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Abstract

This paper presents a rigid–flexible coupling dynamic modeling framework and a fixed-
time control strategy for a flexible space-tethered satellite (STS) system. A high-fidelity
rigid–flexible coupling dynamic model of STS is developed using the finite element method,
accurately capturing the coupled attitude dynamics of the satellite platform and flexible
tether. Leveraging a simplified representation of the STS model, a nonsingular terminal
sliding-mode controller (NTSMC) is synthesized via fixed-time stability theory. Uncertain-
ties and disturbances within the system are compensated for by a radial basis function
neural network (RBFNN), ensuring strong robustness. The controller’s fixed-time conver-
gence property—with convergence time independent of initial conditions—is established
using Lyapunov stability theory, enabling reliable operation in complex space environments.
Numerical simulations implemented on the STS rigid–flexible coupling model validate the
controller’s efficacy. Comparative analyses demonstrate superior tracking performance
and enhanced practicality over conventional sliding-mode controllers, especially in the
aspect of chattering suppression for the satellite thrusters.

Keywords: space-tethered satellite; finite element modeling; fixed-time control; sliding-
mode control

1. Introduction
The space-tethered satellite (STS) system, a novel multi-body spacecraft configuration

typically comprising a primary main satellite and multiple son satellites interconnected
through kilometer-scale high-strength flexible tethers, has garnered significant research
interest in aerospace engineering [1,2]. This innovative architecture demonstrates substan-
tial potential for advanced space applications, particularly in large-scale orbital structure
assembly, active debris-removal missions, and precision orbital rendezvous and docking
operations [3]. The system’s unique combination of structural flexibility and mission scala-
bility has motivated comprehensive investigations across three critical domains: satellite
configuration frameworks [4,5], dynamic modeling methodologies [6,7], and flight control
architectures [8,9].

In conventional STS dynamic modeling, the dumbbell model has been widely adopted
for theoretical derivation and subsequent analysis, wherein taut tethers during deployment
operations are typically idealized as rigid massless rods, and the overall system has three
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degrees of freedom: tether length, in-plane angle, and out-of-plane angle [10,11]. This
oversimplification fundamentally neglects the system’s inherent flexible characteristics, sig-
nificantly compromising the fidelity of dynamic behavior representation while exhibiting
critical limitations in complex real-world space scenarios. To address these limitations in the
dynamic modeling of such complex spacecraft, recent scholarly efforts have progressively
shifted toward implementing advanced flexible modeling approaches, particularly Kane’s
method [12,13], lumped-mass parameterization methods [14,15], absolute nodal coordinate
formulation (ANCF) [16,17], and finite element modeling (FEM) techniques [18,19], to
enhance the physical accuracy of tethered system dynamics. Among mainstream modeling
methods, the finite element method offers distinct advantages in small-deformation scenar-
ios, characterized by high precision, reliability, and considerable practical engineering value.
Its computational efficiency has cemented its role in spacecraft dynamics modeling. Owing
to the structural and operational particulars of tethered satellites, FEM is highly applicable
to their investigation, prompting numerous scholars to deploy it for related modeling and
analytical studies. In the study [19], Li et al. propose a nodal-position FEM with implicit
symplectic Gaussian–Legendre Runge–Kutta integration to resolve numerical instability
and error accumulation in long-term elastic tether dynamics modeling, ensuring energy
conservation and global stability for tethered spacecraft deorbiting simulations. In [20],
a nodal-position FEM-based rigid–flexible dynamic model is constructed to simulate the
interactions between a tether, a satellite and space debris. Furthermore, an adaptive sliding-
mode control strategy is developed for robust attitude regulation, thereby enhancing the
reliability of space debris deorbiting missions. Zhang and Zhu employ a FEM to develop a
high-fidelity nodal-position dynamic model of flexible tethered space systems and propose
a finite element-formulated optimal control framework to regulate their geometrical profile
through moving-horizon variational principles [21].

