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Abstract: With the growing application demands for cooperative guidance systems, the
ITAC guidance law has undergone rapid technological advancement in recent research
developments. However, existing ITAC methods often overlook the critical issue of com-
mand discontinuity during the midcourse-to-terminal guidance handover stage. To address
this gap, this study proposes a novel fifth-order polynomial guidance law that simulta-
neously incorporates initial conditions (flight path angle and acceleration) and ensures
precise ITAC performance. The method analytically derives polynomial coefficients from
boundary constraints and transforms them into a computationally efficient closed-loop
guidance law. Additionally, a positional error compensation term is derived to enable the
practical realization of the proposed guidance law. Numerical simulations demonstrate the
advantages of the proposed guidance law compared to existing methods. The results con-
firm that the fifth-order polynomial guidance law effectively resolves midcourse-terminal
handover challenges while maintaining computational efficiency, offering a viable solution
for cooperative guidance systems that require ITAC capability.

Keywords: impact time and angle control;polynomial guidance; midcourse-to-terminal
guidance handover

1. Introduction
With the expanding application scenarios of collaborative operations in multi-vehicle

systems, the research demands for multi-constrained cooperative guidance have been
progressively intensified, where time and angle constrained guidance laws emerge as one
of the predominant research frontiers in this domain. But there is little attention payed to
the issue of command discontinuity during the midcourse-to-terminal guidance handover.
Polynomial-based method offers feasible concepts for tackling such problems by tailoring
trajectories, ensuring compliance with both initial and terminal boundary constraints. This
paper presents a novel fifth-order polynomial guidance law that simultaneously addresses
two aspects: (1) the incorporation of initial conditions, specifically flight path angle and
acceleration constraints, and (2) the effective resolution of the ITAC problem.

The pioneering study on ITC guidance law design can be traced back to [1] which
used the optimal control theory. This study combines the proportional navigation guidance
(PNG) law and the impact-time-error feedback to realize impact time control. The authors
in [2] modified the pure proportional navigation guidance (PPNG) law to control the impact
time according to the exact time-to-go. Another ITC law developed by using augmentation
of the PNG is proposed in [3]. The author combined a impact angle control (IAC) guidance
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law derived from a geometrically modified PNG law and a cooperative thrust control law
designed by the constrained consensus method. Considering the limitation of the field
of view (FOV), a biased term was introduced into a modified form of PNG for the time
error correction in [4]. The author in [5] developed a varying-gain near-PNG law which
can achieve precise impact time control. An optimization problem with fixed terminal time
was formulated in [6] based on quadratic kinematics approximation, and the solution was
semi-analytically calculated based on a single nonlinear equation. In [7], a sliding surface
parameter constructed as a weighted sum of the relative range and the desired time-to-go,
was used to meet the terminal condition. Authors in [8] introduced a concept of predicted
interception point, and an exponential reaching law-based sliding mode was proposed to
design the guidance law. It is also important to note that explicit estimations of time-to-go
are not needed in [7,8].

The ITAC guidance is a more effective and challenging problem. Based on the IAC
guidance law, the authors in [9] introduced a time-varying gain for the compensation
of the time error. A new form of biased PNG law with impact angle constraints and a
feedback of the flight time error was developed in [10]. The authors in [11] constructed a
virtual moving target with the same speed of the interceptor, and the guidance law was
expressed by three simultaneous equations, which are numerically solved through the
flight course. In [12], a concept of optimal error dynamics was proposed as a general
solution for precision guidance problems, including the ITAC guidance. Inspired by this
article, ref. [13] developed an ITAC guidance law, in which the trajectory shaping method
was leveraged to control the impact angle while the flight time was obtained by the optimal
error dynamics.

In [14–16], the structure of the networks such as decentralized and distributed archi-
tecture are taken into consideration. Ref. [14] presented a two-stage cooperative guidance
law, in which a prescribed-time optimal consensus method was used in the first stage
and the salvo attack was achieved by tracking the lead angle profiles in the second stage.
References [15,16] adopted the Lyapunov function and the concept of sequential design.
Other factors such as maximum velocity [17] and FOV [4,14,18] have also been taken into
account in the development of cooperative guidance laws.

The polynomial method serves as a viable approach for deriving ITAC laws, and be-
comes particularly advantageous when specific boundary conditions need to be satisfied at
certain points along the trajectory. Extensive research has been carried out to delve into
polynomial guidance approaches with diverse polynomial configurations. A third-order
polynomial is the lowest-degree polynomial that can realize the time and impact angle
control. The author in [19] expressed the flight time by a third-order polynomial and
introduced a switching strategy between the ITC and IAC guidance. Ref. [20] built a third-
order polynomial of look angle with respect to the flight time and achieved the accurate
impact time control. A forth-order polynomial of the LOS profile is introduced to develop
a second-order sliding guidance in reference [21]. Another forth-order polynomial is used
in [22] to acquire the ITC guidance law. Higher-order polynomials can describe more
physical quantities, allowing for the simultaneous representation of multiple constraints.

