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Abstract: Air traffic control (ATC) hazard feature extraction is a key information retrieval
task for air traffic hazard records. While text-based feature extraction ranks term importance
based solely on statistical results, we aim to use external knowledge to extract features
that meet the definition of hazards. This paper proposes a feature extraction method
based on expert knowledge to define hazard features and construct a hazard analysis
framework. We illustrate the model training process using communication navigation and
surveillance (CNS) data, which includes candidate feature generation, feature vectorization,
and cluster-based standardization. The correct structure of terms in hazard records, the
vector distribution of candidate features, and the clustering effect of different methods
are briefly explored. The algorithm refines and accumulates expert knowledge through
iteration. The experiment results demonstrate that the dataset obtained after specific
linguistic processing based on expert knowledge could extract more informative candidate
features to construct analysis context by k-means. The proposed model outperformed
four comparative algorithms in accuracy, reaching 82% and 86% in the air traffic control
operation (ATCO) dataset and the CNS dataset, respectively. Additionally, the information-
rich hazard features support safety management departments’ decision-making, reducing
the cost of investigating hidden hazards.

Keywords: text feature extraction; hazard; air traffic control; standardization; expert knowledge

1. Introduction

Safety and air traffic control operating efficiency have come into conflict as a conse-
quence of the rapidly expanding aviation market. Global air passenger traffic increased
by 7.5% from 2016 to 2019, but the number of accidents increased from 75 to 114 in 2019,
with an average accident growth rate of 15% [1]. The rapid expansion of Chinese air
traffic flow has exacerbated this problem. According to statistics from the Civil Aviation
Administration of China in 2019, there were more than 10 million air traffic services, but
the growth rate of accident symptoms was 25% higher than the growth rate of air traffic
services [2]. Following COVID-19, air traffic flow is expected to increase significantly in
China, posing additional safety concerns.

Safety is the cornerstone of aviation. Air traffic operating environments are dynamic
and continuously present new safety hazards [3]. Learning lessons and extracting hazard
information from past and ongoing hazards is essential for preventing similar hazards and
improving safety management [4]. Hazard identification is the core of risk management
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in civil aviation safety management. Aviation safety analysis methods based on text have
either taken an accident analysis approach to disclose the relationship between hazards
and accidents or an expert analysis approach to identify the causes of accidents following
severe or rare accidents [5,6]. Because of the widespread adoption of safety concepts
and advanced aviation data monitoring systems, management departments have easily
acquired numerous text datasets from practitioner reports that can be used for in-depth
safety evaluation and hazard detection [7]. How to extract key features of hazardous
sources from a large number of reported unsafe incident description reports is intuitively
important for safety risk identification and assessment.

To identify and classify hazard records more precisely, the International Civil Aviation
Organization (ICAO), in its Safety Management Manual (Doc 9859), defines a hazard as
a condition or object that has the potential to reduce the safety of personnel, equipment,
or support capabilities [3]. The definition of a hazard is broadened in Chinese safety
management documents to encompass environmental factors, as well as unstable energy
or substances within the operating system [8]. We define hazard as either conditions or
objects that have the potential to compromise safe operations (e.g., “poor visibility” and
“obstacles”), deriving this definition from the aforementioned documents. Thus, hazard
features are explained as words or phrases that generalize hazard information (e.g., both
“poor weather” and “bad weather” are extracted as “weather”).

Automatic feature extraction based on text aims to extract key information in documents.
There are two categories of feature extraction methods based on text data: supervised learning
and unsupervised learning [9,10]. The former methods are considered a classification task,
which involves learning to differentiate between key and non-key information using labelled
data. The feature extraction method based on unsupervised learning utilizes term features in
the text (e.g., word frequency [11], part of speech [12], context [13], etc.) to prioritize terms and
select vital information. For the hazard feature extraction task, the information that experts
care about is not always statistically significant. In aviation operations, hazards are relatively
dispersed, and their descriptions vary significantly based on the reporter’s department or region.
A substantial quantity of description variance diminishes the efficiency of extraction models
based on statistical features. Our method incorporates a vast quantity of expert knowledge to
classify and standardize the extraction of ATC hazards.

