4
@ aerospace
o erop

Article

Aerial Vehicle Detection Using Ground-Based LiDAR

John Kirschler and Jay Wilhelm *

check for
updates

Academic Editor: Yan (Rockee) Zhang

Received: 1July 2025
Revised: 19 August 2025
Accepted: 20 August 2025
Published: 22 August 2025

Citation: Kirschler, J.; Wilhelm, J.
Aerial Vehicle Detection Using
Ground-Based LiDAR. Aerospace 2025,
12,756. https://doi.org/10.3390/
aerospace12090756

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Mechanical Engineering Department, Russ College of Engineering, Ohio University, Athens, OH 45701, USA;
jk553916@ohio.edu
* Correspondence: wilheljl@ohio.edu

Abstract

Ground-based LiDAR sensing offers a promising approach for delivering short-range
landing feedback to aerial vehicles operating near vertiports and in GNSS-degraded envi-
ronments. This work introduces a detection system capable of classifying aerial vehicles
and estimating their 3D positions with sub-meter accuracy. Using a simulated Gazebo
environment, multiple LiDAR sensors and five vehicle classes, ranging from hobbyist
drones to air taxis, were modeled to evaluate detection performance. RGB-encoded point
clouds were processed using a modified YOLOv6 neural network with Slicing-Aided Hyper
Inference (SAHI) to preserve high-resolution object features. Classification accuracy and
position error were analyzed using mean Average Precision (mAP) and Mean Absolute
Error (MAE) across varied sensor parameters, vehicle sizes, and distances. Within 40 m, the
system consistently achieved over 95% classification accuracy and average position errors
below 0.5 m. Results support the viability of high-density LiIDAR as a complementary
method for precision landing guidance in advanced air mobility applications.

Keywords: computer vision; LIDAR; advance air mobility

1. Introduction

In the United States, there are currently 19,533 airports with 750 having ground-
based Radio Detection And Ranging (RADAR) systems. Advanced air mobility (AAM)
may rely on smaller regional airports without ground-based aerial monitoring that are
dependent on other systems such as ADS-B [1]. Assisted landing systems will be essential
as AAM continues to expand into urban areas with vertiports that lack low-altitude aerial
vehicle tracking to ensure safe operations. RADAR, Radio navigation, and GNSS based
landing systems may not scale for small AAM vehicles operating in urban conditions near
tall buildings [2-6]. Instead, Light Detection And Ranging (LiDAR) sensors placed on
vertiports using advanced object-detection data processing could allow for ground-based
AAM vehicle tracking. Vehicle position during terminal operations could be wirelessly sent
back and utilized for landing assistance [7]. LIDAR sensing would allow multiple vehicles
to be tracked and enable operations in urban environments with non-metallic vehicle
airframes. Enabling a ground LiDAR tracking and landing assistance system would require
development of new methods to process point-cloud data along with an understanding of
how to choose laser density with respect to distance and vehicle size. This paper takes the
first step in investigating data-processing techniques for detecting and ranging to small
UAS and AAM sized vehicles and evaluating performance with a range of different LIDAR
sensors that could work with a future landing system.

Effective landing guidance will be critical as AAM operations expand near verti-
ports [8]. Traditional tracking and navigation systems such as RADAR, Automatic De-
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pendent Surveillance—Broadcast (ADS-B), Instrument Landing Systems (ILS), Microwave
Landing Systems (MLS), and Global Navigation Satellite Systems (GNSS) have been widely
used at major airports for decades [4-6,9,10]. However, their performance degrades in
low-altitude, congested environments. RADAR systems struggle to detect low-reflectivity
vehicles, especially those with non-metallic frames, and often exhibit positional errors
greater than 3 m [3,9,11]. One study examined a ubiquitous RADAR system that detected
a DJI Phantom 4 drone with 99% accuracy from 0 to 1000 m, but reported a standard
deviation of 0.64 m in range error. This error magnitude exceeded the length of the drone
and may limit the system’s suitability for dense airspace navigation [12]. ADS-B and
RADAR fusion methods can improve accuracy by combining heading and positional
data [2], but they depend on cooperative transmitters. MLS calculates 3D position using
azimuth, elevation, and distance signals [4], while ILS uses localizers and glide slope
transmitters for fixed-path descent [5]. Both systems support low-visibility landings but
were designed for runway-based fixed-wing aircraft rather than vehicles using varied
approach paths [13]. GNSS-based landing systems provide Category III precision [10],
although signal quality is reduced in urban environments due to multipath interference
and line-of-sight obstructions [14].

