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Abstract: The accurate prediction of space target trajectories is critical for aerospace defense
and space situational awareness, yet it remains challenging due to complex nonlinear
dynamics, measurement noise, and environmental uncertainties. This study proposes
a confidence-based dual-model fusion framework that separately processes linear and
nonlinear trajectory components to enhance prediction accuracy and robustness. The
Attention-Based Convolutional Long Short-Term Memory (AC-LSTM) network is designed
to capture nonlinear motion patterns by leveraging temporal attention mechanisms and
convolutional layers while also estimating confidence levels via a signal-to-noise ratio
(SNR)-based multitask learning approach. In parallel, the Kalman Filter (KF) efficiently
models quasi-linear motion components, dynamically estimating its confidence through
real-time residual monitoring. A confidence-weighted fusion mechanism adaptively in-
tegrates the predictions from both models, significantly improving overall prediction
performance. Experimental results on simulated radar-based noisy trajectory data demon-
strate that the proposed method outperforms conventional algorithms, offering superior
precision and robustness. This approach holds great potential for applications in pace
situational awareness, orbital object tracking, and space trajectory prediction.

Keywords: neuralnetworks; space target; trajectory prediction; Kalman filters; radar data;
confidence

1. Introduction
Accurate trajectory prediction for space targets is crucial in aerospace defense, object

collision avoidance, and space situational awareness. The ability to precisely estimate
and track such objects under dynamic and noisy conditions plays a significant role in
threat assessment and strategic planning. However, predicting the trajectory of high-speed
maneuvering targets remains challenging due to complex nonlinear motion dynamics,
sensor measurement noise, and environmental uncertainties.

Conventional trajectory tracking and prediction methods typically rely on filtering
techniques or motion equations. For example, the Kalman Filter (KF) has been widely
used in trajectory prediction tasks, such as aircraft motion tracking, where optimized
initialization parameters enhance prediction efficiency [1]. Other adaptations include
infrared target tracking, where confidence-based KF enhancements improve real-time
performance [2]. Additionally, integrating filtering techniques with image processing has
shown promise for more accurate motion data extraction [3]. The empirical modeling of
system parameters is also employed to stabilize trajectory predictions [4]. However, these
approaches generally assume linear or weakly nonlinear dynamics, and they often suffer
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from reduced accuracy in highly maneuverable or nonlinear motion scenarios, which are
common in space targets.

Despite their effectiveness in some scenarios, traditional filtering methods face signifi-
cant challenges in high-speed space target tracking due to the highly dynamic nature of
these targets. Their rapid maneuvers and nonlinear motion characteristics render purely lin-
ear models inadequate. Consequently, conventional methods often struggle with prediction
accuracy in real-world conditions.

To address these challenges, recent research has increasingly leveraged neural network-
based approaches [5]. Recurrent neural networks (RNNs), particularly long short-term
memory (LSTM) networks, have demonstrated superior performance in time-series and
complex trajectory forecasting, frequently outperforming traditional filtering methods. The
Attention-Enhanced Convolutional LSTM (AC-LSTM), which incorporates convolutional
layers and attention mechanisms, has further enhanced prediction accuracy in complex
regression tasks [6]. Nonetheless, these models typically require large-scale labeled datasets,
and their performance may degrade in phases of motion that exhibit quasi-linear behavior,
where simpler models like KF could suffice.

Several studies have refined LSTM-based trajectory prediction. Ruiping Ji et al. [7]
proposed a deep LSTM network for online trajectory prediction during the ascent phase
of a high-speed vehicle, targeting the challenge of complex aerodynamic forces and the
limitations of parameter uncertainty in traditional models. The method achieved prediction
errors within several kilometers under noise-free conditions during the boost phase (i.e.,
close-range segment), with an online runtime of 0.5 s per prediction. However, this model
did not consider generalization across different scenarios, and it lacked robustness testing
under noisy conditions.

Jihuan Ren et al. [8] introduced a Context-Enhanced LSTM (CE-LSTM) that im-
proves traditional Gaussian-based models and physical equation solvers by redesigning the
LSTM’s internal units. Their method achieved prediction errors within tens of meters over
trajectory distances ranging from hundreds to thousands of meters (under noise-free condi-
tions), with average computation times of tens of milliseconds. However, its reliance on
hyperparameter tuning and lack of noise-resilience evaluation limit its practical robustness
in real-time applications.

Jiatong Liang et al. [9] developed Bidirectional LSTM with Attention Mechanism
(BiLSTM-AM), designed to reduce the computational burden of traditional extrapolation
methods and improve real-time responsiveness. Their experiments reported high accuracy
with prediction errors below 10 m within short-range scenarios and fast inference times of
a few milliseconds per run. However, the model depends on pre-filtered input data and
similarly lacks robustness testing under noisy conditions.

Although these methods achieve improvements over basic RNNs, their performance
in mixed-motion scenarios—where both nonlinear and linear phases coexist—is still limited.
In contrast to these methods—which focus either on nonlinear modeling via deep networks
or linear extrapolation via motion equations—our approach introduces a hybrid framework
that integrates both nonlinear (neural network-based) and linear (Kalman filter-based)
components. This enables the model to adapt to different phases of trajectory dynamics,
including both highly nonlinear and quasi-linear segments. Furthermore, our method
explicitly incorporates sensor noise into its design and maintains superior prediction per-
formance under noisy conditions, thereby improving both robustness and generalizability.