Guidance laws based on n-order polynomials are established in [23–25]. Boundary
conditions have been established, the second and higher-order derivatives are all set to
0 to obtain the value of polynomial coefficients. In [23,24], the flight time is employed
as the argument of the relative range polynomial, thus the relationship between the time
constraints and the polynomial coefficients can be constructed analytically. Reference [25]
expressed the trajectory length as a polynomial with respect to the interceptor-target
distance, the flight time need to be deduced by the ratio of the trajectory length and
velocity. References [26,27] developed polynomials of the acceleration command with
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adjustable degree, the polynomial coefficients can be altered according to the interceptor’s
maneuverability. However, for the closed-loop implementation of approaches involving n-
order and variable-order polynomials, it is invariably necessary to solve equation systems
of at least second order at each time step in order to determine the coefficients of the
polynomials, which lead to considerable delays in computation time [22,26]. Another main
restriction is that the initial conditions are not taken into account including the acceleration
and the direction of velocity.

Based on a systematic analysis of existing studies, it is found that, current approaches,
such as those based on optimal control theory [9,10,13], sliding mode control, and polyno-
mial methodology [20–27], have demonstrated feasibility in guidance law design. However,
they exhibit an oversight that: the omission of initial trajectory states in the formulation.
This oversight may induce command discontinuities during the handover between mid-
course and terminal guidance phases, potentially compromising vehicle stability. As the
polynomial formalism inherently incorporates boundary conditions, including initial states,
into the guidance law derivation process, it has unique advantages in addressing this
limitation. Therefore, we propose a fifth-order polynomial guidance framework to ensure
smooth trajectory transitions while preserving terminal constraints. The basic law is con-
structed using a traditional method that entails deducing the solutions for the polynomial
coefficients based on the specified boundary conditions. With the supplementary of the
compensation for the small angle assumption and a positional error elimination term,
the guidance law can effectively solve the closed-loop implementation problems.

The organization of the remaining parts of this paper are structured as follows. In the
following section, the ITAC guidance problem is formalized. Section 3 provides the deriva-
tion of the varying-gain polynomial guidance law. In Section 4, the implementation
problems are investigated including the compensation of the impact angle deviation and
the polynomial coefficient inaccuracy caused by the positional error. Numerical simulations
including comparative studies are conducted in Section 5. The final Section 6 is a conclusion
of the article’s work.

2. Problem Statement
In this section, the kinematic model of the new polynomial guidance is formulated.

Before describing the engagement relationship, three widely-accepted assumptions are
given for convenience:

Assumption 1. Considering the guidance loop is usually much slower than the control loop, the
dynamics of the interceptor is assumed to be ideal, i.e., there is no autopilot lag in the control loop.

Assumption 2. Considering the speed of rocket-type vehicles after engine combustion and most
winged aircraft change slowly in the terminal homing phase, the flight vehicle’s velocity is assumed
to be constant.

Assumption 3. Considering the gravity can be easily compensated with a deviation term in the
practical scenarios, the guidance law design disregards the gravitational influence.

Then the engagement between the flight vehicle or the interceptor and a stationary
target in a two-dimensional plane is illustrated in Figure 1.



Aerospace 2025, 12, 484 4 of 21

O X

Y

V
,M x y

,f fT x y

a

q
0 0 0

,M x y

f

0

Figure 1. Engagement geometry.

In Figure 1, the position of the interceptor is represented by M(x, y) which is initialized
as M0(x, y). The target position is denoted by the notation T. θ indicates the flight path
angle with a initial value of θ0, and q is the LOS angle. θ̇ and q̇ are the rotating rate of θ

and q, respectively. The interceptor’s acceleration a is aligned perpendicular to the velocity
vector. Then we have

a = V θ̇ (1)

The relative motion between the interceptor and target is characterized by differential
equations [28] as

ẋ = V cos θ

ẏ = V sin θ

Ṙ = −V cos σ

(2)

where R represents the current interceptor-target relative distance, σ denotes the look angle
which is defined as σ = θ − q.

We set the horizontal coordinate x as the independent variable, then the conditions at the
starting point of the trajectory and the terminal constraints can be represented as follows

y(x0) = y0

θ(x0) = θ0

a(x0) = a0

(3)

y(x f ) = y f

θ(x f ) = θ f

t(x f ) = t f

(4)

That is, the interceptor has certain acceleration and flight path angle while entering
the terminal homing phase after cruising, and The specified flight time and impact angle
should be achieved at the interceptor-target intersection.

3. Derivation of the Polynomial Guidance Law
In this section, the initial-condition-aware polynomial guidance with impact time and

angle constraints (PGIA) is derived, and the analytical form of the polynomial coefficients is
also deduced. Subsequently, the acceleration behavior is examined, based on this, a practical
approach for selecting polynomial coefficient solution is investigated.
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3.1. Polynomial with Impact Angle and Time Control

The trajectory profile can be proposed as a polynomial of displacement in the y-
direction with respect to x-coordinate as

y(x) =
N

∑
i=0

λixi (5)

where N represents the order of the polynomial, and λi represents the polynomial’s ith
constant coefficient. To accommodate the current application scenario, we set N = 5, then
a 5th order polynomial can be established as

y = λ5x5 + λ4x4 + λ3x3 + λ2x2 + λ1x + λ0 (6)