In response to the lack of standardized descriptions for hazard sources, this paper
proposes an iterative extraction model to facilitate the accumulation of expert experience
and the standardized extraction of hazard features. The model generates candidate features
based on phrase co-occurrence. Domain experts, who are not natural language processing
specialists, find it challenging to provide effective tuning options for hazard extraction
models without concise explanations or methods for interacting with results. This paper
employs Euclidean distance to assess semantic similarity between key features. Using this
measurement method, candidate features are clustered and visualized with the k-means
algorithm. In this study, 249 key hazard features were extracted, and 2171 similar hazard
features were integrated. The paper’s primary contributions are:

e Based on an iterative approach, we propose a hazard feature extraction method that
integrates expert knowledge and refines it.

e  We concluded that the k-means algorithm had the highest accuracy by comparing
the semantic clustering effects of different algorithms. The clustering results are
represented visually to enhance retrieval and analysis efficiency for experts.

e  The rest of the paper is structured as follows. In Section 2, the pertinent literature on
aviation safety analysis and feature extraction is reviewed. In Section 3, the algorithm
of this paper is introduced in detail. In Section 4, we design some experiments and
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discuss them accordingly. Finally, some conclusions and directions for future work are
drawn in Section 5.

2. Literature Review
2.1. Aviation Safety Analysis

The aviation industry is data-intensive. In the process of secure production, there
is an abundance of safety data, such as operational data, incident reports, and radar tra-
jectories. The aviation industry has created a large number of databases for collection
and in-depth statistical analysis in order to perpetually maintain and enhance aviation
safety and investigate potential safety hazards. With an increase in the quantity or variety
of data, data-driven methods are used to analyze safety situations and predict accidents
in advance [14]. Text-based machine learning methods are applied to capture the pro-
cess of accidents, analyze the causes of accidents, and explore the correlation between
accidents [15]. Given the large amount of hazard records available, some papers have
proposed the feature extraction model, which is used to extract information of hazard
records from machine learning. One method involves semantic enhancement, introducing
prior knowledge to improve model performance. Pimm et al. augmented basic language
analysis with aviation-specific knowledge to extract structural compound terms correctly
and replace abbreviations and synonyms, then extract features by association analysis [16].
Tanguy et al. [17] found the “tense problem” in the text, and improved Pimm et al.’s
data processing by stemming. In addition, researchers are expanding their study of the
annotation of professional terms, synonym substitution, and spelling correction.

Another method explores the relationships between metadata and hazard features
through cluster or topic analysis of textual metadata. The primary challenge to be addressed
in this context pertains to the process of producing metadata. Ahadh et al. [18] used
statistical analysis of various textual components such as capitalization, word frequency,
and position to generate metadata. Akhbardeh et al. [19] and Rose et al. [20] dealt with
similar metadata by DBSCAN and k-means clustering to facilitate the capture of topic
features. The above two types of methods used a large amount of labelled data to enhance
precision, but they were unable to explain hazard features.

2.2. Key Feature Extraction

Key feature extraction methods are mainly divided into two categories of research
directions: unsupervised and supervised. The term frequency-inverse document frequency
(TFIDF) is utilized to assess the significance of terms by taking their frequency and inverse
document frequency into account [21]. Campos et al. [22] proposed the YAKE model, which
narrows the scope of feature extraction to a single document, using word frequency, case,
position, relatedness, and occurrence as the basis for identifying and sorting keywords in
the document. The utilization of embedding has garnered interest due to its effectiveness in
combining statistical features with contextual data of words or phrases and mapping them
into vectors [23]. Sen2vec and Doc2vec implement sentence and document representation
based on contextual information [24,25]. Some academics extract important aspects based
on document or phrase similarity through vector representations of sentences and docu-
ments. Traditional supervised methods are regarded as classification problems aimed at
distinguishing between keywords and non-keywords. Zhang et al. [26] classified words or
terms in documents into three categories, “good keywords”, “indifferent keywords”, and
“bad keywords”, and defined candidate keywords through global and local information.
Meng et al. [27] proposed a method for keyword generation based on an encoder—decoder
structure that captures the deep semantics of text via deep learning.
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Within the professional domain, key feature extraction models focus more on salient at-
tributes and specialized expertise. Liang et al. [28] combined keyword extraction with sampling
techniques to resolve imbalanced keyword distribution in policy texts. Through semi-supervised
training, Shen et al. [29] integrated expert knowledge and enhanced key feature extraction mod-
els for news texts. Another method for integrating expert experience by Zheng et al. [15]
employed active learning to map the key features to the event category instead of a single text.

