2

)
= Fa + mSg (4)

The motions of the actuator mass are described by Equation (5):

mp

Id2rp

dt2 = ∑ Fp ⇒ mp

(
BdVB

dt
+ ω × VB +

Id2rbp

dt2

)
= N + mpg (5)

According to the angular momentum theorem, the system’s rotational dynamics are
given by Equation (6):

IdHS
dt

= ∑ MS ⇒ IB/b

Bdω

dt
+ (1 − µ)rbp × mp

Id2rbp

dt2 + ω × (IB/B∗ · ω) = MB + Mab − µrbp × Fa (6)

where HS represents the total angular momentum of the system with respect to the mass
center of the system, and ∑ MS is the total external moments acting on the flight vehicle.
Expanding Equations (4)–(6) with respect to the body frame, the vehicle’s translational
and rotational dynamics equations, and the moving mass’s translational dynamic equation
deduced in the body coordinate system are given by Equations (7)–(9):

mS
.
VB = GS + Fa − mSω × VB − mp(

..
rbp + 2ω × .

rbp +
.

ω × rbpω × (ω × rbp)) (7)

IB/b
.

ω = MB − rbs × Fa + Mab − ω × (IB/bω) − (rbp − rbs)× mp

(..
rbp + 2ω × .

rbp +
.

ω × rbp + ω × (ω × rbp)
)

(8)

..
δ = bT

1

[
GS
mS

−
.
VB − ω × VB − 2ω × .

rbp −
.

ω × rbp −ω × (ω × rbp)
]
+

1
mp

Fu (9)
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where bT
1 =

[
0 1 0

]
is a basis unit vector,

.
VB,

.
ω,

.
rbp,

..
rbp are taking the first or second

derivative of the vectors with respect to time in the body-fixed reference frame, respectively.

3. Dynamic Characteristics Analysis of Composite Control
Hypersonic Vehicle
3.1. Inertial Coupling Mechanism

Instability induced by multiple coupling phenomena constitutes a principal challenge
in bank-to-turn (BTT) control systems. Among these, inertial coupling arising from rolling
maneuvers represents a critical destabilizing mechanism. Inertial coupling refers to adverse
moments generated by the vehicle’s rotation about non-principal inertia axes. Excessive
roll angular velocity ωx and the pitch and yaw channels will be greatly affected by the
inertial moments in the case that roll angular velocity ωx amplifies inertial moments, which
detrimentally affect pitch and yaw channels. Notably, such inertial effects may dominate
static stabilizing moments, therefore compromising attitude stabilization. The classical roll
coupling parameter

(
Ix − Iy

)
/Iz = −0.5 indicates strong pitch-yaw cross-coupling during

rolling, consistent with Philips (1948) [24].
To analytically investigate this phenomenon, we consider a simplified scenario where

the vehicle undergoes constant roll angular velocity ω∗
x about its lateral axis while main-

taining constant flight velocity. Applying small-perturbation linearization and neglecting
higher-order rolling dynamics, the linearized equations governing fast roll perturbation
motion are derived as:

∆
.
α ≃ ∆ωz − ω∗

x∆β

∆
.
β ≃ ∆ωy + ω∗

x∆α

∆
.

ωz = −A∆ωyω∗
x + Mα∆α + Mdωz + Mδ∆δ

∆
.

ωy = B∆ωzω∗
x + Nβ∆β + Ndωy

(10)

where the coefficients are defined by:

A =
Iy−Ix−mp(1−µ)δ2

Iz+mp(1−µ)δ2 , B = Iz−Ix
Iy

Mα = qSB Lmα
z

Iz+mp(1−µ)δ2 , Nβ =
qSB Lmβ

y
Iy

Md =

(
qSB L2 mωz

z
2v −2mp(1−µ)δ

.
δ

)
(Iz+mp(1−µ)δ2)

Nd = qSBL2 m
ωy
y

2vIy
, Mδ =

−µCxqSB
Iz+mp(1−µ)δ2

(11)

The characteristic equation corresponding to Equation (10) is expressed as:

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (12)

Coefficients in Equation (12) depend on the vehicle’s inertia tensor, aerodynamic
parameters, moving mass position, and rolling motion characteristics. By neglecting
damping terms (Md and Nd), Equation (12) are simplified as:

λ4 + a2λ2 + a4 = 0 (13)

Stability criteria for fast roll dynamics, derived from Equation (13), necessitate a2 > 0
and a4 > 0. Vehicles exhibiting directional and longitudinal static stability inherently satisfy
a2 > 0 can be guaranteed. Consequently, the critical condition for steady rolling reduces to:

a4 =
(

Aω∗2
x + Mα

)(
Bω∗2

x + Nβ

)
> 0 (14)
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Defining stability bounds ω1 and ω2 as follows:

ω1 =
√
−Mα/A =

√
−Mα

Iz+mp(1−µ)δ2

Iy−Ix−mp(1−µ)δ2 ,

ω2 =
√
−Nβ/B =

√
−Nβ

Iy
Iz−Ix

(15)

Equation (14) resolves into two equivalent constraints:

|ω∗
x | > ω1 and |ω∗

x | > ω2 (16)

or |ω∗
x | < ω1 and |ω∗

x | < ω2 (17)

For vehicles with dual-axis static stability, adherence to Equation (16) ensures rotation
about principal inertia axes. Angle of attack and sideslip angle will transform into each
other periodically, and the rapid transformation will precipitate performance degradation
or instability. While Equation (17) guarantees alignment with the velocity vector, thereby
mitigating motion coupling. The permissible roll rate is thus bounded by the lesser of ω1

and ω2, establishing a conservative operational threshold.

3.2. Actuator Mass-Roll Dynamics Interaction

The translational dynamics equation of moving mass, governed by Equation (9),
exhibits coupling with the differential terms

.
VB and

.
ω. To systematically analyze the

actuator mass dynamics, a decoupled formulation is derived as follows.
Initially, substituting

.
VB from Equation (7) into Equation (9) yields:

..
δ =

(
ω2

x + ω2
z

)
δ − ωxωyl +

1
mp(1 − µ)

Fu −
1

mS(1 − µ)
Y − l

.
ωz (18)

The influence of roll angular velocity on the actuator mass dynamics in two primary
mechanisms: (1) Explicit Appearance: The roll angular velocity directly appears in the actua-
tor mass’s dynamic equation; (2) Implicit coupling: Cross-channel interactions between roll
and pitch attitudes, which modulate pitch angular acceleration. Conventional skid-to-turn
(STT) control architectures often neglect the

.
ωz-dependent term in Equation (18).

As illustrated by open-loop simulations under constant servo force Fu, Figure 2a
demonstrates the nominal displacement response, while Figure 2b quantifies the displace-
ment error under varying initial roll rates ωx when the initial angle of attack α0 = 0o

and sideslip angle β0 = 0o. From the figure, when ωx = 0rad/s, the effect of ωx on the
actuator mass’s motion is minimal. Compared to the actuator mass displacement of tens
of centimeters, the tracking error is two to three orders of magnitude smaller. However,
as the roll angular velocity increases, the impact of ωx, becomes increasingly significant.
For example, at ωx = 6πrad/s the error escalates to 0.04 m, highlighting the criticality of
roll coupling in bank-to-turn (BTT) control design. Consequently, the ωx-dependent term
cannot be omitted in BTT systems, necessitating further decoupling analysis.

The Equation (18) only contains the differential term
.

ωz. Then the expression of
.

ωz will
be given as follows. According to the attitude dynamic Equation (8), there is a differential
term which contains

.
ω in the right of the equation. Define a new inertia tensor matrix I

as follows:
I = IB/b + mp(r×bp − r×bs)

(
r×bp

)T
= IB/b + ∆I (19)
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Figure 2. Influence of different initial roll angular velocities on displacement of the moving
mass under constant servo force (Fu = 500 N). Total system mass mS = 1000 kg, moving mass
mp = 100 kg (µ = 0.1). (a) Displacement of moving mass, (b) Displacement tracking error vs. roll
angular velocity.

Then the attitude dynamic Equation (8) can be transformed into:

.
ω = I−1M = (IB/b + ∆I)−1

Mx

My

Mz

 (20)

where ∆I represents the additional moment of inertia generated by the motion of the
moving mass. The expressions of ∆I and the component of moment M are described by
Equations (21) and (22).

∆I = mp(1 − µ)

 δ2 −δl 0
−δl l2 0

0 0 δ2 + l2

 =

 ∆Ix ∆Ixy 0
∆Ixy ∆Iy 0

0 0 ∆Iz

 (21)

Mx = MBx + Mδa + M f x −
(

Iz − Iy
)
ωyωz − 2mp(1 − µ)δ

.
δωx − µδZ − mpδ(1 − µ)ωz

(
lωx + δωy

)
My = MBy − (Ix − Iz)ωxωz + µplZ + mp(1 − µ)

[
l2ωxωz + lδωyωz + 2l

.
δωx

]
Mz = MBz −

(
Iy − Ix

)
ωxωy − µlY − µδX − mp(1 − µ)

( ..
δl + l2ωxωy

)
+mp(1 − µ)δ(−2

.
δωz + δωyωx − lω2

y + lω2
x)

(22)

So the expression of
.