With the small-angle approximation, the flight path angle is defined as

θ ≈ tan θ =
dy
dx

= 5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1 (7)

the derivative of θ with respect to t can be expressed as

θ̇ =
dθ

dt
=

dθ

dx
dx
dt

≈ V cos(θ)(20λ5x3 + 12λ4x2 + 6λ3x + 2λ2) (8)

According to Equation (1), the acceleration of the interceptor can be obtained as
Considering that θ̇ can be expressed as dθ

dx · dx
dt , we rewrite Equation (1) and substitute the

expression ẋ from Equation (2), the acceleration command can be presented as

a = V
dθ

dt
= V

dθ

dx
dx
dt

= V2 cos θ(20λ5x3 + 12λ4x2 + 6λ3x + 2λ2) (9)

Since Equation (6) contains terms related to x, the flight time can not be directly
represented. We can formulate the flight time as

t f = S/V (10)

where V is the interceptor’s speed and S is the length of the trajectory, which can be defined as

S =
∫ x f

x0

√
1 +

(
dy
dx

)2
dx =

∫ x f

x0

√
1 + tan2 θdx (11)

Expanding
√

1 + tan2(θ) by Taylor expansion at tan2 θ ≈ 0 yields

S ≈
∫ x f

x0

(
1 +

1
2

tan2 θ

)
dx (12)

Substituting Equation (7) into Equation (12), the remaining flight time can be calcu-
lated as:

tgo ≈
1
V

∫ x f

x

[
1 +

1
2
(5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1)

2
]

dx

=
1
V

[
25
18

λ2
5x9 +

5
2

λ5λ4x8 +
1
7
(15λ5λ3 + 8λ2

4)x7 +
1
3
(5λ5λ2 + 6λ4λ3)x6+

1
10

(10λ5λ1 + 16λ4λ2 + 9λ2
3)x5 +

1
2
(2λ4λ1 + 3λ3λ2)x4+

1
3
(3λ3λ1 + 2λ2

2)x3 + λ2λ1x2 +
1
2

λ2
1x + x

]
(13)



Aerospace 2025, 12, 484 6 of 21

By utilizing Equations (6), (9) and (13), the boundary conditions expressed in
Equations (3) and (4) can be defined in terms of the positional parameters x and y as

y0 = λ5x5
0 + λ4x4

0 + λ3x3
0 + λ2x2

0 + λ1x0 + λ0

y f = λ5x5
f + λ4x4

f + λ3x3
f + λ2x2

f + λ1x f + λ0

θ0 = 5λ5x4
0 + 4λ4x3

0 + 3λ3x2
0 + 2λ2x0 + λ1

θ f = 5λ5x4
f + 4λ4x3

f + 3λ3x2
f + 2λ2x f + λ1

a0 = V2 cos(θ0)(20λ5x3
0 + 12λ4x2

0 + 6λ3x0 + 2λ2)

t f =
1
V

∫ x f

x0

[
1 +

1
2
(5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1)

2
]

dx

(14)

Under the conditions x0 = 0 and y0 = 0, we have two sets of solutions

Solution (1):

λ1
5 =

1
4x5

f

(
9θ f x f − 18θ0x f + 9y f −

3a0

V2 cos θ0x2
f
+ 2M

)

λ1
4 =

1
2x4

f

(
5θ f x f − 38θ0x f + 10y f −

10a0

V2 cos θ0x2
f
− 2M

)

λ1
3 =

1
4x3

f

(
5θ f x f − 30θ0x f + 25y f −

7a0

V2 cos θ0x2
f
+ 2M

)
λ1

2 =
a0

2V2 cos θ0

λ1
1 = θ0

λ1
0 = 0

Solution (2):

λ2
5 =

1
4x5

f

(
9θ f x f − 18θ0x f + 9y f −

3a0

V2 cos θ0x2
f
− 2M

)

λ2
4 =

1
2x4

f

(
5θ f x f − 38θ0x f + 10y f −

10a0

V2 cos θ0x2
f
+ 2M

)

λ2
3 =

1
4x3

f

(
5θ f x f − 30θ0x f + 25y f −

7a0

V2 cos θ0x2
f
− 2M

)
λ2

2 =
a0

2V2 cos θ0

λ2
1 = θ0

λ2
0 = 0

(15)
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where:
M =

√
Ax4

f + Bx3
f + Cx2

f + Dx f + E

A = −
3a2

0
4V4 cos θ2

0

B = −
9a2

0
V2 cos θ0

(
2θ0 +

1
2

θ f

)
C = −45

(
28 + 3θ2

0 +
3
4

θ2
0 − θ0θ f −

a0y f

2V2 cos θ0

)
D = 45

(
28Vt f + 7θ0y f +

5
2

θ f y f

)
E = −3375

4
y2

f

(16)

3.2. Guidance Law Derivation

After establishing the polynomial coefficient expression, we can substitute Equa-
tions (15) and (16) into Equation (9) to obtain the acceleration command. However, this
acceleration command has a open-loop form with no direct connection between the inter-
ceptor and the target. This results in its inability to achieve the expected accuracy in terms of
time, angle, and miss distance when subjected to disturbances such as autopilot lag. There-
fore, it is necessary to convert the interceptor’s acceleration command into a closed-loop
form by taking the interceptor-target relative position relationship into consideration.