In addition to end-to-end neural network models, hybrid approaches have been ex-
plored for trajectory prediction. Yaoshuai Wu and Jian Chen [10,11] combined feedforward
networks with an extended Kalman filter (EKF) for indoor target localization, although
these methods often fail to fully utilize the nonlinear capabilities of neural networks. Licai
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Dai et al. [12] introduced a Kalman filter-enhanced LSTM model for trajectory estimation,
but its master–slave architecture limits the network’s adaptability. Other studies have
explored clustering-based methods, such as Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) integrated with gated recurrent units (GRUs), which reduce
computational overhead but are constrained to 2D trajectory predictions [13]. Overall,
while hybrid methods show promise, they often lack a principled mechanism to balance
the contributions of each module during inference.

Despite these advancements, many existing methods are not universally applicable to
space-target trajectory prediction due to the unique dynamic characteristics of such targets.
The motion of a high-speed space vehicle is typically modeled as a nonlinear dynamic
system governed by complex physical equations. However, under certain conditions, the
trajectory can be locally approximated as linear, especially when decomposed into distinct
phases such as ascent, free flight, and reentry. As a result, existing methods often struggle to
simultaneously handle the nonlinear and quasi-linear components of trajectory dynamics.

Given the strong regression capabilities of neural networks for nonlinear systems
and the established performance of KF for linear estimation, a hybrid approach that
combines both methodologies presents a promising solution. To this end, we propose a
novel algorithm for predicting three-dimensional space target trajectories that integrates a
dual-confidence AC-LSTM network with a Kalman Filter. The proposed method capitalizes
on the complementary strengths of both models through a dynamically weighted fusion
mechanism, enhancing overall prediction accuracy. Specifically, our contributions are
as follows:

• Confidence-based hybrid model: We propose a novel framework that combines AC-
LSTM networks applying multi-task learning techniques [14–16] for nonlinear trajec-
tory prediction and a multi-channel Kalman Filter for linear motion estimation, inte-
grating both modules through confidence-based fusion. A dual-confidence approach is
also introduced, where AC-LSTM estimates confidence based on signal-to-noise ratio
(SNR) variations, while KF confidence is derived from real-time residual monitoring.

• Simulation-based evaluation: A synthetic dataset of 1600 trajectories is generated
using a minimum-energy trajectory model [17]. Comprehensive experiments, includ-
ing ablation studies and comparisons with existing baseline methods, validated the
effectiveness of the proposed method.

2. Methodology
The proposed confidence-based dual-model fusion framework is a parallel algorithm

that integrates an AC-LSTM network [18] with a linear Kalman filter. This model was
specifically designed to analyze the 3D space target trajectory data. Both components
underwent structural and input-output optimization, enabling them to perform regression
tasks on 3D trajectory data effectively. Additionally, a redesigned output structure provides
confidence levels for the predictions, facilitating the dynamic weighted fusion of the
two algorithms. By incorporating the AC-LSTM neural network into the linear fitting
framework, the model enhances its nonlinear fitting capability while preserving the linear
regression characteristics. This approach ensured that the proposed model was theoretically
robust and practically executable.

Figure 1 shows a diagrammatic representation of the dual-confidence AC-LSTM and
KF fusion prediction models. The model comprises three principal components: a neural
network prediction module, a KF prediction module, and a fusion module.
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Figure 1. AC-LSTM and KF composite model structure.

2.1. AC-LSTM Prediction Module

We implemented an AC-LSTM architecture for the network-prediction module. This
hybrid model synergistically integrates convolutional neural networks (CNNs) and LSTM
networks, leveraging the complementary strengths of both architectures. Specifically, the
CNN component performs deep spatial feature extraction to capture trajectory motion
patterns, whereas the LSTM module subsequently conducts temporal regression analysis
on the processed sequential data. Compared with conventional LSTM implementations,
our framework demonstrates a superior capability for modeling complex spatiotemporal
relationships. To further enhance the representational power of the model, we incorporated
an attention mechanism that dynamically prioritizes informative temporal states. The
mathematical formulation of this architecture is described below.

For convolutional operations, we employed a parallelized one-dimensional convolu-
tion scheme that simultaneously processed multi-dimensional input features. This design
enables the efficient extraction of spatial correlations across different trajectory parame-
ters while maintaining temporal coherence. The convolution operation is mathematically
expressed as follows:

hconv
t = ReLU(Conv1D(xt, Wconv) + bconv) (1)

where ht denotes the output of the convolutional sequence (specifically serving as the
LSTM input when a single convolutional layer is deployed), xt represents the input feature
vector at timestep t, Wconv, and bconv denotes the learnable convolution kernel weights and
bias term, respectively, with the ReLU serving as the nonlinear activation function.

In our LSTM network implementation, we employed a stacked multi-layer LSTM
architecture to process sequential feature data. LSTM computational operations primarily
consist of three fundamental gating mechanisms (forget gate, input gate, and output gate)
coupled with dynamic cell-state updates. A detailed network schematic (Figure 2) and the
corresponding mathematical formulation are systematically presented below.

ft = σ(W f · [ht−1, hconv
t ] + b f ) (2)

it = σ(Wi · [ht−1, hconv
t ] + bi) (3)

ot = σ(Wo · [ht−1, hconv
t ] + bo) (4)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC · [ht−1, hconv
t ] + bC) (5)

ht = ot ∗ tanh(Ct) (6)
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where ft, it, and ot represent the outputs of the forget, input, and output gates, respectively,
and Ct and ht denote the current cell state and hidden state, respectively.