Computer vision offers an alternative sensing method for object detection and landing
assistance. The YOLO (You Only Look Once) algorithm applies convolutional neural
networks to 2D images to predict object class and bounding boxes with high inference speed
and accuracy [15,16]. Slicing-Aided Hyper Inferencing (SAHI) can decrease the YOLO
network training time by training the model at a lower native resolution while still allowing
high resolution image inferencing without down sampling to a lower resolution [17]. This
is accomplished by slicing the large image into sections equal to the native resolution,
followed by recombining the sections after inferencing to the original higher resolution [17].
Fiducial marker systems such as ArUco allow onboard cameras to estimate relative position
and orientation to a landing target using QR-like codes affixed to the surface [18,19]. These
methods require the aerial vehicle to approach from directly above and maintain a clear
line of sight, which may not align with all approach profiles.

Modern LiDAR sensors rotate 360 degrees while emitting infrared light at known
azimuth and elevation angles [20]. Using the return ray, a complete scan of the environ-
ment is assembled which is represented by x,y, z coordinates relative to the sensor [20].
Additionally, the strength of the ray provides a 4th component of intensity which is based
on material properties and object orientation. LIDAR-based detection algorithms typically
consist of pre-processing steps followed by a neural network that extracts objects and
allows for classification and position estimation based solely on point-cloud data [21-23].
Complex-YOLO is a LIDAR-based detection algorithm that utilized map encoding to allow
YOLO to make object-detection predictions on 3D point clouds [22]. Using the z value,
intensity, and the density of the point cloud, Red Green and Blue (RGB) values were
calculated and assigned to a grid which was assembled into a 2D image for the YOLO
network to inference [22,24]. When evaluated against the KITTI dataset, a dataset used for
bench-marking object detection in autonomous vehicles, Complex-YOLO achieved 87%
AP on the easy car category of the KITTI dataset as well as 51% AP for pedestrians and
73% AP for cyclists [25]. Clustering can be used in point-cloud object detection, where
ground points are typically removed, and the remaining points are combined into groups
based on the point’s coordinates relative to each other [26]. Removing the ground plane
can significantly reduce computational requirements as the system will not be required to
search that area [22,26]. Overall, processing LiDAR sensor readouts using computer vision
algorithms could achieve ground object tracking which could be leveraged to aid in aerial
vehicle landing guidance.
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The development of a method for detecting and ranging to specific AAM vehicles
using LiDAR was explored in this work. Several point-cloud processing steps were required
to translate from 3D points to a vehicle’s centroid that was used for ranging. Converting
3D points generated from a LiDAR sensor to 2D RGB images can be utilized for vehicle
classification [24]. Detecting the centroid of a vehicle in point-cloud data was sought to
measure range instead of choosing the closest point to perspectives that can vary wildly.
Once recognized, the vehicle’s centroid can be estimated using point-cloud measurements
to estimate range and altitude from the sensor. Classifying vehicles and matching them to
3D models is an essential step to avoid incorrect or anomalous objects from point clouds.
This process can be achieved using a modified YOLO v6 network that operates on 2D RGB
data [27]. Several AAM aerial vehicle sizes, from drone to multi-passenger classes, are of
interest to be tracked from the ground. The distance from the vertiport, the vehicle size,
and the lasers in each LiDAR sensor are predicted to affect the tracking error. The objective
of this work was to evaluate the capability of the LiDAR sensors for detecting AAM vehicles
from different distances and altitudes. Identification of a relationship between vehicle size,
the number of lasers in the LIDAR sensor, and the distance from a vertiport was sought to
guide system designers to acceptable levels of range error.

While previous studies [21,22,24,25] have demonstrated LiDAR-based detection meth-
ods for autonomous driving and general object recognition, they have not explicitly ad-
dressed the needs of AAM operations or the challenges of detecting small aerial vehicles
from ground-based sensors. These works often assume dense, near-field LiDAR returns
and do not investigate the relationship between point-cloud density and detection accu-
racy across different aerial vehicle scales. Furthermore, few studies have explored how
conventional object-detection frameworks, such as YOLO, can be adapted for LiDAR data
encoded into RGB format. This paper addresses these gaps by evaluating the impact of
sensor density, vehicle size, and distance on detection performance, and by implementing a
novel adaptation of YOLOv6 with SAHI for point-cloud-based aerial vehicle detection. This
paper is organized into the following sections of the description of the methods, the results,
and a conclusion.