The control of STS systems primarily encompasses two aspects: attitude regulation
and deployment control. Both fundamentally constitute reference tracking problems, where
the controller drives system states (including both attitude angles and tether length) to
converge to prescribed target values with specified dynamics. Sliding-mode control (SMC)
is widely adopted for its robust performance and resistance to interference, and it shows
promising application prospects in spacecraft control [22,23]. The convergence time of
the traditional terminal sliding-mode method is closely dependent on the system’s initial
state, resulting in long convergence times in complex scenarios. The fixed-time stability
theory effectively addresses this issue by proving that the system can determine an upper
bound for convergence time, independent of the initial state. This offers distinct advan-
tages in satellite control during complex mission scenarios [24]. Previous studies have
explored the application of fixed-time SMC to the STS system. Tao et al. proposed a decen-
tralized control framework integrating nonsingular SMC and coordinated thrust-motor
strategies for triangle tethered formation systems, enabling fixed-time deployment con-
vergence and precise tether-satellite matching [25]. Ref. [26] designs a fixed-time terminal
SMC and tension-thrust coordination strategy for a Lagrangian-modeled spinning tether
system in high-eccentricity orbits, enabling artificial gravity generation with lightweight
design, controlled spin velocity, and target gravity achievement. Ref. [27] develops a
novel fractional-order fixed-time sliding-mode controller for space tether deployment and
proves global stability and demonstrating superior rapidity and steady-state performance
applicable to underactuated systems.

The radial basis function (RBF) neural network can be used for the compensation of
unknown terms in the system and has a strong ability to approximate nonlinear systems [28].
It is widely used in fields such as robot trajectory tracking [29] and spacecraft attitude
control [30]. In [31], Li et al. propose an adaptive super-twisting sliding-mode controller
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with fractional-order terminal attractor and RBF neural network-based adaptive law for
fast, stable deployment of STS, addressing in-plane/out-of-plane motion uncertainties
and disturbances while ensuring finite-time convergence via Lyapunov analysis. In [32],
Zhong and Xu develop an RBFNN-based terminal sliding-mode controller for tethered
space-tug thrust regulation, where RBFNN estimates nonlinear model discrepancies and
SMC enables rapid attitude tracking, validated by simulations demonstrating stabilized
tug-target dynamics with thrust saturation and tether slackness avoidance.

Based on established STS dynamic modeling methods and control strategies, this
study adopts a finite element-based rigid–flexible coupling dynamic model that effectively
captures both tether flexibility and satellite attitude dynamics. Focusing on core mission
requirements, we extract essential in-plane attitude parameters from the complex model
to derive a simplified model for controller design. By integrating fixed-time stability
theory with RBF neural network compensation, we develop a novel nonsingular terminal
sliding-mode controller. The controller’s effectiveness is verified through application to
the complete rigid–flexible coupled model, demonstrating precise attitude control and
fixed-time convergence capability that meets stringent space mission requirements.

The structure of this paper is as follows: Section 1 presents the research background,
reviews current advances in tethered systems, and outlines the paper’s objectives. Section 2
presents the dynamic modeling of the STS system, introducing the rigid–flexible coupling
dynamic model based on the finite element method followed by simplifications to facilitate
controller design. Section 3 discusses the design of a fixed-time sliding-mode controller
incorporating a neural network and provides the necessary theoretical foundations and
stability proofs for the controller. Section 4 offers numerical simulations of the dynamic
model and controller, comparing the results with those of a classical nonsingular terminal
sliding-mode controller to assess its convergence behavior and dynamic performance.
Finally, Section 5 summarizes the findings and contributions of this paper.

2. Flexible Dynamic Model of STS
The STS system structure and coordinate system definition studied in this paper

are shown in Figure 1. We define the coordinate system as follows: geocentric inertial
coordinate system OXYZ, body-fixed coordinate system OmXmYmZm, and OsXsYsZs of the
main satellite and sub-satellite. O is at the Earth’s center of mass, the coordinate system
OXYZ is determined by the equatorial plane, and the celestial rotation axis is determined
according to the right-hand rule. For the two satellite body coordinate systems, their
origins are both located at the satellite’s center of mass, OmXm and OsXs point to Earth
along geometric nadir vector, OmYm and OsYs are perpendicular to port-side structural
planes of the satellite, and OmZm and OsZs are also determined by the right-hand rule.