Considering the LOS angle q

q = arctan

(
y f − y
x f − x

)
(17)

Taking the derivative of Equation (17) with respect to x and substituting Equation (7)
into the result yields

dq
dx

=
1

1 +

(
y f − y
x f − x

)2

(
y f − y
x f − x

)′

=
−(x f − x)(5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1) + (y f − y)

(x f − x)2 + (y f − y)2

(18)

The flight path angle θ can be described by

θ = arctan
(

dy
dx

)
= arctan(5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1) (19)

Taking the derivative of θ with respect to x, we have

dθ

dx
=

20λ5x3 + 12λ4x2 + 6λ3x + 2λ2

1 + (5λ5x4 + 4λ4x3 + 3λ3x2 + 2λ2x + λ1)
2 (20)

Let xgo = x f − x, noting that dx
dt = dq

dt ·
dx
dq , the guidance command can be established

by substituting Equations (18) and (20) into Equation (9).

ac = Np(x)Vq̇ (21)
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where the guidance coefficient Np is given by

Np(x) =
θ̇

q̇
=

dθ

dt
dq
dt

=

dθ

dx
dq
dx

=

1 + tan2 q
1 + tan2 θ

(20λ5x3 + 12λ4x2 + 6λ3x + 2λ2)xgo

tan q − tan θ
(22)

Thus, we have derived the desired terminal guidance law. According to Equations (21)
and (22), it is obvious that it is a varying-gain near-PNG formulation, and the interceptor-
target relationship is considered in the expression.

It can be noted that singularities will occur when q is equal to θ. However, this does
not lead to singularities in the acceleration command for the following reason:

Considering the expression of ẋ in Equation (2), guidance command Equation (21) can
be rewritten as

ac = Np(x)V2 cos(θ)
dq
dx

(23)

Substituting Equations (7), (17), (18) and (22) into Equation (23) and we have

ac = Np(x)V2 − tan θ + tan q
(1 + tan2 q)xgo

cos θ =
20λ5x3 + 12λ4x2 + 6λ3x + 2λ2

1 + tan2 θ
V2 cos θ (24)

As can be seen from Equation (24), the denominator does not vanish. Therefore, al-
though there exists a possibility for Np to exhibit singular values, the acceleration command
will theoretically not encounter singularities when Np is multiplied by q̇.

4. Closed-Loop Implementation
Although the guidance law directly connects the interceptor and the target, the small-

angle assumption and the method of closed-loop implementation still present challenges to
the hitting performance. Consequently, further investigation is essential to address these
limitations and enhance the overall guidance law performance.

4.1. Compensation for the Small-Angle Assumption

According to Equation (14), it can be seen that the flight path angle simplified under
the small-angle assumption is directly used in the boundary conditions, which obviously
affect the values of the polynomial coefficients determined by Equation (15). Therefore,
non-negligible systematic deviations in impact angles are introduced. We define the
angular deviation between the simplified flight path angle and the desired value without
simplification at a certain point x = xδ as ∆θδ, according to Equation (7), it can be written as

∆θδ = arctan
(

5λ5x4
δ + 4λ4x3

δ + 3λ3x2
δ + 2λ2xδ + λ1

)
−(

5λ5x4
δ + 4λ4x3

δ + 3λ3x2
δ + 2λ2xδ + λ1

) (25)

To address the inaccuracy caused by this deviation, a calibration methodology is
necessitated in the implementation. Firstly, We use a compensation procedure to eliminate
the angular deviation caused by the small-angle assumption, as illustrated in Figure 2. This
procedure can be performed before the flight, hence, there are no extra requirements for
on-board computational resource.
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Guidance coefficients solving

Impact angle calculating

Impact angle error

Figure 2. Impact angle compensation method.

4.2. The the Polynomial Coefficients Replanning

Online updating of polynomial coefficients is a commonly used solution for the closed-
loop implementation of polynomial guidance law, especially when the expression of the
command maintains an analytical form. For the newly designed guidance law, the block
diagram based on the online updating is shown in Figure 3.

Missile-target relative 
position

Missile Body
Target

position

       from Eqs. (22)

Missile Position
q q ca

 yx,

s VN p

  from Eqs. (15)5 4 0,  

pN

Figure 3. Homing loop of online updating.

Yet, there are two main drawbacks that undermine the practicality of this method.
(1) Some guidance laws based on online solution demand extensive computing resources
and long calculation time, posing challenges to practical deployment. (2) The recalculated
coefficients cannot ensure consistency with the initially determined trajectory, particularly
at close ranges (small R values). This inconsistency poses substantial challenges to the
reliability and effectiveness of the guidance. To further investigate the second problem,
the following theorem is introduced according to the properties of systems of polyno-
mial equations.