2. Methods

Evaluating the impact of LiDAR sensors for AAM vehicle object detection was
achieved by investigating various LiDAR sensors, vehicle classes, and developing an
object-detection algorithm. Four LiDAR sensors with different Fields Of View (FOV) and
laser counts, along with five vehicle classes ranging from small hobbyist drones to proto-
type air taxis were selected to provide a wide range of operation conditions. The simulated
testing environment represented a vertiport consisting of an asphalt landing pad free of
obstructions [13]. Point clouds generated by the LiDAR sensors were processed through a
modified RGB YOLO neural network [27] for object classification and position estimation.
SAHI was utilized to reduce YOLO training time by overlapping regions of the point
cloud [17]. The full system pipeline can be seen in Figure 1. Once the vehicle is detected,
using known dimensions and predicted YOLO bound box, the centroid can be estimated.
After varying sensor parameters and vehicle position, the detection performance and posi-
tion error results will then be compared to evaluate the effectiveness of the development
method and feasibility of use.

LiDAR sensors examined in this work represented a variety of commercially available
systems with differing FOV and number of lasers. The Ouster OS1 and OS0 were selected
with both sensors delivering up to 128 vertical and 2048 horizontal lasers, while the OSO has
a FOV of 90 degrees versus the OS1’s 45-degree FOV [28]. The Velodyne VLP-32 consists of
32 vertical lasers [28]. In addition to the Ouster and Velodyne sensors, a theoretical LIDAR
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featuring double the vertical and horizontal lasers allows for a higher density comparison
which further showcased the effect of point-cloud density on system performance [29].
The LiDAR sensors of interest are shown in Table 1 along with their parameters.

Pre-processing YOLOvE + SAHI
LiDAR Sensor |—» Raw Point Cloud > > R;E;m%e o
« Ground Remowval « Slice image
+ Max Distance Trimming (SAHI)
« Map Encoding {Intensity, + Run Inference
Height, Density) . Eiﬂe%ltll]y
onfidence

v

Landing Feedback Post-processing
OQutput [ - 2D Bound Box
+ Transform to LIDAR
» Vehicle Class coordinates
» 31D Position + Estimate 3D centroid
Estimation « Construct 3D Bound
Box

Figure 1. Ground-based LiDAR object-detection pipeline.

Table 1. LiDAR sensor parameters.

LiDAR Sensor Horizontal Lasers  Vertical Lasers Field of View (Degrees)
m VLP-32 1875 32 +15
,:{M;'-,,
Ouster OSO 1024 128 +45
LI
0] Ouster OS1 1024 128 +225
]
Theoretical 2048 256 £33

AAM vehicle classes exist in various different sizes, allowing for sensor comparison
based on vehicle size. The five classes examined in this work are a prototype air taxi being
developed by Overair, the Beta Alia, the Joby 54, a high payload drone represented by the
Aurelia X8 Max, and a hobbyist drone represented by the 3DR Iris+. Vehicle classes range
in surface area from 0.249 to 167.53 square meters, platform dimensions and characteristics
are shown in Table 2.

Table 2. Aerial vehicle dimensions.

Aerial Vehicle Rotors Length [m] Width [m] Height[m] Surface Area[m?] Reference
V85  3DRIris+ 4 0.457 0.457 0.353 0.249 [30]
ﬁ Aurelia X8 Max 8 1.651 1.651 0.750 1.274 [31]
Joby S4 6 7 11.6 5.5 86.393 [32]
T ] Beta Alia 4 11 15.24 5 122.988 [33]