Figure 2. LSTM Network Architecture and Unit Structure.

The forget gate regulates historical information retention through the following com-
ponents: the sigmoid activation function σ governs the gate’s activation intensity, ht−1

indicates the preceding hidden state, hconv
t−1 corresponds to the convolutional feature map

from the previous timestep, and W f and b f are the trainable weight matrix and bias term,
respectively. Output ft determines the proportion of the previous cell state information to
be preserved.

The input gate modulates new feature integration via Wi and bi as its parametric
weights and bias, respectively, where the output it specifies the assimilation rate of novel
information into the current cell state.

The output gate manages the state visibility as follows: Wo and bo constitute its
learnable parameters, with the output ot scaling the contribution of the cell state to the
updated hidden state.

Cell state updating combines gated operations from both the forget and input gates,
utilizing the hyperbolic tangent (tanh) activation function to constrain state values within a
predefined numerical range, where Wc and bc parameterize the candidate state transforma-
tion. Subsequent hidden state generation depends on the refined cell state filtered through
the output gate.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

yt = Woutput · ht + boutput (8)

in the attention mechanism architecture, the query (Q), key (K), and value (V) vectors
are derived through linear projections of the input embedding vectors (or outputs of the
preceding layer) via distinct learnable weight matrices. The scaling factor

√
dk, where dk

denotes the dimensionality of the key vectors, is incorporated to regulate the magnitude
the of dot product computations, thereby maintaining gradient stability during backpropa-
gation. The attention weights were subsequently normalized using softmax activation to
form a probabilistic distribution. The final network output yt synthesizes contextual de-
pendencies across sequential positions through linear transformation parameters (Woutput,
boutput) operating in the attention-modulated hidden state ht.

To enable the synchronous output of trajectory predictions and confidence estimates
from the network prediction module, we implemented two task-specific fully connected
branches in the output layer, one dedicated to trajectory regression and the other to confi-
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dence score estimation. The network training framework employs a multi-task learning
paradigm in which distinct loss functions are strategically assigned to each subtask to
ensure proper gradient flow during backpropagation [19,20]. This multi-objective optimiza-
tion was formalized using a composite loss function:

L = k1 · LR + k2 · LC(k1 > k2) (9){
LR = 1

n ∑n
i=1(yi − ŷi)

2

LC = 1
n ∑n

i=1[yi log(ŷi) + (1 − yi) log(1 − ŷi)]
(10)

where L represents the joint loss function, and LR and LC represent the loss functions for
the regression tasks and confidence level assessment, respectively. The coefficient k1 should
be greater than k2 to ensure the dominance of the regression task.

To enhance the initially defined confidence levels in the neural network mod-
ule, we explicitly incorporated the confidence level estimation as a dedicated compo-
nent of the network’s final output. Considering the distinctive characteristics of space
targets—particularly their high velocity, long-range trajectories, and relatively low data
noise—we adopted SNR as the classification criterion for confidence levels in the dataset.
These predefined confidence levels were then used to train the confidence output layer
of the network. The confidence level formulation for the AC-LSTM prediction module is
expressed as

cnet =
1

1 + e−k(SNR−C)
(11)

where k and C are the coefficients and biases of the sigmoid function, respectively, which
were determined by empirically fitting different degrees of noise-added data from the
training set.

2.2. KF Prediction Module

A two-channel Kalman filter prediction model was employed to mitigate the impact
of fitting interference in the 3D space target trajectory data. This approach allows for the
independent handling of the position and velocity data, thereby addressing the magnitude
differences between these dimensions, which can impede accurate fitting. The state tran-
sition matrix F for both channels is initialized identically to ensure that the relationship
between position and velocity remains consistent throughout the prediction process. The
observation matrix H, employs distinct diagonal matrices to modify the mapping rela-
tionship between the position and velocity during the update process. The fundamental
principles underlying the KF algorithm’s operational steps are summarized as follows [21].{

x̂k = Fk x̂k−1 + Bkuk

Pk = FkPk−1FT
k + Qk

(12)

{
x̂′k = x̂k + K′(zk − Hk x̂k)

P′
k = Pk − K′HkPk

(13)

here, x̂k and x̂′krepresent the system states before and after the update, respectively, while
Pk and P′

k denote the estimation error covariance matrices before and after the update,
respectively, Bkis the control input matrix, uk is the external control input, Qk is the process
noise covariance matrix, K is the Kalman gain coefficient, and zk is the measurement
equation. These are all the process variables in the Kalman filter algorithm.

To further clarify the implementation details of the dual-channel Kalman filtering
mechanism in this module, we provide the shared state transition matrix F and the distinct
observation matrices Hp, Hv corresponding to the two prediction channels. These matrices
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define the system dynamics and measurement relationships used in each filter branch. The
specific forms are given as follows:

F =

(
I3 , △t · I3

△t · Ja(p) , I3

)
(14)

{
Hp =

(
I3, εp · I3

)
Hv = (εv · I3, I3)

(15)

Here, I3 represents a 3 × 3 identity matrix, ∆t is the discretization parameter. In the
observation matrix, εp and εv denote the micro-coupling coefficients for position and
velocity respectively. Ja(p) stands for the Jacobian matrix of acceleration with respect to
position, which can be expressed as follows:

Ja(p) =
∂a
∂p

= −µ

(
I3

r3 − 3
r5 · ppT

)
(16)

Here, the position vector is denoted as p = [x, y, z]T , a represents the target acceleration,
µ is the gravitational constant (taken as 3.986 × 1014 m3/s2 in this context), and r is the
distance from the target to the origin.