The primary challenges associated with the extraction of hazard features in Chinese
research pertain to word segmentation and the absence of labelled datasets. Wang Jiening
et al. achieved word segmentation and recognition of specialized vocabulary through the
development of a customized dictionary. Additionally, they trained a hazard extraction
model by means of manual labeling. As a result of the constraints associated with manual
labels, it was possible to extract and recognize only nine features for hazard records [30].
Dong et al. used spelling normalization and stopping word removal to process the Chinese
dataset. The research on hazards in China is deficient in hazard description standards,
resulting in challenges such as difficult data processing and limited feature information [31].

Because of the stringent safety management and clear communication requirements in
ATC, hazard feature extraction prioritizes the integration of expert and domain knowledge.
However, standardized descriptions have rarely been considered in the existing research
on feature extraction of ATC hazards. Regarding the extraction of features from hazard
records, we propose a method based on domain knowledge and expert knowledge to
extract standard hazard features.

3. Methodology

The ATC hazard feature extraction process is shown in Figure 1. The methodology is
divided into three iterative training steps: candidate feature generation, features vectoriza-
tion, and standardized description. The generation of candidate features follows the latest
iteration of expert knowledge, including extraction suggestions and classification sugges-
tions. During feature vectorization, the goal is to design a mapping method that preserves
the distribution and semantics of features. Subsequently, the standardized description step
utilizes the k-means algorithm for semantic clustering, and the results are visualized to
enhance the transparency and readability of algorithm outcomes. The iterative method
adjusts the generation of subsequent candidate features and feature vectorization based on
the results of each clustering (including accuracy and error information).

Figure 1. Flowchart of hazard features extraction model.
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3.1. Candidate Feature Generation

Features of a hazard are not simply the most specific word or phrase, as features
are (at least partially) intended for the topic of a hazard. Expertise informed the clar-
ification and standardization of terminology in this section. Then, we combined the
standard terms based on the co-occurrence window to generate candidate hazard features

Zan7i

(e.g., “runway”/“invasion”, “crew” /“deviation from route”).

1.  Auxiliary segmentation. Because of the absence of “space” between words, Chinese
texts should be segmented into words. Word segmentation refers to the semantic
decomposition of text into individual words or phrase sets. In order to enhance
comprehension of the word segmentation model, this section uses expert knowledge
to construct a segmentation dictionary, including professional terms (e.g., “runway
intrusion”), compound words (e.g., “primary system”), standardized features (e.g.,
“complex weather”), and parts of speech (POS). Matching text and segmentation
dictionary achieves word segmentation and POS tagging.

The second step of auxiliary segmentation is to remove stop words, to avoid inter-
ference from meaningless information. As shown in Figure 2a,b, stop words, which are
common words that are typically filtered out during text processing because they carry
little meaningful information (e.g., “and”, “the”, “is”), accounted for 60% of the word seg-
mentation results. The adjacent segmentation results are recombined and compared to the
segmentation dictionary to generate new segmentation results. Recombination enhances

the capacity of word segmentation models to produce structurally correct compound words.

1.0 1.0 1.0
08 | 0.8 F 08 |
Q i QN
306 S 06 S 06
2 2 2
E 04f £ 04f E 04t
o o a
02 F 02F 02F
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Dimensionl Dimension| Dimension|
(a) (b) (0

Figure 2. Visualization of specific linguistic processing in CNS. (a) The collection of text vectors after
auxiliary segmentation; (b) the collection of text vectors after the stop word is deleted; (c) the set of
text vectors after synonym substitution.

2. Synonym substitution. Hazard records are reported by non-specialists, relying on
their individual comprehension. Synonym substitution relies on expert knowledge
and is more effective at eliminating descriptive ambiguity and text alignment. As
illustrated in Figure 2b,c, the synonymously replaced data has more concentrated
distribution, enabling the model to focus on more significant and clear information.

3. Co-occurrence combination. Co-occurrence combination combines adjacent items in
word segmentation results and generates candidate features. This generation method
facilitates the extraction of professional nouns, compound words, and description
modes from hazard records. The information content of candidate characteristics
keeps growing as more expert knowledge is accumulated. We calculated the fre-
quency of word or phrase co-occurrences within window range. Table 1 shows the
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co-occurrence phrases and frequencies of the phrase “runway”. The phrases in the
co-occurrence window are highly correlated, and the combination contains clear haz-
ard information (e.g., “runway crossing”, “runway erroneous entry”). We kept all
co-occurrence combinations and output as hazard candidate features to avoid missing

low-probability hazards.