?J Overair Prototype 4 12 12 6 167.53 [34]
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Gazebo, a Robotic Operating System (ROS)-based physics simulation environment,
was used to model the LiDAR sensors and vehicles [35]. The developed Gazebo world
consisted of a vehicle, LIDAR sensor, and vertiport landing pad, shown in Figure 2. The Li-
DAR sensor was positioned at the center of the vertiport and had Gaussian noise of 0.01 m
to mimic real-world sensor outputs [36]. Using Python 3.10 and ROS Noetic, a listener
node was created to record the LiDAR sensor’s “/points” topic which broadcasts the
x,Y,z components of simulated rays and save single-point clouds for further processing.
ROS integration also allowed bound boxes to be relayed back to the Gazebo world for
plotting overtop the aerial vehicle. An additional Python script was made to pseudo-
randomly move the vehicle in the environment and change its orientation which was used
to generate the training and test data for the object-detection algorithm. The vehicle was
initially moved within +40.96 m from the LiDAR sensor in both the X and Y directions
of the simulated environment, representing the maximum radial distance supported by
Complex-YOLO and used to generate training data for the network [22]. Vehicle height
(Z value) was determined based on the sensor’s field of view. To capture fine details of
small aerial vehicle features, a grid size of 0.04 m was selected, enabling the algorithm to
differentiate between trained classes. This grid size, combined with the 40.96-m detection
radius, resulted in an image resolution of 2048 by 2048 pixels, referred to as D2048. In the
test set, the vehicle was moved between +81.92 m in both the X and Y directions of the
simulated environment, double the maximum trained detection range and with the max
laser range of the LiDAR sensors, from the sensor using SAHI to inference at the native
resolution while maintaining the fineness of the grid. Vehicle height used the sensor’s
FOV to constrain any vehicles from occurring outside the point cloud. Using the extended
maximum detection range and the same grid size, the test dataset contained images with
a resolution of 4096 by 4096 pixels, called D4096. The vehicle’s orientation was changed
to provide more diverse data for the algorithm and simulate real-world scenarios that
the system could see as vehicles approach for landing. The pitch and roll values ranged
between £15 degrees from level flight, while the yaw value was between 0 and 360 degrees,
which limited any unrealistic flight conditions from occurring in the simulation. Roll, pitch,
and yaw ranges were selected from literature [37,38].

©

Example Drone . LiDAR Sensor

Figure 2. Gazebo environment of vertiport.
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YOLO is unable to interpret the 3D space of a point cloud, inputs are expected to be
2D images made up of RGB pixels. Pre-processing allowed point clouds to be mapped to a
2D image for the CNN to inference using SAHI, while post-processing re-mapped the 2D
image with predictions back to the LIDAR coordinate frame for use in landing guidance.
The system received raw point clouds as inputs and outputs predictions in the form of
an estimated class, a 3D object center, and a 3D bounding box in the LiDAR coordinate
frame. The complete ground-based LiDAR system is shown in Figure 3. In the following
paragraphs, pre-processing, the YOLO model, SAHI, and post-processing will be explained.

Raw point cloud — frim pointcloud & _, Discretize grid — Map encoding
Remove ground
|
!
YOLO V6 Large 2DBounding | | YOLOtgLiDAR N 3DBogndipg
Box Coordinates Box Estimation
YOLO Model Postprocessing

Figure 3. Complete object-detection system diagram.

Pre-processing transformed the raw point cloud into a usable format for the YOLO
algorithm to interpret using the previously discussed map encoding techniques of Complex-
YOLO, shown in Figure 4. Then, the YOLO model received the encoded image and made
classification and position predictions using SAHI, which outputs 2D bounding boxes with
an estimated class. Finally, the 2D bounding boxes were transformed back to the LIDAR
coordinate frame, and the 3D bounding box is calculated.

The first pre-processing step was trimming the raw point cloud to the system’s
max detection range, meaning that any points outside max detection range from the
sensor were discarded. The ground plane was removed by discarding all points with
a Z-value < —0.5 m, which corresponded to the known sensor mounting height in the
simulation. This approach assumes a flat terrain aligned with the x-y plane and is similar
to filtering methods used in [23] where ground segmentation precedes object detection.
While this assumption is suitable for flat vertiports, future implementations may require
adaptive ground segmentation for varied terrain. Second, the point cloud was discretized
into a grid that will make up the encoded map. This small grid square size allowed for
better resolution on the small drone features. Following discretizing the grid, the final
step of map encoding occurred. Inspired by [22,24], three RGB channels were encoded
using density, intensity, and height. For each grid square, the max height, max intensity,
and density were calculated from the points within that grid square, shown in Figure 5.
Each feature was then mapped to red, green, or blue, ranging from 0 to 255, giving the grid
square a complete RGB color. After this encoding occurred, the point cloud was represented
by a 2D image made up of RGB pixels, which the YOLO algorithm used for object detection
and position estimation.
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Figure 4. Preprocessing steps.
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R Red Value = Max(zValue)
RN Blue Value = Log(1 + #ofPoints)
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Figure 5. RGB encoding from LiDAR point-cloud features.
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Example encoded 2D RGB Image