The confidence metric cKF of the KF prediction module follows a definition framework
analogous to that of the AC-LSTM confidence formulation. The critical distinction stems
from KF’s inherent stepwise recursive nature of KF: its prediction reliability quantification
utilizes the accumulated multi-step forecast errors relative to ground truth observations.
This error-driven confidence measure is mathematically expressed as follows:

cKF =
1

2n
(
∑n

i=1 cpi + ∑n
i=1 cvi

)
(17)

where the position confidence cp and velocity confidence cv are defined as follows:{
cp = k · Sp + d
cv = a · S2

v + b · Sv + c
(18)

We employed linear and quadratic equations to model the position and velocity confidence
metrics, respectively, where the coefficients k, d, a, b, and c represent the optimizable param-
eters of each corresponding regression function. The prediction uncertainty quantification is
implemented through residual analysis over N steps, with Sp and Sv denoting the standard
deviations of the position and velocity prediction residuals respectively, mathematically
defined as {

Mi =
[
xi, yi, zi, vxi, vyi, vzi

]
Pi =

[
x′i , y′i, z′i, v′xi, v′yi, v′zi

] (19)

{
Ri = |Pi − Mi|
S =

√
1
N ∑N

i=1(Ri − R)
(20)

where Mi, Pi, Ri are the measurement and prediction of step i and their residuals, respec-
tively, and S is the standard deviation of the prediction residuals for a total of N steps.
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2.3. Confidence-Based Fusion Module

In the fusion module, the predictions and confidence levels from the AC-LSTM and
KF prediction modules were dynamically weighted to obtain the final 3D trajectory vector
prediction result, P:

P =
cnet · Pnet + cKF · PKF

cnet + cKF
(21)

where cnet and cKF are the confidence levels of the two modules, and Pnet and PKF are the pre-
diction outputs from the AC-LSTM and KF modules, respectively. The final outputs are six-
dimensional vectors consisting of the three-dimensional position and velocity coordinates.

Finally, the fused predicted trajectory, including both 3D position coordinates and 3D
velocity vectors, was used as the model’s output, with a total weighted confidence score
representing the reliability of the prediction result.

To summarize, the proposed framework incorporates noise-awareness at multiple
levels to enhance robustness in uncertain environments. The AC-LSTM module leverages
multi-task training on datasets with varying SNRs and utilizes a confidence-guided loss
function to reflect prediction uncertainty. The Kalman filter module introduces a dual-
channel linear filtering structure, where confidence is estimated through multi-step residual
analysis. Finally, the fusion module adaptively integrates outputs from both branches based
on their confidence levels, achieving a balanced and reliable prediction outcome even under
significant noise, as demonstrated in the experiments presented in Section 4.

3. Simulated Dataset and Experimental Setup
This section serves as a supplement to the AC-LSTM and Kalman filter fusion frame-

work proposed in Section 2. Rather than introducing a new method, it provides essential
background and implementation details that support the development and evaluation of
our approach. Specifically, we first present the physical principles and mathematical models
used to simulate realistic three-dimensional space target trajectories, which form the basis
of our custom dataset. We then describe the experimental environment, including both
hardware and software configurations. Finally, we outline the hyperparameter optimiza-
tion strategy employed for the AC-LSTM network and specify the final parameter settings
adopted in the experiments. These elements are crucial for ensuring the reproducibility
and reliability of the results reported in the subsequent sections.

Although physics-based models are well suited for generating idealized trajectory
data under known conditions, they tend to be overly sensitive to measurement noise and
environmental uncertainties, making them unsuitable for accurate real-time prediction.
By contrast, the proposed data-driven framework—combining AC-LSTM with Kalman
filter fusion—is designed to learn implicit motion patterns from historical data and of-
fers enhanced robustness and predictive performance in uncertain and noisy scenarios.
Unlike traditional motion models, the computational efficiency of neural network–based
approaches is closely related to the number of neurons used. A detailed evaluation of the
trade-off between computational time and prediction accuracy for our method is presented
at the end of Section 5.

3.1. Simulated Space Target Trajectory Generation

As a fundamental trajectory model in high-speed aerospace vehicle dynamics, the
minimum energy trajectory adheres to the physical principles governing the target motion
and serves as a theoretical foundation for formulating advanced projectile trajectories.
Therefore, this study employed trajectory data generated under the established model as
the basis for systematic investigation. All simulated trajectories in the dataset follow the
minimum energy principle. The principle is shown in Figure 3.
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Figure 3. Trajectory parameters in the principle of minimum energy trajectory.

Here, six parameters are used to define a complete space target trajectory: a is a
semi-major axis; e is orbital eccentricity; i is orbital inclination; Ω is the right ascension of
the ascending node (RAAN); w is the argument of perigee; and τ is time of perigee passage.