Theorem 1. Let y(x), x ∈
[

x0, x f

]
be a fifth-order polynomial, the solution satisfies a system of six

nonlinear boundary conditions defined as EX
∣∣
x=x0,x=x f

= B at x = x0 and x = x f . The solution

set of the polynomial coefficients is {S1(x), S2(x)} where S1(x) ̸= S2(x). Define a third point as
x = xm satisfying xm ̸= x0 and xm ̸= x f , the boundary condition values involving x = xm and
x = x f are Bm. If a new set of boundary condition values involving x = xm and x = x f are B̂m,
and B̂m ̸= Bm. Then the solution set of the polynomial coefficients

{
Sm

1 (x), Sm
2 (x)

}
determined by

the newly updated boundary conditions must satisfy Sm
1 (x) ̸= S(x) and Sm

1 (x) ̸= S(x).

This can be readily demonstrated via proof by contradiction.

Proof. Suppose the polynomial curve Q(x) satisfies boundary conditions EX
∣∣
x=x0,x=x f

= B

and EX
∣∣
x=xm ,x=x f

= Bm if Q(x) = S(x) ∈
{

Sm
1 (x), Sm

2 (x)
}

were also able to simultane-

ously satisfy EX
∣∣
x=xm ,x=x f

= B̂m, this would contradict the given condition Bm ̸= B̂m.

Consequently, the initial assumption Q(x) = S(x) fails to hold.
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In the present study, the small-angle approximation is employed in the mathematical
formulation, particularly in establishing the boundary condition equations and deriving
the expressions for acceleration and flight path angle which are shown in Equations (7)–(9).
Therefore, the computed boundary values derived from Equation (14) exhibit inherent
deviations from the actual boundary condition values.

To address this issue, a solution switching strategy is introduced. Since the acceleration
along the trajectory corresponding to certain polynomial coefficients can be estimated once
the value of the coefficients are determined, it is rational to set the estimated acceleration
as a standard for the selection between the two solutions of the polynomial coefficients
described by Equation (15). The adopted evaluation criterion is defined as: Within the
range of x ∈

[
x0, x f

]
we assess whether the extremum of acceleration (calculated based on

the polynomial coefficients obtained at the current point) remains sufficiently small.
For analytical convenience, we define an equivalent acceleration as

â =
dθ

dx
V2 =

a
cos(θ)

(26)

When the flight path angle is small, the acceleration situation of the trajectory can
be reflected by the newly defined equivalent acceleration. Substitute Equation (9) into
Equation (26), then set the derivative of â with respect to x to zero, and we have

â = V2
[
20λ5x3 + 12λ4x2 + 6λ3x + 2λ2

]
(27)

V2(60λ5x2 + 24λ4x + 6λ3) = 0 (28)

Thus, the x-coordinates of the extremum points are obtained as

xex1 = −
2λ4 +

√
4λ2

4 − 10λ5λ3

10λ5

xex2 = −
2λ4 −

√
4λ2

4 − 10λ5λ3

10λ5

(29)

Considering Equation (27) and using the x-coordinates of the trajectory’s initial point,
terminal point, and two extremum points, the extreme values of the equivalent acceleration
are given as

âex1 =
(

20λ5x3
0 + 12λ4x2

0 + 6λ3x0 + 2λ2

)
V2

âex2 =
(

20λ5x3
ex1 + 12λ4x2

ex1 + 6λ3xex1 + 2λ2

)
V2

âex3 =
(

20λ5x3
ex2 + 12λ4x2

ex2 + 6λ3xex2 + 2λ2

)
V2

âex4 =
(

20λ5x3
f + 12λ4x2

f + 6λ3x f + 2λ2

)
V2

(30)

The extremum point is considered to be valid only if the value of x meet the condition
that xex ∈ [x0, x f ]. Based on (30), it is apparent that once the initial conditions and impact
constraints are specified, the extreme value of equivalent acceleration can be determined,
then the polynomial coefficient solution for practical applications is selectable.

In practical applications, we can simultaneously compute the two sets of polynomial
coefficient solutions at the current point and derive their extrema. By comparing the two
solutions, we obtain the minimum absolute values of each set. The solution with the smaller
minimum absolute value is selected. This criterion, based on evaluating the minimum
absolute values, allows for dynamic switching between solutions during closed-loop flight.
However, it should be noted that calculating polynomial coefficients at every simulation
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step would significantly increase the computational burden of full-trajectory calculations
and compromise the practicality of the guidance law.

Accordingly, we employ an approach of solving polynomial coefficients at multiple
discrete points along the trajectory. This approach maintains the validity of polynomial
solutions while substantially reducing computational resource requirements. To validate
this method, two scenarios are used for comparison: (1) Baseline case: Trajectory replanning
under the small-angle assumption, consistent with the original manuscript, without poly-
nomial coefficient solution transformation; (2) Solution switching: Trajectory replanning
with polynomial coefficient solution switching strategy.

As evidenced by the illustrations in Figure 4, the polynomial coefficient switching
strategy is more appropriate for practical implementation for eliminating oscillations and
acquiring enhanced trajectory smoothness.

(a) Baseline case

(b) Solution switching case

Figure 4. Beneficial effect of solution switching strategy.

4.3. Positional Error Elimination

While polynomial coefficients can be recalculated at multiple discrete points along the
trajectory, to ensure computational efficiency, these coefficients remain constant between
successive recalculation points. The static coefficients are not capable to account for dy-
namic variations in the interceptor-target relative relationship, particularly in scenarios
involving positional errors or other measurement inaccuracies. Therefore, a supplementary
acceleration term is employed to maintain the trajectory and eliminate positional errors.