ωz can be given by substituting Equation (18) into Mz in
Equation (22):

.
ωz = (Iz + ∆Iz)

−1Mz

=
(

Iz + mp(1 − µ)δ2)−1[MBz −
(

Iy − Ix
)
ωxωy − µδX

−mp(1 − µ)δl
(

ω2
y + ω2

z

)
+ mp(1 − µ)δ

(
−2

.
δωz + δωyωx

)
− lFu

] (23)

By substituting Equation (23) into Equation (18), the decoupling dynamic equation of
the actuator mass is given:

..
δ =

(
ω2

x + ω2
z
)
δ − ωxωyl − k1

mp l MBz − k1
mp l MRz +

k1
mp l
(

Iy − Ix
)
ωxωy

+ 1
mp

(k2X − k3Y) + k4
Fu
mp

+ k5

(
ω2

y + ω2
z

)
δ − k6ωyωxδ + k7ωz

.
δ

(24)
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where the expression of parameters ki, (i = 1, 2, . . . 7) are provided as follows.

k1 =
mp l2

Iz+mp(1−µ)δ2 , k2 =
µmp lδ

Iz+mp(1−µ)δ2 , k3 = µ
1−µ

k4 = k1 +
1

1−µ , k5 = (1 − µ)k1, k6 =
(1−µ)mp lδ

Iz+mp(1−µ)δ2 , k7= 2k6
(25)

Equation (24) rigorously describes the actuator mass dynamics as a function of angular
velocity (ωx, ωy, ωz) and nd moving mass states , δ,

.
δ,, providing a foundation for robust

controller synthesis.

3.3. Roll Control Challenges Compared with STT and Spin Control Mode

The roll control objectives vary significantly across different actuation architectures:

(1) Spin-Stabilized Systems: For vehicles employing a single actuator mass, roll control
aims to regulate angular velocity ωx within a frequency range synchronized with the
mass’s motion period—typically 1× or 2× the actuator frequency. This synchroniza-
tion ensures that the moving mass-induced center of gravity (CoG) shift generates
predictable lateral moments for attitude adjustment.

(2) STT Systems: Dual-actuator configurations prioritize roll angle γ stabilization, main-
taining γ ≈ 0 through counteracting mass displacements.

(3) BTT Systems: Uniquely, BTT architectures demand dual functionality—stabilizing the
roll channel while tracking dynamic roll commands. This imposes stringent require-
ments on tracking precision, transient response, and robustness to inertial coupling.

According to Equation (8), the displacement and velocity of the actuator mass have a
great influence on the roll channel. Figure 3 shows the influence of the static or moving
actuator mass on the roll channel. The full line represents the roll angle responding to the
static actuator mass. The dash line represents the roll angle responding to high-frequency
sinusoidal movement whose cycle is 0.1 s for the actuator mass. As indicated in Figure 4,
in order to make the reentry vehicle maneuver fast, the high-frequency movement of the
actuator mass will have a greater high-frequency disturbance on the roll channel. The
MRAC method has some limit conditions on the frequency of parameters and disturbance.
The convergence rate, transient error, and tracking error will be affected greatly when the
system is affected by the external disturbance signals with a high frequency.
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Figure 3. The movement cycle of the moving mass is equal to the rotation cycle of the spin vehicle.

To address these challenges, the next section introduces an L1 adaptive roll controller,
specifically designed to attenuate mass-induced disturbances while preserving BTT track-
ing performance.
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The actuator mass is static
The actuator mass’movement is  high-
frequency sinusoidal 

Time (s)

γ
(d

eg
)

Figure 4. Influence on the roll channel from the high-frequency movement of the actuator mass
(10 Hz oscillation δ = ±0.1 m).

4. Controller Design
This section presents the design of a BTT control law for a hypersonic vehicle employ-

ing composite actuation via a moving mass and differential ailerons. Under the standard
BTT assumption of yaw-channel stability, pitch and roll dynamics are governed by the
following simplified equations:

(Ix + ∆Ix)
.

ωx + ∆Ixy
.

ωy =
(

qSB L2mωx
x

v − 2mp(1 − µ)δ
.
δ
)

ωx + qSBLmδa
x δa + M f x + Ĩyzωyωz

−µqSBCβ
z δβ − mp(1 − µ)lδωxωz

(26)

(Iz + ∆Iz)
.

ωz =
(

qSBmωz
z L2

v − 2mp(1 − µ)δ
.
δ
)

ωz + Ĩxyωxωy + qSB

(
mα

z L − µlCα
y

)
α − µqSBCxδ

−mp(1 − µ)l
..
δ + mp(1 − µ)δl(ω2

x − ω2
y)

(27)

where ∆Ix, ∆Ixy, ∆Iz denote the additional moments of inertia generated by the motion
of the actuator mass, with ∆Ixy mediating cross-channel coupling between lateral and
directional axes. The mathematical expressions governing these inertial perturbations are
subsequently derived as follows.