YOLO was chosen due to lower latency predictions with higher accuracy on the
Common Objects in Context (COCO) dataset than previous YOLO versions [27]. The YOLO
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algorithm uses a large dataset to learn each class’s features by tuning the model’s parameter
weights, enabling it to classify and detect specified objects in new environments. SAHI was
used in conjunction with YOLO to allow inferencing at the lower D2048 native resolution
while maintaining the same small grid square size and extended max distance of D4096 [17].
SAHI takes the preprocessed RGB image from D4096 and slices it into 9 images with the
resolution of D2048, shown in Figure 6. Edge case issues were mitigated by overlapping
slices, preventing vehicles in between slices from being misclassified [17]. The sliced images
were input into the algorithm, providing 2D bounding boxes on the original image with
a class label and confidence value. All predictions with less than 0.7 confidence were
discarded to limit the number of false positives [39]. The final step of the object-detection
system was the post-processing of the 2D bounding box to a 3D bounding box.

i : .
] 1 1

2048x2048 | 2048x2048 : 2048x2048 :
i | i ! Sliced ]
SlicedIlmage1 |  Sliced Image 2 : :
! ! Image 9 :

..................

2048x2048 2048x2048
Sliced - Sliced

Image 6 iImage 8
1

- - - - - - - -

1
1
1
|
1
.................. T--===-==-A
1
1
|
1
1
1
1
|

|
2048x2048 | 2048x2048 2048x2048
SlicedImage3 | sliced Image 4 Sl

! Image 7

4096x4096 Image
Figure 6. SAHI slicing of a 4096 x 4096 image into 2048 x 2048 slices.

Post-processing of point clouds allowed the transformation from 2D image coordinates
to 3D LiDAR coordinates. The output bounding box from YOLO had an x, y coordinate
system that ranges from 0 to 1, where 0,0 is the top left corner of the image, and 1,1 is the
bottom right. Using Equations (1) and (2), where Xy and Yy are the output bounding-box
coordinates, the vehicle center was transformed from the YOLO coordinate frame to the
LiDAR'’s frame.

X =81.92- Xy —40.96 1)

Y, = —1-(81.92- Yy — 40.96) )

After the bounding box center was found, the min and max values that make up the
3D box were found using Equations (3)—(6), where wy is the width and [y is the length of
the 2D bounding box. LiDAR x, y minimum, and maximum values were used to calculate
the final height component to find the 3D points that make up the predicted vehicle. Using
the max z value of the points that make up the expected vehicle and the known class
dimensions, a complete 3D bounding box was extracted which could be used for landing
guidance. The max z value prevented objects and other points below the vehicle from being
incorporated in the height calculation. An example of post processing is shown in Figure 7.

Xming, = X1, — 40.96 - wy )

Xmaxyp = Xp +40.96 - wy (4)

YminL = YL —40.96 - ly (5)
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Figure 7. Post-processing of 2D bounding boxes to 3D bounding boxes.

3. Results

Utilizing the described simulation environment and point-cloud processing system in

©)

this paper, different LIDAR sensors and AAM vehicle classes were explored to estimate

positional detection accuracy. First, the YOLO network needed to be trained. Next, the ve-

hicles were placed 0 to 80 m, which makes up 4098 by 4098 pixels, away from the LiDAR

sensor. Finally, the Mean Average Error (MAE) and Mean Average Precision (mAP) were

calculated for 3D position estimation and classification accuracy. Additionally, 3D bound-

ing boxes were converted to LIDAR coordinates and plotted using Gazebo to showcase a

visual representation of a vehicle, as shown in Figure 8.

Figure 8. Gazebo environment and corresponding 3D bounding boxes in LIDAR Coordinates.
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Training and validation datasets were needed for the YOLO model to estimate aerial
vehicle class and position. Point clouds containing the five vehicle classes and LiDAR
sensors were recorded and saved using the Gazebo simulation environment to create the
training and validation datasets for model training. The YOLO model was then trained at a
resolution of D2048 which allowed faster training speed than the test set’s resolution of
D4096. The quality of training data was an important concern for CNNs as mislabeled data,
poor class representation, and non-diverse datasets could negatively affect the model’s
performance on the test set [40]. Labeling was performed using the known ground truth
and physical dimensions of the vehicle, allowing for tightly fitted bounding boxes. All five
aerial vehicle classes were equally distributed throughout the training and validation set
to eliminate the possibility of over-training on one specific class. Dataset diversity was
also improved using YOLO'’s built-in augmentations that alter training data. Translation,
mix-up, and flips were the highest weighted augmentations chosen, which were shown to
impact model classification accuracy positively [41]. Note that augmentation only occurred
on the training dataset and did not occur during evaluation of the test set.