Table 1. Statistics of co-occurrence combinations of runways.

Incursion

Cross Erroneous Entry  Occupied  Change  Polluted Expansion Threshold

runway

40

8 7 5 4 4 3 2

Dimension2

0.6

0.4

0.0

3.2. Feature Vectorization

Word embeddings are used to convert subjective words or phrases into vectors. Self-
training and pre-training [32-34] are two methods used to train word embedding models.
Self-training word embedding makes use of all contextual relations in the hazard corpus to
determine mapping rules between words and vectors. The pre-trained word embedding
model is built by training on a large-scale corpus and then fine-tuning on a hazard-specific
corpus. The performance of word embeddings trained under low resource conditions is
typically inferior because of over-training. As illustrated by the comparison in Figure 3,
the word vectors generated by pre-training tend to form more distinct clusters than those
generated by self-training.

0.6

04

Dimension2

0.0

1 1 1 1 1 1 1 1 1 1

0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Dimensionl Dimensionl

(a) (b)

Figure 3. Visualization of word embedding with different training in CNS. (a) Self-training embed-
ding; (b) pre-training embedding.

The pre-trained model provides initial association rules for words or phrases in the
text, but compound terms (e.g., “main landing gear”) lack mapping rules. Compound
terms consist primarily of nouns and verbs, and their meanings are closely related to
their components. We based embedding of compound terms on the semantic and global
properties, as shown in Equation (1):
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where v, is the compound word vector and its i-th component is v;. tfid f (w) measures
the normalized frequency tf(w) and inverse document frequency id f (w) of word w in the
document to determine its importance:

tfidf(w) = tf(w) x idf (w) )

where f(w)
Hlw) = max{ f(w')|w' € d} ®)

. N
idf(w) = log e Dlw e ay] @)

The normalized frequency tf(w) of a word w in a hazard record d is computed by
dividing the original frequency of the word in the hazard record f(w) by its maximum
frequency max{ f(w')|w’ € d}. The vector corresponding to the word w is v. Normalization
is intended to ensure that numerous components v; of lengthy text (where components
v; are more likely to feature multiple times) and short text have the same weight. Inverse
document frequency id f (w) measures the specificity of terms based on the ratio between
the total number of hazard records N and |{d € D|w € d}|. Equation (4) helps reduce the
importance of common words (e.g., “runway”, “facilities”, etc.).

Given that the distance in vector space represents semantic similarity, vectorization of
candidate features must combine the semantics and distribution of co-occurrence of two
terms to avoid semantic distortion. Researchers use context-based vector representation
methods for learning co-occurrence combination, sentence, or document representations,
which ensuring that the resulting vectors have complete semantics (including fundamental
word meanings and thematic meanings). We vectorize candidate features (co-occurrence
combination representations) by weighted average:

_ W Wij .
Vij = X0vj+ — X U; (5)
X ij E sz
i=1 j=1

where the candidate feature vectors v;; are composed of v; and v;. W;; is the number of
co-occurrences of terms i and j. According to the distribution assumption, semantically
similar words occur in similar contexts, i.e., they co-occur with the same other words.
Equation (5) ensures that terms with co-occurrence distributions have similar weights
through normalization, thereby facilitating the extraction of similar features.

3.3. Standardized Description

Standardized description involves experts selecting and classifying candidate hazard
features. Candidate feature vectors are clustered based on semantic relationships, and
the results are visualized to enhance retrieval efficiency and description precision for
expert readers.

K-means is a clustering algorithm widely used in data analysis [35] that evaluates
the similarity between vectors by calculating the Euclidean distance between two feature
vectors. The algorithm aims at minimizing the distance between each candidate feature
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vector and the specified cluster center, and it performs cluster center selection and intra-
cluster vector allocation. The algorithm steps are as follows:

Step 1: Randomly select K vector from the set of all candidate features as the initial
representative hazard candidate feature vector.

Step 2: Assign the remaining candidate feature vectors to the cluster with the smallest
distance to the representative cluster vectors.