Ĩxy = Ix − Iy + mp(1 − µ)
(
δ2 − l2)

Ĩyz = Iy − Iz − mp(1 − µ)δ2

∆Ix = mp(1 − µ)δ2

∆Ixy = −mp(1 − µ)δl
∆Iz = mp(1 − µ)

(
δ2 + l2)

The nonlinear dynamic system can be formulated in an affine state–space representa-
tion as: .

x1 = f1(x1) + g1(x1)x2
.
x2 = f2(x1, x2) + g2(x1, x2)u
y = x1

(28)

where x1 =
[
γ α

]T
, x2 =

[
ωx ωz

]T
represents the state vector. The variable γ repre-

sents the actual roll angle. u =
[
δa δ

]T
denotes the control input vector. y corresponds to

the system output vector.
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f1(x1) =

[
0

−Cα
y qS

msV α

]
, g1(x1) =

[
1 cos γ tan ψ

0 1

]

f2(x1, x2) =


(Ix + ∆Ix)

−1

( (
qSB L2mωx

x
v − 2mp(1 − µ)δ

.
δ
)

ωx + M f x + Ĩyzωyωz − µqSBCβ
z δβ

−mp(1 − µ)lδωxωz − ∆Ixy
.

ωy

)

(Iz + ∆Iz)
−1

 (
qSBmωz

z L2

v − 2mp(1 − µ)δ
.
δ
)

ωz + Ĩxyωxωy + qSB

(
mα

z L − µlCα
y

)
α

−mp(1 − µ)l
..
δ + mp(1 − µ)δl(ω2

x − ω2
y)




g2(x1, x2) =

[
mδa

x qSB L
Ix+∆Ix

0
0 − µCxqSB

Iz+∆Iz

]
To comprehensively address modeling imperfections, the proposed control architec-

ture explicitly incorporates parametric uncertainties, input uncertainties, and functional
uncertainties encompassing external disturbances and unmodeled dynamics. Consequently,
the governing Equation (28) can be reformulated in compact notation as:

.
x1 = g1(Λ1x2 + υ1) + f1 (29)

.
x2 = g2(Λ2u + υ2) + f2 (30)

The parameter uncertainty, input uncertainty, and function uncertainty (such as the
external disturbances and modeling errors) are described by the control effectiveness Λ1,
Λ2 and the nonlinear terms υ1, υ2. We synthesize an adaptive controller that guarantees
bounded-error tracking of AOA and roll angle references under time-varying disturbances,
achieved through synergistic integration of dynamic inversion and L1 adaptive control
methodologies. Figure 5 illustrates the hierarchical architecture of the proposed control
system, with subsequent subsections providing detailed component analyses.

Outer Loop
 Controller

cy

 L1 Adaptive Augmentation

Inner Loop
 Controller

2,blx

Actuator Mass 
Position 

Controller

uF
Hypersonic Reentry 
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adu

δ

aδ

1 2,x x

−

1x 2x

− −1e 2e

Dynamic Inversion Baseline Controller

Attitude Control System

Figure 5. Architectural diagram of the adaptive attitude control system.

4.1. Baseline Dynamic Inversion Controller

Following the timescale separation principle [25], the system dynamics are decom-
posed into two distinct operational regimes: fast-timescale inner-loop rotational dynamics
and slow-timescale outer-loop attitude dynamics. For outer-loop controller synthesis, the
pseudo-control command x2,bl is designed such that asymptotic convergence of body angu-
lar rates x2 to reference trajectories x2,bl ensures tracking of guidance-generated command
signals yc. Correspondingly, the inner-loop baseline control law ubl guarantees x2 tracks
the pseudo-control x2,bl .
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Defining the outer-loop and inner-loop tracking errors as e1= y − yc= x1 − yc and
e2 = x2 − x2,bl , respectively, the baseline dynamic inversion control laws are formulated as:

x2,bl = g−1
1
(
−f1 − kP1e1 +

.
yc
)

(31)

ubl = g−1
2
(
−f2 − kP2e2 +

.
x2,bl

)
(32)

where kP1 and kP2 represent positive-definite diagonal gain matrices. The outer-loop
compensator (31) and the inner-loop regulator (32) include a proportional error feedback of
the attitude angle and the body angular rate, respectively. A classical second-order integral
filter [26] is used in this paper in order to eliminate the analytic computation of

.
yc and

.
x2,bl ,

which will be used as a reference in the dynamic inversion procedure.