The LiDAR sensor posed an issue with obtaining useful training data because objects
that were occluded or had low point density did not produce enough data points for the
model to make accurate predictions. Point clouds that did not have at least 13 points repre-
senting the vehicle were removed making the training data sufficient for convergence [42].
The process used to evaluate training and validation point clouds can be summarized in
Figure 9, where the vehicle is moved within the environment and the resulting point cloud
is checked to see if at least 13 point exist at the vehicle’s ground truth location.

False
Spawn Gazebo Pseudo Randomly R Record Point ,| =13datapoints
=1 . -
Environment Move Vehicle Cloud represent the drone | |

True

Save Point Cloud &

Loops for the number of Ground Truth
point clouds needed

.|

Figure 9. Training and validation point-cloud process.

Training and validation results are shown in Figure 10 that indicate convergence of
the model and the completion of training. The training dataset consisted of 7500 point
clouds, each class represented by 1500 point clouds. The model training was completed
using an NVIDIA GeForce RTX 4080 over 120 epochs with a batch size of 2. Additional
training beyond 120 epochs yielded no improvement on model performance. Model
training lasted 33 h, with the best epoch occurring at number 78, resulting in 96.2% Mean
Average Precision (mAP) for all classes at an Intersection over Union (IoU) threshold of
0.95, shown in Figure 10. The validation set was evaluated every 20 epochs for the first
60 epochs, after which evaluation occurred every five epochs. Training the YOLOv6 model
required 33 h on an RTX 4080 and is a one-time offline operation.

Following the completion of training, the epoch with the highest mAP was used to
evaluate the D2048 resolution test set resulting in the confusion matrix shown in Table 3.
Vehicles were correctly classified in 37,757 of 40,000 total test point clouds, resulting in a
mAP of 94.3% with the incorrect instances being classified as similar vehicle types.
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Figure 10. Training and validation loss across epochs.
Table 3. Test-dataset confusion matrix.
Predicted
Iris Max S4 Alia Overair No Prediction
Iris 5957 0 0 0 0 2043
Max 1 7967 0 0 0 32
Actual 54 0 0 7899 0 10 91
Alia 0 0 0 7956 2 42
Overair 0 0 4 0 7978 18

Four sets of point clouds existed in the test set, each representing one of the four
LiDAR sensors investigated in this work. Within each LiDAR set, 2000 point clouds of each
vehicle class with varying distances from the sensor, with a resolution of D4096. The test
set was used to evaluate the system’s accuracy on new data as the training and validation
datasets have been seen by the system before which could skew performance. In addition
to the point clouds, ground truth labels were included to calculate position estimation and
classification errors. Evaluation of the dataset used mAP and MAE as the primary metrics.
Classification was evaluated using mAP which allowed for an even balance between
precision and recall. The Intersection over Union (IoU), or intersection of predicted and
ground truth bounding boxes, thresholds between 0.5 to 0.95 were used to calculate mAP.
The higher the IoU threshold, the more similar the predicted bounding box must be to
count as a positive classification [43]. The MAE from the expected center to the ground
truth center was used as the performance metric for vehicle position calculated using:

AE = \/(xL — xT)2 + (]/L — }/T)Z + (ZL — ZT)2 (7)

where the center of the ground-truth 3D bounding box is (x1,yr,z7) and the model’s
predicted 3D bounding box center is (x1,yr,z1). For each LiDAR sensor, these metrics
were compared to examine the effects each sensor has on object detection and position
estimation. When tested at the model’s native resolution, D2048, the system achieved 95%
mAP across all vehicle classes and sensors except for the Iris drone when sampled by the
VLP-32 LiDAR, shown in Table 4. This was due to the lower point-cloud density of the
VLP-32 combined with the small drone size, which resulted in suboptimal point coverage.
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Table 4. mAP of test dataset for each vehicle class and LiDAR.
Aerial Vehicle Class
Iris Max S4 Alia Overair
Theoretical 0.991 0.991 1.000 1.000 0.997
. OS1 0.993 0.996 0.999 1.000 0.997
LiDAR Sensor
0Os0 0.995 1.000 0.998 1.000 0.999
VLP-32 N/A 0.998 0.954 0.979 0.997