Step 3: Calculate E, the sum of the Euclidean distances between the non-representative
vectors of each cluster and the representative cluster vectors:

E=Y Y Euclidean(vi,vy) (6)

keK meM;

where Euclidean (v, vy, ) indicates the Euclidean distance between the representative vector
v and the intra-cluster vector v;,. My represents the number of vectors contained in the
cluster k.

Step 4: Calculate the average vector of each cluster and set it as the new representative
cluster vector. Repeat steps 2 and 3 to redistribute the intra-cluster vectors and calculate
the distance E, between the intra-cluster vectors and the new cluster center.

Step 5: Replace the cluster center if E, — E < 0.

Step 6: Repeat steps 3, 4, and 5 until the representative vector remains unchanged.

The K-means clustering results of the candidate feature vectors of the CNS dataset are
shown in Figure 4. Each point represents a candidate feature, and each color represents a
class of key features of the hazard. Figure 5 depicts the prospective features for “Network
attack” in Figure 4 in the form of a “word cloud”; that is, the larger the font, the greater the
frequency. Safety management experts were allowed to evaluate and categorize candidate
features based on their visualizations. The word segmentation dictionary was expanded
according to the extraction suggestions of experts (e.g., “Threatening + Network Security”
in Figure 5). Security management integrates candidate features with the same semantics
and forms classification suggestions (e.g., “threatening + network security” is classified
as “Network attack”). Since the clustering results shown in Figure 5 had completed two
iterations, some candidate features had sufficient hazard information and did not require a
new extraction recommendation (e.g., “Network attacks + operational risks”). This process
was iterated until no further extraction and classification suggestions were generated
to terminate.

1.0 I~ i

® Incomplete Technical Defense Measures
Single Link or Node Assurance
Poor Weather

0.8

0.6

0.4

Dimension2

0.2

0.0

Figure 4.

0.0 0.2 0.4 0.6 0.8
Dimension]

K-means visualization of CNS.

House Leaking
@ Insufficient Construction Guarantee
Insufficient Construction Supervision
® Poor Working Condition
Block Radio Signals
® Active/Standby Facilities Switching
Communication Link Problem
@ Lack of ability or Experience
Switch Failure
Network Attacks
Incomplete Airport protection measures
@ Poor VHF Communication
Power Supply Problem
Radio Interference
Building Subsidence or Cracking

1. 0 ©® Facilities Maintenance Problem

Automated System Failure
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Figure 5. The word cloud of hazard features “network attack”.

4. Results and Discussion

In this section, we validate the proposed key feature extraction method for hazards
and compare it with other extraction methods. Section 4.1 details our dataset. Section 4.2
presents the relevant pre-training models and conducts comparative validation. Section 4.3
discusses the verification of the k-means algorithm’s effectiveness by comparing it with
different clustering methods and presents the feature extraction results.

4.1. Hazard Record Dataset

In this study, we extracted key features of hazards based on the 2009-2021 ATC hazard
database. The database contains 9146 hazard records. Hazard records include record
codes, reporting departments, and hazard information. (1) The hazard number is an
index for retrieving hazard information. (2) ATCO, CNS, and meteorology comprise the
reporting department, with the first two units contributing more than 85 percent of the data.
(3) Hazard information is mainly written on the theme of hazard identification and trigger
factors. The distribution of text length for hazard information is predominantly below
100 words, as depicted in Figure 6.

4162
4000

3248

2000

2000

Frequency

1000 271

0-50  50-100 100-150 150-200 200-250250-300 300-350 350-400 400-450450-500 =500

Text length(Text Chinese character count)

Figure 6. Statistical of hazard record length.
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4.2. Cluster Analysis

The pre-trained word embedding model’s capacity for semantic analysis has a greater
influence on the distribution of candidate feature vectors and clustering tendencies.
Figure 7 shows the two-dimensional distribution of word embedding vectors based on
the hazard record corpus, Wikipedia corpus, People’s Daily corpus, Baidu Encyclopedia
corpus, Zhihu Q&A corpus, and merged corpus. To evaluate the feasibility of clustering,
we used the Hopkins statistic [36] to analyze the clustering results of different word embed-
ding techniques to compare the local structure of actual and random datasets and identify
non-random patterns or outliers as shown in Equation (7). The calculation of the Hopkins
statistic is expressed as follows:

1.0 1.0 1.0 F
08 08 0.8
i~ i~ =
S 06 S 06 S 06
E 04F E 04F E 04F
(a] (o] (a]
02 02 02
0.0 | > \ 0.0 [ N L 0.0 [ L L
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Dimension] Dimension] Dimension]
(a) (b) (0)
1.0 1.0 1.0 F
08 | 08 | 08
> | > b~
S 06F 2 06F S 06}
E 04F E 04 E 04
a a o
02F 02 02
0.0 | ' L 0.0 | R N 0.0 | R )
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Dimension| Dimension| Dimension|
(d) (e) ()

Figure 7. Visualization of word embedding in CNS based on different corpuses. (a) Hazard record
corpus; (b) Wikipedia corpus; (c) People’s Daily corpus; (d) Baidu Encyclopedia corpus; (e) Zhihu
Q&A corpus; (f) merged corpus.

Step 1: Sample uniformly m sampling points {p1, ..., pn } from the candidate feature
vector set R.

Step 2: Calculate the distance x; = dist(p;, pj) from each sampling point to the nearest
point p;.

Step 3: Generate a random dataset randompg drawn from a random uniform distribu-
tion with {p1, ..., pm} and the same variation as the candidate feature vector set R.

Step 4: On the randomg, for each point q; € randompg, follow steps 1 and 2 to calculate
yi = dist(q;, q;).

Step 5: For computing the Hopkins Statistics (H), the formula is defined as follows:

m
Zlyi
1=
H= = i @)
i+ Yy
i=1 i=1
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A dataset exhibiting clustering tendency displays a smaller average nearest neighbor
distance than a uniform dataset. The meaningfulness of clustering was assessed with a
confidence level of 90%, obtaining a confidence space of H > 0.75.

Sample datasets were generated from the six word embedding vectors mentioned above,
using a sampling ratio of 20%. The Hopkins statistics for these six datasets are presented
in Table 2, and the corresponding two-dimensional visualizations are illustrated in Figure 7.
Evidently, the vectorization results based on the pre-trained model exhibited a greater tendency
to cluster. CNS data had a more concentrated distribution of word embeddings than ATCO
data. In the following, we discuss the varieties and complexity of the hazards to explain the
different vector distributions in the aforementioned two departments.

Table 2. Hopkins statistic values for different word embedding models.

Models  Hazard Record Wikipedia People’s Daily Baidu Encyclopedia Zhihu Q&A
. Merged Corpus
Profession Corpus Corpus Corpus Corpus Corpus
ATCO 0.821 0.794 0.758 0.762 0.802
CNS 0.841 0.807 0.789 0.812 0.794

Figure 7b shows a clustering tendency resulting from feature vectorization based on
the Wikipedia corpus. Despite the fact that same-hazard descriptions are variable, word
embeddings mitigate these description differences through semantic mapping, leading to
feature vectors that exhibit clustering potential. Each cluster collects candidate features that
follow the same semantics or topics. K is determined by the type and quantity of hazards.
The accuracy of clustering achieved through the K-means method markedly surpasses that
of Gaussian mixture models (GMMs) and density-based spatial clustering of applications
with noise (DBSCAN). When compared with datasets labeled by domain experts, K-means
clustering demonstrates an impressive range of precision, achieving a peak accuracy of
100% and a lowest observed accuracy of 85%. Figure 8 shows the clustering visualization
results by highlighting in blue the correct clustering of network-attack-related hazards
by each methodology and in red the misclustering. The three algorithms cluster feature
vectors based on probability, density, and distance. The GMM considers the probability
distributions for clustering as a combination of vector distributions within the cluster.
Cluster distribution fitting results are unstable when lacking feature vectors, so there are
ring-shaped error points in Figure 8a. DBSCAN clusters candidate features by setting the
lowest density threshold. The uncertainty in vector distances within the cluster limited the
establishment of a viable density threshold for vector clustering in Figure 8b.