Therefore, for a given launch point (λL, φL, HL) (geographic coordinates) and tar-
get points (λI , φI , HI) , a unique set of orbital parameters (a, e, i, Ω, w, t) defines a com-
plete minimum-energy trajectory. The mathematical representation is given by the
following equation: 

a = R/2 + 4Rsin(△ f /2)
e =

√
1 − P/a

i = arccos(C/
√

A2 + B2 + C2)± π

Ω = arctan(−A/B)± π

w = arccos
(−−→−PM

−→
PS /

∣∣∣−→PM

∣∣∣∣∣∣−→PS

∣∣∣)
τ = −(E − esinE)

√
a3/µe

(22)

where ∆ f , P, and E are functions related to λ (longitude) and φ (latitude), which have
been extensively studied in the literature and will not be reiterated here. µe is the as-
tronomical constant representing the Earth’s gravitational parameter, with a value of
3.986 × 105 km3 · s−2. PM and PS represent the major axis direction vector and the ascend-
ing node vector of the orbit, respectively. A, B, and C are the coefficients of the orbital
plane equation Ax + By + Cz = 0. These coefficients are derived from the coordinates
of the launch and target points transformed into the Earth-Centered Earth-Fixed (ECEF)
coordinate system [22] and can be expressed as follows:

A = −(yIzL − yLzI)/(xLyI − xIyL)

B = −(xIzL − xLzI)/(xIyL − xLyI)

C = 1
(23)

Here is the conversion relationship between geographic coordinates and ECEF coordinates:
x = R · cosφcosλ

y = R · cosφsinλ

z = R · sinφ + H
(24)

Thus, by applying the minimum-energy trajectory model, a space target trajectory
solution is obtained, and the complete coordinates of the trajectory are derived in the ECEF
coordinate system. By discretely sampling the trajectory at fixed time intervals, the position



Aerospace 2025, 12, 347 10 of 20

and velocity of the space object at any given time along the trajectory can be determined as
follows: {

r = a(cosE − e)P + a
√

1 − e2sinE · Q
v = (−a2nsinE + a2n

√
1 − e2sinE · Q)

(25)

where P and Q are the transformation vectors that define an orthogonal coordinate system
in the orbital plane. The mathematical expressions for these vectors are as follows:

P =

cosΩcosw − sinΩsinwcosi
sinΩcosw + cosΩsinwcosi

sinwsini


Q =

−cosΩsinw − sinΩcoswcosi
−sinΩsinw + cosΩcoswcosi

coswsini


(26)

3.2. Network Hyperparameter and Dataset Parameters

To determine the optimal architectural hyperparameters of the network—including
the convolutional layer depth, kernel dimensions, LSTM layer configuration, and hidden
unit allocation—we implemented a systematic hyperparameter optimization framework.
By leveraging GridSearchCV’s exhaustive search capability, we conducted a comprehen-
sive grid-based hyperparameter search across predefined parameter spaces. The best-
performing parameter configuration identified through this process was subsequently
adopted as the final model specification. Figure 4 illustrates the operational workflow of
the hyperparameter tuning methodology.

Figure 4. Schematic Diagram of Network Hyperparameter Local Optimization.
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The optimal network parameters are shown in the following Table 1.

Table 1. Network parameter table.

Parameter Value

Convolutional Layer 1 360
Convolutional Layer 2 3600

Convolutional kernel size 2
LSTM Hidden size 720

LSTM Layer number 2
Dropout 0.1

Learning rate 0.001
Optimizer Adamax
Batch size 16

Epochs 50

The training datasets were generated through minimum-energy trajectory simula-
tions, following the physical principles detailed in Section 3.1. Our simulation protocol
involves the following: (1) discretizing the geographical constraints by sampling pre-
cise latitude-longitude coordinates within predefined launch and impact site boundaries,
(2) computing three-dimensional space target trajectories for each coordinate pair, and
(3) transforming all trajectory data into the ECEF coordinate system through rigorous
coordinate conversion algorithms.

Our dataset construction protocol involved the strategic selection of 20 origin points,
20 designated destination points, and four apex points to generate 1600 distinct trajectories.
To enhance data diversity and temporal resolution, we implemented an overlapping slid-
ing window mechanism with a 10-step window length (corresponding to 10 s temporal
coverage at 1 s sampling intervals) for trajectory segmentation. The complete parameter
configurations governing the simulation framework are presented in Table 2.

Table 2. Dataset parameter table.

Origin Point Destination Point Apex (km)

Latitude (◦) Longitude (◦) Latitude (◦) Longitude (◦)
−122.438
−116.364
−103.995
−98.647
−95.296

44.997
42.998
40.071
32.270

105.924
109.183
116.443
112.798
117.310

36.761
33.900
29.057
40.98

850
900
950
1000

To enhance the robustness and diversity of the dataset, we implemented controlled
noise injection by introducing additive white Gaussian noise at varying amplitudes to
the simulated trajectories. This procedure systematically generated data samples with
predefined SNR levels ranging from 10 dB to 40 dB in 5 dB increments, thereby creating a
comprehensive noise-resilient training corpus.

3.3. Experimental Environment

To ensure that the experimental control variables are the same, the experimental soft-
ware and hardware configurations used in this study are listed in Table 3. All comparison
models were run on the same platform.
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Table 3. Experimental environment table.

Configuration Item Descriptive

CPU Inter Core i5-10500 CPU @ 3.10 GHz
Memory DDR4 16 GB

GPUs NVIDIA GeForce GTX1660 Super
Pycharm Python39 Pytorch 2.2.1 CUDA 12.1

4. Performance Evaluation
4.1. Ablation Study on Model Components

To systematically validate the efficacy of our framework, we conducted a three-branch
ablation study: (1) full architecture (AC-LSTM+KF)—the proposed confidence-based joint
prediction algorithm; (2) AC-LSTM standalone—pure deep learning implementation with-
out confidence-guided KF integration; and (3) KF standalone—the conventional filtering
approach excluding neural network enhancements.