4.2. L1 Adaptive Augmentation

To address coupled dynamic uncertainties inherent in hypersonic systems, the base-
line control law is augmented with an L1 adaptive control law. L1 adaptive state feed-
back controller derives real-time estimates of composite disturbances through bandwidth-
limited compensation via low-pass filters, as illustrated in the enhanced system architecture
(Figure 5). An L1 adaptive augmentation was implemented with three core innovations:

(1) Dual-Decoupled State Predictors:

The attitude dynamics from Equations (29) and (30) are reformulated to facilitate
adaptive element synthesis:

.
x1 = g1x2 + f1 + σ1 (33)

.
x2 = g2u + f2 + σ2 (34)

where σ1 and σ2 represent lumped uncertainty vectors encompassing outer-loop and inner-
loop perturbations, respectively. The uncertainties σ1 and σ2, which can be estimated
by L1 adaptive controller, summarize the control effectiveness Λ1, Λ2 and the nonlinear
uncertainties υ1, υ2 as follows.

σ1 = g1[(Λ1 − I)x2 + υ1]

σ2 = g2[(Λ2 − I)u + υ2]
(35)

A dual-state predictor structure for outer-loop (attitude) and inner-loop (angular rate)
dynamics is implemented for uncertainty estimation:

.
x̂1 = g1x2 + f1 + σ̂1 − k′

P1ẽ1 (36)

.
x̂2 = g2u + f2 + σ̂2 − k′

P2ẽ2 (37)

where x̂1 and x̂2 denote predicted state derivatives, with prediction errors defined as
ẽ1 = x̂1 − x1 and ẽ2 = x̂2 − x2. Error dynamics are governed by:

.
ẽ1 = −k′

P1ẽ1 + σ̂1 − σ1 (38)

.
ẽ2 = −k′

P2ẽ2 + σ̂2 − σ2 (39)

where k′
P1 and k′

P2 represent positive-definite stabilization gain matrices.

(2) Piecewise-Constant Update Law:
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Following a similar argument as in Section 3.3 of [27], the PWC (Piecewise Constant)
update law for the uncertainty estimate σ̂1 and σ̂2 are given by

σ̂1(t) = −Φ−1
1 µ1(iTs), t ∈ [iTs, (i + 1)Ts]

Φ1 =
(
−k′

P1
)−1
(

e−k′P1Ts − I
)

µ1(iTs) = e−k′P1Ts ẽ1

(40)

σ̂2(t) = −Φ−1
2 µ2(iTs), t ∈ [iTs, (i + 1)Ts]

Φ2 =
(
−k′

P2
)−1
(

e−k′P2Ts − I
)

µ2(iTs) = e−k′P2Ts ẽ2

(41)

where i = 0, 1, 2, . . . and Ts denotes the adaptation update rate constrained by hard-
ware sampling limitations [27]. The uncertainties can be estimated by the analytical
Equations (40) and (41). The design parameters only include the feedback gains and the
adaptation update rate. In this paper, the update rate is chosen as Ts = 10ms. The gains are
chosen by designing the prediction error dynamics according to the error dynamics of the
baseline controller.

Based on the uncertainty estimates described above, the control law of the adaptive
augmentation is derived. For the outer dynamics, an adaptive body angular rate control
law x2,ad is derived to augment the baseline control x2,bl , in order to compensate for the
outer uncertainties Λ1 and υ1. For the inner dynamics, an adaptive pseudo-control law uad

is designed to ensure that x2 tracks the body angular rate command x2c despite the inner
uncertainties Λ2 and υ2. So the body angular rate command x2c is given as follows.

x2c = x2,bl + x2,ad (42)

Substituting the control law Equations (31) and (42) into the outer-loop dynamics
Equation (33), the closed-loop outer error dynamics is given by:

.
e1 = −kP1e1 − kI1eI1 + g1x2,ad + σ1 (43)

(3) Bandwidth-Limited Adaptation:

According to the Reference [27] and Equation (43), the body angular rate adaptive
control is given by

x2,ad = −C1(s)g−1
1 σ̂1 (44)

where C1(s) is a diagonal low-pass transfer function matrix. Then, for the inner dynamics,
the augmented pseudo-control uc are defined as

uc = ubl + uad (45)

Substituting the control law Equations (32) and (45) into the inner-loop dynamics
Equation (34)

.
x2 = −kP2e2 +

.
x2,bl + g2uad + σ2 (46)

In order to ensure that x2 tracks the augmented body angular rate command x2c, the
L1 control law uad is formulated as

uad = −C2(s)g−1
2 σ̂2 + g−1

2
(
kP2x2,ad +

.
x2,ad

)
(47)

where C2(s) is a diagonal low-pass transfer function matrix. Low-pass filters confine adap-
tive action to critical frequencies, and this prevents high-frequency noise amplification
while compensating for mass-induced disturbances. The first term in Equation (47) com-
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pensates for the inner uncertainties σ2, while the latter two terms account for the adaptive
contribution for the outer loop. The designs of the filters C1(s) and C2(s) used in the control
laws Equations (44) and (47) are driven by bandwidth investigations of the considered
vehicle dynamics.