@ correct clustering

©® misclustering

@ correct clustering

@ misclustering

@ correct clustering

® misclustering

1.0 F 1.0 F 1.0 F
08 | 08 | 08 |
b= | = | = |
2 0.6 -. 0 2 0.6 -. 0 2 0.6 -. .
2 2 2
E 04F E 04F £ 04F
() o (=) 4 (=) -3
02 F 02 F 02 F
0.0 | 1 1 0.0 | 1 1 0.0 1 1
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Dimension| Dimension| Dimension|
(a) (b) (0)

Figure 8. Comparison of hazard features for “network attack” using three different clustering
algorithm. (a) DBSCAN; (b) GMM,; (c) K-means.
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As shown in Figure 8c, the clustering accuracy of the K-means algorithm was higher
than that of the other algorithms, and it could discover potential semantic relationships.
“worm + attack” is the blue point on the far left, which exhibits a strong semantic association
with “network attack” in the high dimension. The position of “worm + attack” shifted
as a result of the display of dimensionality reduction. The only incorrectly clustered
candidate feature was “attack + switch failure”. The switch being attacked is an equipment
malfunction result. The model lacks an analysis of chain hazards, but it can generate
suggestions for hazard features to prevent error clustering (e.g., semantic equivalent of
“attack + switch failure” and “network attack”).

4.3. Feature Extraction Results Analysis

Keywords are likely to contain topic-related text phrases, comprising over 80% of key
features with more than four Chinese characters. The training corpus included 2544 ATCO
hazard records and 1324 CNS hazard records. The study analyzed the efficacy of extracting
key features at different levels of domain knowledge. Figure 9 summarizes the hazard
feature extraction results for ATCO and CNS, considering specialists without normalization
(iter0), standardized once (iterl), standardized twice (iter2), standardized twice without
recombination (iter2 + nw), and using a professional dictionary.

IterO Iter0

2.0 6.7

1.0 . .
Professional Professional

Iterl o Iterl o
dictionary dictionary
Tter2 Tter2-+nr Tter2 Iter2-+nr
N ATCO Il CNS I ATCO Il CNS
(a) (b)

Figure 9. Feature extraction performance under different expert knowledge levels. (a) Average
number of features; (b) average Chinese characters.

The standardization of hazard features was achieved through the accumulation of
expert knowledge in this paper. Following standardization twice, 176 categories of hazard
features for the ATCO and 72 types of hazard features for the CNS were extracted. We
discovered that the most prevalent causes of hazards fell into four categories: human factors,
facility factors, management factors, and environmental factors. Hazards are caused by
the failure of one or more departments. For example, “illegal handover” may result from
personnel violations, management negligence, or the failure of technical defense measures.
Therefore, we labelled the main causes of hazards. The hazard features corresponding to the
above four causes accounted for 61%, 28%, 7%, and 4%, and there were 742, 464, 162, and
93 similar hazard features, according to the annotation results. Figure 10 illustrates the top
fifty features and their causative labels. Human factors exhibited greater complexity than
the other three factors. From feature content, man-made hazards were mainly aimed at the
behavior or ability of controllers or operation guarantee personnel, which are described in
a wider and more varied perspective. The hazard records of the ATCO consist of controller
errors, working performance, etc., so additional iterative training was required for the
experiment depicted in Figure 9.
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Hazard features

Buildin

B Human factor

mm Facility factor

Environment factor

= Management factor

Figure 10. The top 50 features

Number of similar candidate features

of similar candidate features and their causative factors.

Using expert knowledge, the correlation between candidate features and hazard
features was clarified. Moreover, external knowledge improved the precision and scope
of model identification beyond common hazard features. To reduce the reading cost of
experts, we conducted semantic clustering on the candidate features; some of the results are
displayed in Figure 11. Domain experts standardized the description of similar candidate
features based on the clustering results; for instance, “insufficient battery capacity” and

“abnormal discharge” wer

e extracted as “power failure”. Unlike other classification or

topic models, our proposed extraction models for hazard features can explicitly explain the
extraction basis and provide concise extraction results.

Non—compliance
with ATC
agreements

Air traffic
controller
mistakes

Wrong order

Power
failure

City
electricity
problems

Power
supply

__Handed over without agreement

operating without agreement

Agreement not strictly enforced
—Don’ t follow the agreement
__Wrong departure order

Order ambiguity

Irregular instructions

—Post wrong flight-level

__Insufficient battery capacity
Abnormal discharge

Battery aging

—Emergency UPS failure
—Abnormal city electricity
City power outage

Unstable electricity quality

— Insufficient power supply

Figure 11. Text display of similar candidate features.
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The performance of the algorithm was verified by 636 ATCO hazard records and
302 CNS hazard records in the test set. The longest record contained 343 Chinese characters,
the smallest record consisted of 4 Chinese characters, and the mean number of Chinese
characters was 67. We compared commonly used unsupervised key feature extraction
algorithms as follows:

TFIDF: TFIDF is an importance ranking algorithm. Importance is calculated by word
frequency and specificity [37].