The guidance law (21) can be modified as

a = Np(x)Vq̇ + acy (31)

Figure 5 illustrates the geometric relationship of the trajectory with positional error.
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Figure 5. Trajectory with positional error.

The solid line depicts the interceptor’s ideal trajectory, whereas the dotted line il-
lustrates the trajectory with positional error. The ideal position corresponding to the
horizontal coordinate x is presented by M(x, y), the actual position including positional
error is M̂(x, ŷ). The positional error is expressed as ∆y = ŷ − y. Defining a point M0 as
the beginning point of the eliminating process. Another point M1 is on the ideal trajectory,
the objective of error elimination command is to accomplish error correction prior to reach-
ing M1. Let R̂ be the distance between M0 and M̂, while R1 be the distance from M0 to M1,
and θ̂d the designed flight path angle at M1.To mitigate this error while maintaining the
desired flight path angle, a supplementary command acy is introduced as

acy = ay + aθ (32)

where
ay = K∆y (33)

The positional error is expressed as ∆y = ŷ − y. K > 0 is a coefficient of the command
term to eliminate positional error. In Equation (33) aθ is the acceleration command enforcing
the flight path angle to follow the expected value determined by the polynomial parameters.
In order to obtain aθ , it is necessary to derive the variation in flight path angle θ resulting
from the implementation of ay. Considering a = V θ̇ we have

K∆y = V θ̇ (34)

Let t̂ f denote the flight time required for error correction from M̂ to M1 in Figure 5 of
the manuscript. Integrate (34) with respect to t over the interval [t̂0, t̂ f ] yields the predicted
flight path angle at t̂ f , where t̂0 is the start moment of the eliminating process and t̂0 = 0.
Let ∆y at the ending point of the eliminating process be 0, θ̂ f be the flight path angle at M1.
we have

K∆y |t̂ f
0 =

∫ t̂ f

0
V θ̇dt

K
V

(
∆yt=t̂ f

− ∆yt=0

)
= θ̂ f − θ

− K
V
(y1 − y) = θ̂ f − θ

(35)

θ̂ f = θ − K
V
(y1 − y) (36)

Then the resulting flight path angle error can be written as

ε = θ̂d +
K
V
(y1 − y)− θ (37)



Aerospace 2025, 12, 484 13 of 21

Differentiating both sides of Equation (37) with respect to t, and defining the accelera-
tion command used to correct the flight path angle as

aθ = a + Kẏ (38)

where a is the current acceleration, then we have

dε

dR̂
=

aθ

V2 cos σ
(39)

Based on Equation (39), an equivalent acceleration command is defined as:

a′θ =
aθ

V2 cos σ
(40)

The performance index is subsequently given by Equation (41).

J =
1
2

∫ 0

R1

1
R̂ζ−1

a′2θdR̂, ζ ≥ 1 (41)

Here we introduced 1/R̂ζ−1 and a′2θ , which reflects the following design principles: (1)
Minimizing Energy Consumption: The integral of the square of the acceleration command
over the elimination process distance [R1, 0] is used to characterize energy consumption.
By incorporating the penalty function, we aim to minimize energy expenditure during the
process. (2) Smooth Transition of Acceleration Command: To ensure a smooth transition
of the acceleration command at the end of the eliminating process and reduce abrupt
acceleration changes, we designed the penalty function such that the acceleration command
is larger in the initial phase and smaller in the end. This effect becomes more pronounced
as the parameter ζ increases.

Substituting Equation (40) into Equation (39) and integrating both sides on R̂ ∈ [R1, 0]
yields

ε |0R1
=
∫ 0

R1

a′θdR̂ (42)

To adjust both the flight path angle and position values, ε is constrained by the
conditions ε R̂=0 = 0 and ε R̂=R1

= θ̂d − θ̂ f . Thus we have

−ε R̂=R1
=
∫ 0

R1

R̂
ζ−1

2 R̂
1−ζ

2 a′θdR̂ (43)

According to Schwarz inequality, we get

ε2
R̂=R1

≤
(∫ 0

R1

R̂ζ−1
)(∫ 0

R1

R̂1−ζ a′θ
2dR̂

)

J ≥
ε2

R̂=R1∫ 0
R1

R̂ζ−1dR̂

(44)

The equality is valid only when the following condition is satisfied:

R̂
ζ−1

2 = CR̂
1−ζ

2 a′θ (45)

where C is a constant and can be determined by substituting Equations (40) and (42) into
Equation (45):

C =
R̂ζ

ζε R̂=R1

(46)
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Therefore, the term aθ in Equation (32) is obtained as

aθ =
ζ

R̂
ε R̂=R1

V2 cos σ (47)

Then, substitute Equations (33) and (47) into Equation (32), the optimal guidance term
for positional error correction considering angular velocity constraint is given by

acy = K∆y +
ζV2 cos σ

R̂
ε (48)

Equation (48) can also be rewritten as

acy = K∆y +
ζV cos σ

t̂ f
ε (49)

Based on the structural composition of the above equation, the operational method of
the positional error elimination term is illustrated as Figure 6.