Figure 1. Schematic diagram of STS.
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The rigid–flexible coupling dynamic model of the STS system will be modeled using
the nodal position coordinate method [19,20]. Following standard finite element assembly
procedures, the tether’s governing equation is derived as

MtẌt + KtXt = Ft,S + Ft,G (1)

where Mt (mass matrix), Xt (position vector), Kt (stiffness matrix), Ft,S (elastic force vec-
tor), and Ft,G (gravitational force vector) are the kinetic parameters of the tether’s FEM
assembled procedure.

Next, we build the translation and attitude motion model of the satellite. First, the
translational motion of the main satellite in the coordinate system OXYZ is modeled as

MmẌm = Fm,G + Fm,P (2)

where Mm is mass matrix of main-satellite; Ẍm is the acceleration vector ; and the Fm,G and
Fm,P are, respectively, the gravity vector exerted on the satellite and the tensile force applied
to the main satellite by the tether.

And attitude motion of the main satellite satisfies

Jmω̇m + ωm × (Jmωm) = Tm,P + Tm,C (3)

where Jm represents the inertia matrix of the main satellite; Tm,P is the torque vector
generated by the tension of the tether; Tm,C is the control torque vector; and ωm and ω̇m are
the angular velocity and angular acceleration of the main satellite in the geocentric inertial
coordinate system, respectively.

When the satellite maneuvers at large angles, singularities may occur when the attitude
is expressed using Euler angles. To address this, quaternions are introduced to represent the
attitude transformation. Based on the established kinematic relationship between angular
velocity and Euler parameters [33], Equation (3) can be transformed into the following form:

G⊤
m JmGmQ̈m + 2Q̇⊤

m JmGmQ̇mC⊤
m,qm = G⊤

m (Tm,P + Tm,C) (4)

where Qm = [qm,0, qm,1, qm,2, qm,3]
⊤ is the attitude quaternions; Gm = 2(−qm, qm,0 I3×3 − q̃m)

is the attitude transition matrix, with qm = [qm,1, qm,2, qm,3]
⊤ and q̃m = diag{qm,1, qm,2, qm,3};

C⊤
m,qm is the Jacobian matrix of constraint Cm; and the attitude quaternions Qm needs to

satisfy the quaternions constraint, which takes the following form:

Cm = q2
m,0 + q⊤mqm − 1 = 0. (5)

Similar to main satellite model (2)–(5), the model of the sub-satellite can be expressed as
MsẌs = Fs,G + Fs,P

G⊤
s JsGsQ̈s + 2Q̇⊤

s JsGsQ̇sC⊤
s,qs = G⊤

s (Ts,P + Ts,C)

Cs = q2
s,0 + q⊤s qs − 1 = 0

(6)

where the definitions of all parameters are the same as in model (2)–(5) and corre-
spond one-to-one, the meaning of each variable will not be described separately here.
For clarity, the subscripts “m” and “s” are used to represent the main satellite and the
sub-satellite, respectively.

Next, establish the coupled motion constraint relationship between the tether and
the two satellites. The equations are similarly distinguished by subscripts denoting the
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satellites, while the constraint equations between the satellite and tether endpoints are
expressed as

Dm = Xm + Zm(Qm)ρ
b
m − Xt,m = 0

Ds = Xs + Zs(Qs)ρ
b
s − Xt,s = 0.