Through a comparative analysis of the prediction accuracy across different configu-
rations, we further examined the synergistic role of AC-LSTM and the Kalman filter in
trajectory prediction, highlighting the joint model’s advantages in handling both linear and
nonlinear trajectories. The results of the ablation experiments are listed in Table 4.

Table 4. Results of ablation experiments.

Model Configuration MAE (m)

Full 1001.8
AC-LSTM Only 5543.7 ↑

KF Only 27,268.2 ↑
↑ Compared with the combined model, the prediction accuracy of the single model decreased.

Ablation studies revealed distinct performance patterns across model configurations.
The integrated AC-LSTM+KF architecture achieves superior precision, demonstrating
an 82% improvement over standalone AC-LSTM and 96% enhancement compared to
the KF-only implementation. This validates the complementary strengths: AC-LSTM’s
nonlinear modeling capacity effectively captures complex trajectory patterns, whereas the
KF’s linear estimation capability provides noise-resistant stabilization. This significant
performance gap highlights the critical need for hybrid approaches in high-noise dynamic
trajectory scenarios.

To validate the confidence estimation accuracy and training effectiveness of our neural
component, we conducted isolated testing with pre-labeled confidence datasets. Figure 5
quantitatively compares the input confidence levels against network-derived confidence
estimates across different noises, and the Spearman correlation coefficients (≤1) for the
three dimensions of XYZ confidence are 0.987, 0.989, 0.990, respectively.

The Figure 5 demonstrates a comparison between the predicted and true confidence
values in the network module. As shown, the predicted confidence varies inversely with
data reliability and under low-SNR conditions, the confidence range expands significantly,
indicating reduced reliability. Conversely, high-SNR scenarios yielded tightly clustered
confidence values approaching 1.0, demonstrating consistency with statistical principles.
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(a) (b) (c)

Figure 5. Predicted confidence and ground-truth confidence. (a) Trajectory prediction confidence in
the X dimension. (b) Trajectory prediction confidence in the Y dimension. (c) Trajectory prediction
confidence in the Z dimension.

4.2. Prediction Accuracy Under Different SNR

To evaluate the efficacy and practical viability of our proposed methodology rigorously,
we conducted comprehensive benchmarking against six established baseline approaches
prior to controlled experimentation. The comparator models included the following: (1) a
linear Kalman filter (KF), (2) a particle filter (PF) [23], (3) a multi-layer CNN, (4) LSTM, (5) a
gated recurrent unit (GRU) [24], and (6) a transformer–encoder architecture [25].

All models were trained on identical input tensors with dimensions of 1 × 6 × 10,
maintaining a consistent spatial–temporal resolution. Notably, conventional architectures
generate output tensors of size 1 × 6 × 1, whereas our dual-branch framework produces
enhanced 1 × 6 × 2 outputs through the channel-wise concatenation of prediction-confidence
tensor pairs.

The simulation employed an identical methodology on test data with the following
parameter configurations: origin point coordinates (125° W longitude, 45.0° N latitude, and
50 m altitude), destination point coordinates (115° E longitude, 35.0° N latitude, and 10 m
altitude), and the trajectory apogee of 850 km. To simulate real-world sensing conditions,
controlled Gaussian noise was injected at an SNR of 20 dB. The simulated test data are
shown in Figure 6.

(a) (b)

Figure 6. 3D trajectory and its decomposition diagram. (a) The 3D trajectory of the minimum
energy trajectory and the coordinate sampling point after adding noise. (b) The components of
the trajectory in the x, y, z direction and vx, vy, vz velocity (ECEF coordinate system) and their noise
sampling points.
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Standard experimental protocols typically mandate noise reduction and signal filtering
during data preprocessing to enhance algorithmic prediction accuracy. To rigorously
evaluate the noise robustness of our method, we deliberately excluded preprocessing
stages and directly utilized raw sensor data with 20 dB SNR for validation testing.

The benchmark evaluation measured three-dimensional trajectory prediction perfor-
mance across comparative algorithms using mean absolute error (MAE) metrics. Our
analysis specifically highlights both instantaneous error fluctuations and aggregate per-
formance through mean error quantification, with comprehensive comparative results
detailed in Figure 7.

Figure 7. Error performance of different models in 3D trajectory prediction.

The figure above illustrates the prediction error fluctuations of the proposed algorithm
and comparison algorithms on the test data. The x-axis corresponds to the trajectory
sampling points, and the y-axis quantifies the discrepancy between the predicted and true
values. The colored markers along the y-axis display the overall mean errors for each of the
seven algorithms.

As shown in the figure, the traditional convolutional neural network demonstrates
limited efficacy in regressing high-speed aerospace trajectories in complex environments.
In contrast, the proposed method exhibits a prediction error 2.8 times lower than that of
conventional approaches. When configured with appropriate parameters, the baseline
algorithms achieved relatively accurate predictions; however, our method showed statisti-
cally significant improvements: a 20.9% mean error reduction over Kalman filtering, 7.5%
versus particle filtering, 28.3% against LSTM, 21% relative to GRU, and 26.9% compared to
transformer architectures.