Text-Rank: Text-Rank is a graph-based key information retrieval algorithm. Impor-
tance ranking is based on co-occurrence between terms [38].

YAKE: YAKE is also an importance ranking algorithm based on case, context infor-
mation, position, word frequency, and occurrence. Since there is no case in Chinese, we
replaced it with bold characters in the experiment [22].

Keybert: Keybert is a self-supervised algorithm. The model defines and ranks the
topic similarity of each phrase through context [39].

Table 3 demonstrates that our method outperformed other methods in terms of accu-
racy and feature information. Hazard features were not necessarily the most statistically
significant word or term, but more importantly, they fit the definition and topic. The high
extraction accuracy of Keybert and YAKE! indicated the importance of contextual semantic
information for hazard feature extraction. For example, the word “power” could mean an
engine (e.g., auxiliary power unit) or power supply (e.g., uninterruptible power supply) in
the CNS department. Our method defines and interprets terms through expert experience
and domain knowledge. Similarity ranking is utilized by both our method and the Keybert
algorithm. However, we compare the similarity between candidate features and hazard
feature corpus, as opposed to a certain hazard record. Finally, because the complexity of
controller behavior is greater than that of equipment failure, the hazard feature extraction
of in ATCO requires more domain knowledge support.

Table 3. The performance results of comparison methods and our methods.

Methods
Dataset Evaluation Index
TFIDF Text-Rank YAKE! Keybert Ours
ATCO 45.9% 52.0% 64.8% 69.3% 82.4%
Accuracy

CNS 58.3% 57.0% 67.5% 74.8% 86.7%

ATCO Information 2.82 2.79 3.47 4.92 5.78

CNS (Chinese characters) 2.87 2.93 3.62 465 6.31

5. Conclusions

This paper proposes a feature extraction model for ATC hazards designed to effectively
summarize critical hazard information. Model training employs an iterative method to
integrate and accrue expert knowledge among the three processing modules of candidate
feature generation, feature vectorization, and standardized description. In addition, special
language processing methods, including recombination and pre-trained embeddings, are
proposed to help frame the capture of correctly structured compound words and the
establishment of vector mapping rules. The iterative training results yielded a list of hazard
features that described both the ATCO and CNS datasets, along with the terms or candidate
features most closely related to each hazard feature.

Overall, this study highlights the necessity of hazard-definition-based feature extrac-
tion in safety assurance work, which allows deeper safety assessment of ATC operations.
Through expert knowledge, the candidate features can analyze the record author’s un-
derstanding of the hazard in a more comprehensive manner and convert the abstract text
expression into a term list containing key information and the correct structure by segment-
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ing auxiliary words and replacing synonyms. The analysis of candidate features by experts
is a process of delineating and explicitly standardizing hazards. These normalization
proposals can regulate the generation of candidate features and eradicate the detrimental
effect of subjective expressions on semantic comprehension. By analyzing co-occurring and
valuable term combinations, experts are able to identify unnoticed hazards or operational
hazards. Finally, the model undergoes multiple rounds of training to establish a mapping
correlation between terms and vectors, utilizing pre-training embeddings and the current
corpus of the database.

The experimental results showed that: (1) in the ATCO and CNS datasets, the haz-
ard feature extraction model based on expert knowledge achieved accuracies of 82.4%
and 86.7%, respectively, significantly outperforming other extraction algorithms. This
demonstrates that extensive domain knowledge can effectively enhance feature extrac-
tion accuracy; (2) comparing feature extraction results across different levels of expert
knowledge showed that expanding corpus knowledge allowed the model to autonomously
identify more significant and comprehensive features; (3) the disparity in experimental per-
formance between the two datasets indicates that the model requires more comprehensive
expert knowledge to support the training of complex, abstract, and discrete corpora. The
experimental results provide insights for subsequent accident analysis and feature extrac-
tion to increase accuracy by expanding domain knowledge or adding pertinent corpora,
which coincides with the large-scale models.
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