(7)

The dynamic model of the tethered satellite system in the full deployment phase is
derived from the coupled governing Equations (1)–(7), which collectively describe the
system’s hybrid rigid–flexible dynamics. These equations are formulated as

MtẌt + KtXt + D⊤
m,Xt

λdm + D⊤
s,Xt

λds = Ft + Ft,G

MmẌm + D⊤
m,Xm

λdm = Fm,G

MsẌs + D⊤
s,Xs

λds = Fs,G

G⊤
m JmGmQ̈m + 2Q̇⊤

m JmGmQ̇mC⊤
m,qm + C⊤

m,qm λcm + D⊤
m,qm λdm = G⊤

m (Tm,C + Tm,P)

G⊤
s JsGsQ̈s + 2Q̇⊤

s JsGsQ̇sC⊤
s,qs + C⊤

s,qs λcs + D⊤
s,qs λds = G⊤

s (Ts,C + Ts,P)

Cm = q2
m,0 + q⊤mqm − 1 = 0

Cs = q2
s,0 + q⊤s qs − 1 = 0

Dm = Xm + Zm(Qm)ρ
b
m − Xt,m = 0

Ds = Xs + Zs(Qs)ρ
b
s − Xt,s = 0

(8)

where Ft is the total elastic force after the tether connects the two satellites; D⊤
m,qm , D⊤

m,Xt
,

D⊤
m,Xm

, D⊤
s,qs , D⊤

s,Xt
and D⊤

s,Xs
are the Jacobian matrices similar to C⊤

m,qm and C⊤
s,qs , corre-

sponding to the constraints Dm and Ds respectively; and λcm, λcs, λdm, λds are Lagrange
multipliers. The introduction of Z(·) parameterizes the transformation matrix from the
body-fixed coordinate system OmXmYmZm and OsXsYsZs to the coordinate system OXYZ,
having the following form with I as the identity matrix:

Zm(Qm) =
(

2q2
m,0 − 1

)
I + 2qmq⊤m + 2qm,0q̃m

Zs(Qs) =
(

2q2
s,0 − 1

)
I + 2qsq⊤s + 2qs,0q̃s.

Remark 1. The parameter in the simultaneous Equation (8) of the STS system employs the high-
dimensional dynamic model originally formulated in [20], including the system matrices, force
vectors, constraints, and quaternion representations. For compactness, their full symbolic expansions
are not reproduced here.

3. Controller Design
3.1. Preliminaries and Simplified Model
3.1.1. Fixed-Time-Stable

Lemma 1 ([34]). Consider the following nonlinear system:

ẋ = ρ(x(t)) (9)

where x = [x1, x2, . . . , xn]⊤ ∈ Rn represents the system state variable and x(0) = x0. Assume
ρ(x) : Rn → Rn is a homogeneous vector field with a bi-limit at associated triples (r0, k0, ρ0)

and (r∞, k∞, ρ∞). If the origins of systems ẋ = ρ(x), ẋ = ρ0(x), ẋ = ρ∞(x) are globally
asymptotically stable equilibria, then the following inference holds: (a) The system (9) is fixed-time-
stable and the solution of system could converge to the origin by selecting appropriate values such
that k0 < 0 < k∞, system (9) is fixed-time-stable, and its solutions converge to the origin of the
system within a fixed time. (b) Real numbers dV∞ and dV0 are selected hat satisfy dV∞ > max{r∞,i}
and dV0 > max{r0,i}, i = 1, 2, . . . , n. There exists a continuous positive definite function V such
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that, for any function x 7→ δV
δxi

, it is homogeneous with respect to the bi-limit of the associated triples
(r0, dV0 − r0,i, δV

δxi
) and (r∞, dV∞ − r∞,i, δV

δxi
), and this function is negative definite.

Lemma 2 ([34]). Consider the following perturbation system:

ẋ = ρ(x(t), ∆) (10)

where ∆ = [∆1, ∆2, . . . , ∆n]⊤ ∈ Rn is the disturbance vector and ρ(x, ∆) is homogeneous in the
bi-limit vector fields ((r0, ϱ0), d0, ρ0) and ((r∞, ϱ∞), d∞, ρ∞), with the ϱ0 and ϱ∞ being the weight
vectors associated with the perturbation ∆. The function V(x), which is given by Lemma 1, satisfies
the inequality:

δV
δx

ρ(x, ∆) ≤− cvΛ
(

V(x)
dVo +d0

dV0 + V(x)
dV∞+d∞

dV∞

)
+ c∆

n

∑
j=1

Λ
(
|∆ j|

dV0
+d0

ϱ0,j + |∆ j|
dV∞+d∞

ϱ∞,j
) (11)

where cv and c∆ are positive real numbers, Λ(a, b) = a(1 + b)/(1 + a) and a, b ∈ R+.