These experimental results conclusively demonstrate the dual advantage of the pro-
posed algorithm for 3D trajectory prediction: optimal absolute accuracy coupled with
minimal error fluctuations across operational scenarios.

To rigorously assess the noise robustness of the algorithm, we conducted compre-
hensive trajectory prediction experiments employing varying noise-corrupted datasets
(10–40 dB SNR). The quantitative evaluation employed three complementary metrics: the
MAE, root mean squared error (RMSE), and coefficient of determination (R2), systemati-
cally measuring precision loss, error magnitude, and model interpretability across signal
degradation conditions. The experimental results are shown in Figure 8.
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(a) (b) (c)

Figure 8. Noise robustness characterization: prediction performance under signal degradation.
(a) MAE values predicted via the algorithm at different SNRs. (b) RMSE values predicted via the
algorithm at different SNRs. (c) R2 index of the model at different SNRs.

Figure 8a,b show that the proposed algorithm consistently achieved the lowest MAE
and RMSE values under different SNR conditions. In the experiment with an SNR of 10 dB,
the prediction error metrics of the proposed algorithm were reduced by 38% and 41%,
respectively, compared with the best-performing baseline algorithm. Figure 8c shows that
the proposed algorithm achieved the highest R2 value in the model evaluation. In the SNR
experiment at 10 dB, the R2 metric of the proposed algorithm is 13.6% higher than that of
the best baseline model.

5. Comparison with Baseline Methods
The proposed confidence-aware fusion mechanism demonstrates superior prediction

accuracy compared to conventional 3D trajectory predictors. Through the progressive
refinement of prediction errors across trajectory phases, our method effectively integrates
linear Kalman filtering with nonlinear neural dynamics. The baseline models used for
comparison include both classical integration methods and recent deep learning approaches.
Specifically, RK4 represents a physics-based baseline grounded in orbital motion equations,
while DeepLSTM, CE-LSTM, and BiLSTM-AM are drawn from recent works targeting
trajectory prediction under noisy conditions. These models provide diverse reference
points for evaluating the effectiveness and robustness of the proposed hybrid AC-LSTM
and Kalman filter framework.

The benchmark evaluation includes the following: (1) BiLSTM-AM networks; (2) CE-
LSTM networks; (3) deep recurrent LSTM networks, with traditional trajectory equations
as the reference baseline (based on four-order Runge-Kutta integration [26]). Experimental
validation utilized the dataset described in Section 3.2, partitioned into 70% training, 20%
validation, and 10% testing subsets.

Five metrics evaluate the prediction fidelity, with formal definitions provided
as follows.

• Mean absolute error (MAE);

MAE =
1
n

n

∑
i=1

|yi − ŷi| (27)

MAE measures the mean absolute error between the predicted value and the actual
value and is suitable for assessing the magnitude of the absolute error.
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• Root mean square error (RMSE);

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (28)

RMSE measures the mean of the square root of the prediction error, which reflects the
size of the prediction error, and larger errors are amplified.

• Mean absolute percentage error (MAPE);

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (29)

MAPE measures the prediction error as a percentage of the actual value and is often
used to assess the relative error of the model, which can reflect the obvious scale
differences in the data.

• Mean squared percentage error (MSPE);

MSPE =
1
n

n

∑
i=1

(
yi − ŷi

yi

)2
× 100% (30)

MSPE measures the squared error of the prediction as a percentage of the actual value
and can penalize large errors, the value of which is sensitive.

• Coefficient of determination (R2);

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (31)

R2 measures how well the model fits and how well the independent variable explains
the dependent variable. The closer the r-squared value is to 1, the better the model. A
value close to zero indicates a poor model fit.

Our experimental validation incorporates realistic noise simulation by introducing
zero-mean Gaussian perturbations (σx = 35,000 m, σy = 20,000 m, σz = 60,000 m) to the
radar measurements, and the SNR of these data were calculated to be approximately 40 dB.
Figure 9 and Table 5 compares the multi-dimensional prediction errors (X/Y/Z axes) and
metrics of the five methods.

As shown in Figure 9 and Table 5, the proposed method demonstrates superior
performance across all three spatial dimensions compared to the classical RK4 and several
deep learning baselines (CE-LSTM, BiLSTM-AM, and Deep LSTM). Notably, in the Y-axis
direction, which corresponds to the linear component of the trajectory, our method achieves
a substantial performance advantage. Specifically, it records the lowest MAE (24,135 m),
RMSE (30,813 m), and MAPE (0.93%) among all methods, indicating highly accurate and
stable predictions. This significant improvement is attributed to the proposed model’s
strong capability in capturing linear motion trends and effectively leveraging the temporal
dependencies of the data.

It is also important to note that the MAPE and MSPE values for the Y-axis are gen-
erally higher across all models. This does not necessarily indicate poor model perfor-
mance. Rather, the Y-axis component exhibits relatively small variation ranges (as shown in
Figure 6b), which amplifies relative error metrics such as MAPE and MSPE. Consequently,
even small absolute deviations can result in large percentage-based errors. Despite this,
our method still achieves the lowest MAPE and MSPE in the Y direction, underscoring
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its superior performance and stability in modeling linear trajectories under challenging
evaluation conditions.

(a)

(b)

(c)

Figure 9. Prediction error in three positional dimensions. (a) Prediction error in the X-axis direction.
(b) Prediction error in the Y-axis direction. (c) Prediction error in the Z-axis direction.