Missile-target relative 
position

Missile Body
Target

position

Np from Eqs. (18)

Ideal    from Eqs. (9)

Ideal    from Eqs. (10)

K

Missile 
Position

+

+

+

+
+

+

-

q q ca



  yx,

̂

ŷ

s VN p

got

MV cos

  from Eqs. (15)5 4 0,  

Figure 6. Implementation with positional error elimination term.

To systematically investigate the parametric selection of K and ζ, we substitute Equation (38)
into Equation (47), there is

a + Kẏ =
ζV2 cos σ

R̂
ε (50)

Then ζ can be expressed as a function of K

ζ =
R̂(a + Kẏ)
εV2 cos σ

(51)

Thus, we have established an analytical relationship between K and ζ, which indicates
that as K increases, ζ should also be augmented. Let L denote the flown distance and we
have R̂ = R1 − L. Normalizing L̄ as dimensionless flown distance, and L̄ = L/R1. Here,
we select R1 = 20, the weighting function 1/R̂ζ−1 varies with ζ as follows:

Figure 7 clearly illustrates the role of ζ and the designing principle mentioned.
From this, we derive the following pattern: as K increases, the acceleration command
required to eliminate position errors grows, which amplifies potential greater deviations in
the flight path angle. Consequently, a larger ζ becomes necessary to ensure rapid conver-
gence of these amplified deviations. However, it is important to note that the analytical
relationship between K and ζ, while guiding their proportional adjustment, is not strictly
rigid in practical applications. Nonetheless, the general rule that K and ζ should increase
or decrease simultaneously must be adhered to for stable and effective performance.
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Figure 7. The weighting function varying with ζ.

5. Numerical Simulation
In this section, numerical simulations with various conditions will be conducted

to investigate the performance of the new PGIA guidance. Comparative simulations
are carried out involving a fourth-order polynomial guidance and an n-order method.
The parameters in Table 1 are set as default value in our simulations, and the stopping
condition is that the interceptor-target relative range is less than 0.2 m.

Table 1. Basic simulation condition.

Parameters Values

Initial interceptor-target distance R 3000 m
Missile Velocity V 200 m/s

Initial position (x0,y0) (0, 0)
Target position (x f ,y f ) (3000, 0)

5.1. Guidance Law Performance

Four scenarios with different terminal constraints are given in Table 2, where the
acceleration ranges are obtained by Equation (30). The initial conditions are set as a0 =

10 m/s2 and θ0 = 10◦.

Table 2. Terminal constraints.

Cases Impact Angle (◦) Impact Time (s)

1 −20 16
2 −20 17
3 −20 18
4 −40 16
5 −40 17
6 −40 18

The simulation results with various terminal constraints are shown in Figure 8.
From Figure 8, it can be observed that the constraints of the flight time and the

flight path angle are achieved at the terminal point under PGIA, and longer expected
flight time leads to greater demands for acceleration. In Figure 8e, the value of guidance
coefficient Np becomes singular when q is equal to θ. Nevertheless, these singularities
do not significantly influence the calculation of the acceleration command as outlined in
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the preceding discussion. It can also be noted that the proposed guidance law exhibits a
smooth transition process for both the flight path angle and acceleration at the starting
point. This helps to prevent abrupt alterations in guidance commands in the event of a
handover from the midcourse guidance phase to the final phase.

(a) Trajectory profile (b) Acceleration

(c) Flight path angle (d) Look angle

(e) Guidance coefficient (f) Remaining flight time

Figure 8. Performance with different terminal constraints.

5.2. Performance with Positional Error

The effectiveness of the positional error eliminating strategy is verified by introducing
error along y direction at x = 600 m, x = 1200 m, x = 1800 m and x = 2400 m. The value
of ∆y is set as 20 m. The simulation parameters are set as a0 = 50 m/s2, θ0 = 5◦, θ f = −30◦

and t f = 17 s. The relative distance between the current interceptor’s position and the
correction completion point is assumed to be R̂ = 100 m. The simulation results with
K = 1.2, ε = 1 are presented in Figure 9.

From Figure 9, one can observe that the positional error exerts a notable impact on
both the trajectory profile and the flight path angle. A peak in the acceleration command,
resulting from the error elimination strategy, emerges when a positional error occurs.
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Subsequently, the interceptor’s position and flight path angle rapidly stabilize to their
ideal values, resulting in the absolute value of the acceleration to diminish. Ultimately,
the inclusion of the positional error compensation term ensures high precision in target
engagement, as well as precise control over time and angle constraints.

(a) Trajectory profile (b) Flight path angle

(c) Acceleration (d) Remaining flight time

Figure 9. Trajectory performances for different initial conditions.

5.3. Comparison Study

In this chapter, to show the advantages of the new designed guidance strategy, compar-
ison studies are conducted. One of the guidance laws employed for comparative simulation
is the impact time and angle guidance with sliding mode control (IAGSC) proposed in [21].
This method requires the polynomial coefficients of the LOS profile to be computed at each
time step. A critical parameter which ensures the interceptor achieves the desired impact
time, is determined offline. Additionally, two coefficients for the sliding mode control
must be predefined before the simulation. Another guidance law used for comparison
is the augmented polynomial guidance with impact time and angle constraints (APGL)
developed in [26], which also necessitates online computation of polynomial parameters.