4.3. Actuator Mass Position Controller

Conventional approaches often neglect inertial coupling effects in actuator dynamics
through angular acceleration term omission. This study develops a feedback linearization
and sliding-mode control strategy for precision tracking of mass displacement commands
δc generated by the attitude controller. In this paper, the actuator mass position con-
troller is designed based on sliding-mode control theory. The translational dynamics from
Equation (24) are expressed in state–space form:

..
δ = fδ

(
x1, x2, δ,

.
δ
)
+ gδFu (48)

where

fδ

(
x1, x2, δ,

.
δ
)
=
(
ω2

x + ω2
z
)
δ − ωxωyl − k1

mp l MBz − k1
mp l MRz +

k1
mp l
(

Iy − Ix
)
ωxωy

+ 1
mp

(k2X − k3Y) + k5

(
ω2

y + ω2
z

)
δ − k6ωyωxδ + k7ωz

.
δ

gδ =
k4
mp

(49)

with control input Fu corresponding to the servo actuator force. An appropriate sliding
surface is designed in consideration of the desired actuator dynamics:

sδ=
.
eδ + k1eδ + k2

∫ t

0
eδdτ (50)

where eδ = δ − δc denotes displacement tracking error. k1 and k2 are the positive gains.
By designing the appropriate k1 and k2, the tracking error can obtain the desired dynamic
characteristics.

Time differentiation of Equation (50) and substitution into Equation (48) yields:

.
sδ= fδ + gδFu −

..
δc + k1

.
eδ + k2eδ (51)

To mitigate chattering phenomena, an exponential reaching law [28] with boundary
layer approximation is implemented:

Fu = g−1
δ

(
fδ −

..
δc + k1

.
eδ + k2eδ + csδ + ε · sat(sδ)

)
(52)

where c and ε are positive gains. sat(·) is a continuous function that can prevent the control
chattering phenomenon.

sat(sδ) =


−1 sδ< − ∆
sδ
∆ |sδ| ≤ ∆
1 sδ>∆

(53)

with ∆ defining the boundary layer thickness. Stability is guaranteed via the LaSalle-
Yoshizawa theorem [29], ensuring the error state eδ tends to zero as t tends to ∞ given
proper gain selection k1 and k2.
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5. Simulation Results and Discussion
5.1. Simulation Scenarios and Uncertainties Configurations

The proposed control system was evaluated through Monte Carlo simulations en-
compassing 11 distinct scenarios (Table 1), designed to systematically assess performance
under nominal and perturbed conditions. Key parameters of the hypersonic glider are
summarized in Tables 2 and 3, with aerodynamic uncertainties modeled as uniformly
distributed perturbations (±30% coefficients, ±20% inertia terms). Aerodynamic uncertain-
ties include correlated variations in lift/drag coefficients per hypersonic similarity laws,

we enforced: ∆Cx = 0.15 × ∆Cα
y + 0.05 ×

(
∆Cα

y

)2
and ∆mα

z = −0.3 × ∆Cα
y . Parameter

variations were sampled from Gaussian distributions N
(
0, σ2) with σ = 30% nominal,

while preserving these physical constraints. The high dynamic pressure (814,000 Pa, Mach
10 at 15 kM) amplifies aerodynamic disturbances while reducing actuator effectiveness
margins. Combined with strong inertia coupling, this creates a worst-case control scenario:
lateral stability derivatives increase much than in subsonic regimes and control surfaces
operate near saturation limits. These conditions validate the controller under extreme
reentry stresses. Actuator constraints included saturation limits of ±0.4 m for moving mass
displacement and ±5000 N for driving force. The BTT command consists of step inputs
applied to the roll channel. We selected the controller gains through trial-and-error tuning
as kP1 = diag(3, 3), kI1 = (0.25, 0.5), kP2 = diag(2, 3.5), k1 = 6.4, k2 = 16, c = 25,
ε = 0.01, and ∆ = 0.01. Adaptation update rate is selected T = 0.01s.

Table 1. Simulation scenarios.

Scenario Description Abbreviation

Nominal conditions: dynamic inversion controller with no uncertainties S1
Nominal conditions: L1 augmented controller with no uncertainties S2
Dynamic inversion controller with reduced aileron functionality S3
L1 augmented controller with reduced aileron functionality S4
Dynamic inversion controller with aerodynamic uncertainties S5
L1 augmented controller with aerodynamic uncertainties S6
Dynamic inversion controller with high-frequency disturbances caused by the
moving mass lateral movement S7

L1 augmented controller with high-frequency disturbances caused by the
moving mass lateral movement S8

LQR controller with a combination of error(aileron, aerodynamic, moving
mass lateral movement, gravimetric) S9

Dynamic inversion controller with a combination of error(aileron,
aerodynamic, moving mass lateral movement, gravimetric) S10

L1 augmented controller with a combination of error(aileron, aerodynamic,
moving mass lateral movement, gravimetric) S11

Table 2. Parameters of Hypersonic Glider.