Table 5. The test metrics of the five algorithms are on the 3D trajectory dataset.

Method Axis MAE (m) RMSE (m) MAPE (%) MSPE (%) R2 (%)

RK4
X 147,485 176,992 4.20 0.28 75.86
Y 314,790 390,219 50.02 232 87.66
Z 177,258 202,698 3.08 1.22 82.90

CE-LSTM [8]
X 37,926 46,976 1.17 0.02 96.77
Y 24,168 30,919 17.04 372 99.98
Z 64,542 81,835 1.12 0.02 97.46

BiLSTM-AM [9]
X 661,31 81,052 1.86 0.05 94.94
Y 145,845 166,337 24.89 80.55 99.26
Z 84,616 104,615 1.51 0.04 95.45

Deep LSTM [7]
X 45,693 56,968 1.27 0.03 97.50
Y 169,266 210,135 18.39 24.92 98.82
Z 53,726 66,098 0.94 0.01 98.16

Ours
X 32,446 40,022 1.00 0.02 97.66
Y 24,135 30,813 36.14 1321 99.98
Z 52,659 66,397 0.93 0.01 98.18

In contrast, the X and Z axes exhibit more nonlinear and oscillatory behavior, making
the prediction task more challenging. Even so, our method still outperforms all baseline
models in these two directions. For instance, it achieves an MAE of 32,446 m and RMSE
of 40,022 m in the X-axis, and 52,659 m and 66,397 m in the Z-axis, respectively. Although
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the performance margins in these directions are slightly narrower due to the inherent
complexity of nonlinear trajectories, the proposed method consistently delivers the best
results. This indicates that our model can generalize well across both linear and nonlinear
dynamic patterns.

In terms of overall prediction quality, our method also exhibits the highest coefficient
of determination (R2), exceeding 97.66% in all three directions and reaching up to 99.98%
on the Y-axis, which confirms its strong goodness-of-fit. Moreover, the mean squared
percentage error (MSPE) remains below 0.01% in all cases, showcasing the model’s remark-
able robustness to noise. Taken together, the experimental results clearly validate that
the proposed dual-confidence fusion model not only improves prediction accuracy across
multiple dimensions but also enhances robustness under noisy conditions, thereby making
it highly suitable for practical applications in 3D trajectory forecasting.

Table 6 provides a comparison of memory occupancy and reasoning efficiency across
several methods. The results indicate that the traditional method, which relies on nested
loops, exhibits a slower performance. Although the reasoning time for the method pro-
posed in this study is marginally slower than that of other approaches, it incorporates
a greater number of neurons, resulting in the highest reasoning efficiency among the
evaluated methods.

Table 6. Memory usage and inference efficiency of several methods.

Method
Model

Memory
Usage (MiB)

Inference
Memory

Usage (MiB)

Inference
Time (s) 1

Number of
Parameters

Inference
Efficiency

(s) 2

RK4 / / 0.1816 / /
CE-LSTM [8] 88.2 71.9 0.0932 793,115 1.175 × 10−7

BiLSTM-AM [9] 39.1 65.2 0.0345 3,159,430 1.092 × 10−8

Deep LSTM [7] 36.1 53.5 0.0722 2,044,294 3.530 × 10−8

Ours 95.0 173 0.1307 19,118,227 6.837 × 10−9

1 Take one average of five inference times. 2 Ratio of inference time to number of network parameters.

6. Conclusions
The experimental results on a simulated three-dimensional space target dataset con-

firm that the proposed method not only achieves high prediction accuracy but also demon-
strates exceptional robustness in complex environments. Specifically, our confidence-based
dual-model fusion framework, which separately processes linear and nonlinear trajectory
components, significantly improves the prediction performance. Compared to other related
algorithms, our method reduces the prediction error in space target trajectory prediction,
with the MAE value of the prediction error reduced by at least 11.1%, and the RMSE
value was reduced by at least 12%. Furthermore, the proposed method maintains higher
operational efficiency within the neural network module, ensuring that computational
requirements are well balanced with performance gains. These results underscore the
effectiveness of our dual-confidence fusion strategy, combining the strengths of the AC-
LSTM network for nonlinear motion prediction and the Kalman Filter for quasi-linear
motion modeling. This approach not only enhances prediction accuracy but also ensures
reliability in real-world aerospace defense applications. The proposed method holds signif-
icant potential for aerospace defense systems, where rapid and precise target prediction
is crucial for operational success in the complex and dynamic environments typical of
aerospace missions.

Future work could explore several promising avenues: first is extending the model
to address a broader range of defense scenarios, such as those encountered in aerospace
environments, where rapid changes in target motion and diverse threat profiles are preva-
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lent. By testing the model with different datasets, including real-world projectile trajectory
data, we can enhance its generalizability and ensure its effectiveness in varying operational
conditions encountered in aerospace defense. Second, investigating more advanced feature
extraction techniques and confidence estimation methods will allow for further refinement
of the model’s predictive accuracy, Which is critical for space situational awareness systems,
where precision is paramount. Finally, integrating additional sensor data from sources such
as radar, infrared, and satellite systems will strengthen the model’s robustness, providing a
more comprehensive and adaptable solution for aerospace applications. These advance-
ments would not only improve prediction accuracy but also ensure that the model can be
effectively deployed in real-time aerospace missions, where quick, reliable, and accurate
target tracking is vital for mission success.
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