Lemma 3 ([35]). For any x, y ∈ R, and p > 1, q > 1, (p − 1)(q − 1) = 1 and δ > 0, the
following inequality holds:

xy ≤ δp

p
|x|p + 1

qδq |y|
q. (12)

Lemma 4 ([36]). For system ẋ = f (x), assume a positive definite Lyapunov function V(x) that is
continuous, and its derivative satisfies:

V̇(x) ≤ −γ1Vc1(x)− γ2Vc2(x) + c3 (13)

where γi > 0 (i = 1, 2), 0 < c1 < 1, c2 > 1 and c3 > 0. The system (9) is therefore considered
practical fixed-time-stable, and system variable x will converge to neighborhood with fixed time,
with the neighborhood Q and convergence time T bounded by

Q =

{
x|V(x) ≤ min

{[ c3

(1 − d)γ1

] 1
c1 ,

[ c3

(1 − d)γ2

] 1
c2
}}

T ≤ Tmax =
1

dγ1(1 − c1)
+

1
dγ2(c2 − 1)

(14)

where 0 < d < 1 is a positive constant.

Notation 1. For notational clarity, this paper establishes the following equivalent representations
for given vectors x = [x1, x2, . . . , xn]⊤ ∈ Rn and nonnegative constant r ∈ Rn:

sigr(x) = |x|rsign(x)

|x|r = [|x1|r, |x2|r, . . . , |xn|r]⊤.

3.1.2. RBFNN Approximation

The RBFNN is adopted to fit and estimate the unknown modes of the tethered satellite
system. The output of the RBFNN can be described as

fN(z) = W∗⊤Φ(z) + ε (15)

where W∗ = [W∗⊤
1 , W∗⊤

2 ]⊤ is the ideal weight matrix of RBF; ε is the bounded approxima-
tion error that satisfies |ε| ≤ εmax; z = [e1, e2]

⊤ is the input matrix, whose variables will
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be defined later; and Φ(z) = [Φ1(z), Φ2(z), . . . , Φl(z)]⊤ is output of the NN basis function
and satisfies:

Φij = exp(
−(zi − µij)

⊤(zi − µij)

b2
ij

) (16)

where µi = [µi1, µi2, . . . , µil ]
⊤ and bi = [bi1, bi2, . . . , bil ]

⊤ are the central parameter and
width of the NN basis function, respectively, and l > 0 indicates the node number of NN.

3.1.3. Simplified Model

In the finite element model provided previously, the system states require updating
through an iterative solution procedure using the generalized-alpha method. Consequently,
such models lack an explicit state-space representation, making traditional controller
design challenging. Considering controller design requirements and practical operational
constraints, this study focuses on in-plane tether release dynamics through a reduced-order
planar model. The system state thus comprises exclusively the translational displacement
of the sub-satellite within the orbital plane and its rotation about the axis OsXs. These
essential motions are abstracted as two key attitude parameters: the in-plane angle and
satellite attitude angle (graphically defined in Figure 2). This abstraction yields a control-
oriented simplified STS model for subsequent controller design. Within this framework,
all parameters except the system’s mass matrix are treated as unmodeled uncertainties,
actively estimated and compensated through RBF neural network adaptation. The resulting
simplified dynamics are formulated as follows:

Mq̈ − fN = u (17)

M =

[
M1

M2

]
=

[
mmms

mm+ms
L0

1
6 msa2

]

where q = [ϕ, θ]⊤ is the system state that includes the in-plane angle of STS and the attitude
angle of the sub-satellite; fN represents the uncertain mode of the STS model, which is
estimated by the RBFNN; u = [uϕ, uθ ]

⊤ is the output vector of the controller, including the
in-plane thrust and the in-plane torque of the sub-satellite; mm and ms represent the masses
of the main satellite and the sub-satellite, respectively; and L0 is the tether length in the
initial state, and the a is the side length of a cube-structured sub-satellite.