Symbol Definition Value

Iz Yaw inertia (principal) 1200 kg · m2

Iz Pitch inertia (principal) 1000 kg · m2

Ix Roll inertia (principal) 400 kg · m2

Ixy, Ixz, Iyz Products of inertia 0 kg · m2

mS Total mass of system 1000 kg
µ The moving mass ratio 0.1
SB Cross-sectional area 0.5 m2

L Reference length 4 m
H Flight height 15 km
v Flight velocity Ma = 10
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Table 3. Controls-Neutral Aerodynamic Terms.

Notation Aircraft Equivalent Value Units Physical Meaning

Cx CD 0.18 Drag
Cα

y ∂CL/∂α 3.2 rad−1 Lift curve slope

Cβ
z ∂CY/∂β −0.85 rad−1 Sideforce slope

mα
z ∂Cm/∂α −1.8 rad−1 Pitch stability

mβ
y ∂Cn/∂β 0.16 rad−1 Directional stability

mδa
x ∂Cl/∂δa 0.038 rad−1 Primary roll control effectiveness

∂CL/∂δa 0.0011 rad−1 Lift change per aileron
∂CD/∂δa 0.0003 rad−1 Drag change per aileron
∂Cm/∂δa 0.0004 rad−1 Pitching moment coupling
∂CY/∂δa −0.0015 rad−1 Sideforce coupling
∂Cn/∂δa 0.0009 rad−1 Adverse yaw effect

In addition, to demonstrate that the designed roll controller is robust to the high-
frequency disturbances caused by the moving mass lateral movement, the movement of
the moving mass is selected as Equation (54):

δ = 0.1 sin(5πt) (m), t ≥ 0 (54)

5.2. Controller Performance Evaluation

(1) Nominal Conditions (Scenarios S1–S2)

Under nominal operating conditions (no uncertainties), both the dynamic inversion
controller (S1) and L1-augmented (S2) controllers achieved effective roll-tracking. As
illustrated in Figure 6, the settling time for a 10◦ roll step command was maintained below
1 s for both configurations, confirming baseline stability.
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Figure 6. Performance of roll controllers with no uncertainties: S1 and S2.
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(2) Actuator Impairment (Scenarios S3–S4)

Figure 7 demonstrates controller performance under 50% aileron authority reduction.
The L1-augmented system (S4) exhibited a 14.69% lower tracking error than the baseline.
This improvement is attributed to the adaptive controller’s ability to compensate for
reduced control effectiveness through uncertainty estimation.
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Figure 7. Performance of roll controllers with reduced aileron deflection: S3 and S4.

(3) Aerodynamic Uncertainties (Scenarios S5–S6)

With ±30% aerodynamic coefficient variations, the baseline dynamic inversion con-
troller (S5) exhibited oscillatory behavior (peak-to-peak amplitude: 2.7◦), as shown in
Figure 8. In contrast, the L1-augmented controller (S6) suppressed oscillations by 72%,
achieving less steady-state errors, underscoring the adaptive scheme’s efficacy in handling
parametric uncertainties.
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Figure 8. Performance of roll controllers with aerodynamic uncertainties: S5 and S6.

(4) High-Frequency Disturbances (Scenarios S7–S8)

Figure 9 presents the roll angle and the aileron deflection angle activity in the case
that the actuator mass is moving by a high-frequency sinusoidal signal whose amplitude
is 0.1 m. As shown from the simulation results, the steady-state error of roll angle has
been significantly reduced once the L1 controller is used in the presence of the adverse
effect caused by the high-frequency movement of the moving mass. The designed L1
adaptive controller can solve the problem of adaptive estimation and compensation for
high-frequency disturbance, which cannot be solved by the conventional model reference
adaptive control method.
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Figure 9. Performance of roll controllers with disturbances caused by the moving mass movement:
S7 and S8.
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(5) Combined Uncertainties (Scenarios S9–S11)

In order to demonstrate the usefulness and benefit of the proposed control system,
the performance of the dynamic inversion baseline and the augmentation controllers is
compared with that of a classic optimal controller by LQR methods [30]. Figure 10 depicts
the performance in the presence of a combination of errors (S9, S10, and S11). As expected,
the proposed control system could guarantee that the achieved angle tracks the commanded
angle effectively. Compared with the LQR controller, a better tracking performance of the
L1 augmented controller is achieved: small overshoot (nearly 10%), fast settling time (about
0.75 s), and small deviation from the commanded angle. The results show that the designed
L1 adaptive controller displays a strong robustness for the parameter uncertainties, reduces
aileron deflection, and the external high-frequency disturbance. The proposed control
system can meet the requirements of fastness and robustness for a combination BTT control
mode with a single moving mass and differential aileron.
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Figure 10. Performance of roll controllers with a combination of errors: S9, S11, and S10.