In the first simulation, we primarily demonstrate the new guidance law’s capability in
adapting initial conditions. The starting flight path angle is 5◦, the impact angle is set as 0◦

while the desired flight time is 18 s. For the APGL, the value of the initial distance-to-go
error ε is designed as 300 m. For the newly proposed PGIA, three initial acceleration values
are considered, which are a0 = 0 m/s2, a0 = 50 m/s2 and a0 = 100 m/s2, the coefficient of
the positional error elimination term is chosen as K = 1.2. Figure 10 shows the comparison
results of the three guidance laws.

As can be observed, compared with the other two guidance laws, the newly designed
guidance law can adapt to the initial acceleration conditions and effectively accomplish the
flight. It is also evident that the simulation curves of PGIA and APGL exhibited similarities
in terms of acceleration performance and angular change trends. However, it should be
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clarified that the initial command of APGL is significantly affected by the value of the initial
distance-to-go error ε, and IAGSC generates a much larger initial acceleration compared to
the other two polynomial guidance laws, which can be noticed from Figure 10b. Moreover,
the process of solving the quadratic equation root online in the APGL simulation inevitably
causes an increase in the simulating time. In this scenario, APGL requires 57 s for the whole
trajectory simulation, while PGIA and IAGSC take only 0.11 s and 0.03 s, respectively.

(a) Trajectory profile (b) Acceleration

(c) X − θ (d) t − θ

Figure 10. Comparisons among three guidance laws.

To further highlight the advantages of the newly proposed guidance law during
the transition from mid-course to terminal guidance phase, a second-order element was
incorporated in the simulation to model the transfer function of a typical interceptor.
The second-order element was configured with a natural frequency of 2 Hz and a damping
ratio of 0.2, with initial conditions θ0 = −20◦, a0 = 0 m/s2 and terminal constraints
θ f = −10◦. The simulation initiates the terminal guidance phase when the interceptor
crosses the position of x = 200 m and the desired flight time of the phase is set as 18 s.
Additionally, in order to simultaneously observe the jitter caused by abrupt acceleration
changes and further compare the energy consumption characteristics of the three guidance
laws, a performance index function is established as

E =
∫ t f

t0

a2dt (52)

where a is the acceleration command, and t0 is the starting moment of the terminal phase
which is set as 0 s. The simulation results are presented below:

Figure 11a,c,d clearly demonstrate that, after incorporating the transition process,
the three guidance laws can still ensure precise target interception while satisfying both
flight time and impact angle constraints. However, as evident from Figure 11b,c,d,
the smoothness the mid-course to terminal guidance transitions of APGL and IAGSC
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are significantly impacted by the sudden transients in acceleration commands. The curves
exhibits severe oscillations at the transition points, which would inevitably adversely
affect the interceptor’s stability during actual flights. Furthermore, the computed perfor-
mance indexes for the three guidance laws are EPGIA = 4.31 × 104, EAPGL = 4.19 × 104 and
EIAGSC = 1.24× 105. Therefore, the novel guidance law exhibits lower energy consumption
after incorporating the transient phase, which more distinctly highlights the advantages of
the new approach.

(a) Trajectory profile (b) Acceleration

(c) X − θ (d) t − θ

Figure 11. Comparisons with second-order element.

The simulation results above demonstrate that the newly proposed guidance strategy
delivers high control accuracy and generates smooth acceleration commands throughout
the entire trajectory. Unlike the other two guidance laws, PGIA does not require predefined
control parameters, which enhances its adaptability to various engagement scenarios.
Most importantly, the initial acceleration command can be designed to obtain a seamless
transition from the middle-guidance course to the terminal phase of the guidance process.

6. Conclusions
In this study, we begin by reviewing existing research on guidance laws with flight

time and impact angle constraints. It is found that the initial states of the interceptor,
particularly the initial acceleration and flight path angle are not paid enough attention to.
This issue becomes critical during midcourse-terminal guidance handover scenarios, where
discontinuities between midcourse-phase acceleration commands and ITAC-generated
terminal guidance commands result in abrupt transitions that compromise flight stability.

Leveraging the unique capability of position polynomials to simultaneously model
spatial, temporal, velocity-directional, and acceleration parameters, we designed the pro-
posed guidance law in this work. The newly designed approach achieves precise terminal
time and angle control while rigorously incorporating initial acceleration and flight path
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angle constraints, thereby enabling smooth transitions during midcourse-terminal guidance
handover scenarios.

First, a fifth-degree polynomial function was formulated, and boundary condition
equations were established, including the time-to-go expressed in terms of remaining
flight distance. Then the proposed law is represented in a near-PNG form, and two
sets of polynomial coefficient solutions are given. The proposed method also enables
the estimation of the required acceleration range. Based on this, a solution selection
methodology has been developed. In order to ensure the effectiveness of the guidance
command determined by polynomial coefficients, the positional error elimination term is
incorporated using an optimization-based approach. Comparison simulations are carried
out to demonstrate the performance of the proposed guidance law. This strategy provides
a new insight to reduce the real-time calculation burden of the polynomial guidance law.
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