The D4096 set of point clouds displayed how point-cloud density affects detection

accuracy and positional error based on distance from the LiDAR sensor. Higher

point-

cloud density led to higher accuracy as the distance from the sensor increased, as shown

in Figure 11. Larger vehicles allowed for continued detection further from the sensor

due to more surface area for points to populate. An inverse relationship was seen

when

looking at the 3D positional error, shown in Figure 12, where higher resolution LiDARs
had lower errors due to more points representing the vehicle, which allowed for more

accurate positioning. Across all LIDAR sensors, larger aerial vehicles like the Overair and

Beta Alia prototypes consistently exhibited the highest classification accuracy and lowest

positional error. These vehicles produced denser point clouds due to their greater surface

area, improving both object visibility and 3D position accuracy. For example, the Overair

prototype maintained over 99% classification accuracy across all sensor types, while its

average positional error remained below 0.3 m, even at extended distances.

mAP detection accuracy across LiDAR and Vehicle Class

s
EMax
[ JAirtaxi

Detection Accuracy

Theoretical

LiDAR Sensor

Figure 11. Detection accuracy based on LiDAR and vehicle class.

3D Position Accuracy across LiDAR and Vehicle Class
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Figure 12. Three-dimensional position error based on LiDAR and vehicle class.
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Point-cloud density plays a critical role in detection accuracy as vehicle distance
increases. Higher-density LiDARs, such as the theoretical sensor and the Ouster OS0,
maintained higher classification rates at longer distances, while lower-density sensors like
the VLP-32 experienced a steep decline. Similarly, an inverse relationship between point-
cloud density and positional error exists. High-density LIDARs maintained sub-meter
accuracy well beyond 40 m, while low-density sensors exceeded the 0.5 m threshold even
at moderate ranges, especially for smaller aerial platforms.

The developed ground-based LiDAR system was able to detect selected classes of
aerial vehicles and predict their average 3D position within 0.5 m of the ground truth.
When compared to ILS’ category system for precision approach and landing, the LIDAR
detection system meets accuracy requirements for all categories up to IIIb [5,44,45]. Addi-
tionally, point-cloud density and vehicle size were identified as the most significant factors
contributing to the effectiveness of the ground-based LiDAR system in detecting vehicles
and estimating their positions in 3D space. The positional accuracy achieved in this study
exceeds that of ADS-B, RADAR, and MLS, as indicated in Table 5. However, the detection
range is less than all other options except the vision-based ArUco image landing system [19].
The LiDAR system is constrained to the max laser distance of the sensor itself rather than
reduced point coverage when the vehicle is further from the vertiport. Given these findings,
ground-based LiDAR using the developed estimation system is well-positioned to assist
with AAM landings in environments with limited GNSS availability, while complementary
long-range guidance systems can support earlier phases of flight.

Table 5. Related work average positional error.

Method Effective Range [m] Average Positional Error [m] Reference
RADAR 16,000 6.5 [11]

ADS-B N/A 3-5 [3]

MLS 18,520 24-3 [46]

ILS 18,520 Varied based on Category level [5]

Camera + ArUco 30 (vertical) <0.05 [19]
GNSS/IMU Fusion N/A <0.1 [47]

LiDAR 75 0.5 Current Work

4. Conclusions

Ground-based sensing solutions for AAM vehicles may play a critical role in enabling
safe autonomous operations. This work demonstrated the feasibility of using ground-
based LiDAR for aerial vehicle classification and 3D position estimation during landing.
The combination of YOLO v6 RGB LiDAR data using SAHI to reduce computation allows
for a novel vehicle-position detection process to be used at close ranges to veriports.
Through simulation of multiple sensor configurations and vehicle classes, a modified
YOLO model with SAHI was able to achieve sub-meter positional accuracy (0.5 m) and
over 95% classification accuracy across most scenarios. Higher-density sensors yielded
the best performance, especially for large vehicles. These results show that ground-based
LiDAR can serve as a complementary close-range landing system given the ability to
wirelessly communicate position data to a vehicle, particularly during final approach,
where precise positioning is essential. The system provides a foundation for additional
studies that could explore LiDAR-based detection during adverse weather conditions,
newer and higher-density LiDAR sensors, and a wider set of vehicle types.
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