5.3. Robustness Analysis

The L2 norm tracking error and time delay margin (TMD) constitute industry-standard
metrics for flight control validation [27,31]: L2 error integrates transient/steady-state
performance [32] and TMD certifies robustness against real-world latency [31]. These
metrics provide a complete characterization without redundancy.

(1) Tracking Error Metrics

The performance of the baseline and augmented controller can be compared by com-
puting the L2 norm of the tracking error ep [32], which is defined as:

∥∥ep
∥∥

L2
=

√∫ T

0

∣∣ep
∣∣2dt (55)

The
∥∥ep
∥∥

L2
for simulation cases from the Monte Carlo runs are placed in Table 4.
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Table 4. Roll-tracking error norm.

Case Baseline Augmentation Percentage Improvement, %

Nominal 9.32 8.81 5.44
Reduced aileron function 21.79 18.59 14.69
Aerodynamic uncertainties 15.46 13.10 15.27
Disturbances by moving mass 16.65 14.96 10.15
Combination 30.58 24.27 20.63

The following conclusions are drawn from Table 3. In the presence of reduced aileron
functionality and aerodynamic uncertainties, the augmentation configuration greatly im-
proves the performance of the baseline controller, especially in the case of aerodynamic
uncertainties. The improvement of the performance of the baseline controller in the pres-
ence of the disturbances by moving mass with the L1 augmentation setup is weaker than
other uncertainties. The L1 augmentation achieved maximum error reduction (20.63%) un-
der combined uncertainties, demonstrating robust adaptation to worst-case perturbations.

(2) Robustness Analysis

For adaptive control, the time delay margin (TDM), which is defined as the maximum
amount of time delay that the system can experience before instability occurs, is generally
used as a robustness metric [31]. For this study, input delays have been added until the sys-
tem shows signs of instability. The TDM results for the baseline and augmented controllers
are placed in Table 5. As expected, the robustness margin of the adaptive controller is worse
than the baseline controller as a result of the tradeoff between performance and robustness.

Table 5. Time delay margin.

Case Baseline, ms Augmentation, ms

Nominal 83 35
Reduced aileron function 112 58
Aerodynamic uncertainties 78 31
Disturbances by moving mass 97 49
Combination 123 72

Comparative Monte Carlo runs (500 independent vs. 500 correlated) reveal: L2 tracking
error: 24.27 → 26.26 (+8.2%), TMD: 72 ms → 69.8 ms (−3.1%). The controller maintains
all performance metrics within ±3σ bounds of nominal operation, confirming robustness
against physical coupling.

6. Conclusions
This study establishes a novel bank-to-turn control paradigm for hypersonic reentry

vehicles, integrating a single moving mass with differential ailerons to address aerodynamic
ablation and structural complexity. The key theoretical and technical contributions are
three-fold:

1. Coupled Dynamics Modeling: A 7-DOF inertial coupling model was derived, explic-
itly quantifying the interaction between moving mass displacement and roll-pitch
dynamics. Stability criteria were analytically proven, defining critical roll rate thresh-
olds to prevent divergence.

2. Hybrid Adaptive Control: A dynamic inversion baseline controller was augmented
with an L1 adaptive architecture, achieving robust tracking under simultaneous para-
metric uncertainties (±30% aerodynamics), actuator saturation (50% authority loss),
and high-frequency disturbances (10 Hz). Monte Carlo simulations demonstrated a
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20.63% reduction in L2-norm tracking error under worst-case perturbations compared
to dynamic inversion control.

3. Cross-Disciplinary Validation: The proposed configuration eliminated elevator/rudder
ablation risks while maintaining sub-degree attitude precision, with performance
metrics surpassing conventional LQR and MRAC approaches.

As a preliminary investigation, this work focused on rigid-body dynamics, omitting
thermal ablation effects and flexible body interactions. Future research should prioritize:
(1) Integrating ablation-induced mass loss and aerodynamic heating into the control frame-
work. (2) Co-designing moving mass and aileron actuation for coupled pitch-roll-yaw
maneuvers. (3) Implementing hardware-in-loop tests with hypersonic wind tunnel facilities
to verify disturbance rejection capabilities. (4) Exploring neural-L1 hybrid controllers to
further enhance robustness against stochastic hypersonic flow regimes.

These advancements will bridge the gap between theoretical control design and
practical hypersonic vehicle deployment, offering a roadmap for next-generation reusable
launch systems.
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