Figure 2. Variable definition of simplified STS model.

Remark 2. Finite element models present challenges for direct controller design. In prior studies on
flexible dynamics control, a simplified representation is typically employed for controller synthesis [13,20].
The resulting controller is subsequently applied to the flexible dynamic model, with an observer
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estimating and compensating for modeling errors. This approach enhances computational efficiency
while maintaining acceptable accuracy.

3.2. Fixed-Time NTSM Controller

Define the STS system attitude error as{
e1 = q − qd

e2 = q̇
(18)

where e1 = [e11, e12]
⊤, e2 = [e21, e22]

⊤, and qd is a constant value for the target attitude.
Take the derivative of it and substitute it into Equation (17) to obtain{

ė1 = e2

ė2 = M−1(u + fN).
(19)

The fixed-time nonsingular terminal sliding-mode variable designed as shown below is

s = e2 + K1ζ1(e1) + K2ζ2(e1) (20)

where K1 > 0, K2 > 0, and the ζ1(e1) and ζ2(e1) have the following form:

ζ1(e1) =

{
l1e1 + m1sig2(e1), |e1| ≤ σϕ

sigp1(e1), |e1| > σϕ

ζ2(e1) =

{
l2e1 + m2sig2(e1), |e1| ≤ σϕ

sigp2(e1), |e1| > σϕ

where l1 = (2 − p1)σ
p1−1
ϕ , l2 = (2 − p2)σ

p2−1
ϕ , m1 = (p1 − 1)σp1−2

ϕ , m2 = (p2 − 1)σp2−2
ϕ , p1

and p2 are freely defined parameters that must satisfy p1 > 1, 0 < p2 < 1, and σϕ is a small
positive constant.

Remark 3. By transitioning the sliding-mode variable to conventional sliding-mode operation when
|e1| ≤ σϕ, the proposed method eliminates the singularity issue inherent in traditional fixed-time
algorithms. This approach simultaneously guarantees the continuity of the control signal’s first-
order derivative. The appropriate selection of li and mi (i = 1, 2) ensures this derivative continuity,
while the terms ζi (i = 1, 2) are key to resolving the singularity.

By taking the derivative of Formula (20), the following formula is obtained:

ṡ = M−1(u + fN) + K1ζ̇1(e1) + K2ζ̇2(e1) (21)

where

ζ̇1(e1) =

{
l1e2 + 2m1|e1|e2, |e1| ≤ σϕ

p1|e1|p1−1e2, |e1| > σϕ

ζ̇2(e1) =

{
l2e2 + 2m2|e1|e2, |e1| ≤ σϕ

p2|e1|p2−1e2, |e1| > σϕ

The RBFNN-based fixed-time sliding-mode controller is proposed as follows:

u =− M
(

K1ζ̇1(e1) + K2ζ̇2(e1) + K3

(
sigαs(s) + sigβs(s)

))
− Ŵ⊤Φ − εmaxsign(s)

(22)
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where K3 > 0, αs ∈ ( 1
2 , 1) and βs ∈ (1, 2

3 ); Ŵ is the estimated value of W∗ in NN; and its
adaptive law update form is structured as

˙̂W = ΓNΦ (23)

where N = M−1K3

(
sig2αs−1(s) + sig2βs−1(s)

)
and Γ is a symmetric positive definite

constant matrix.

3.3. Stability Analysis

Theorem 1. For the system (17) and the proposed controller (22), the system error could converge
to a small neighborhood within a fixed time. The convergence time satisfies the following inequality:

T ≤ Tt = Ts + Td (24)

where Ts is the maximum convergence time to the sliding surface and Td to the equilibrium point,
with both being initial-state-independent.

Proof. The proof is structured in two parts, corresponding to the dynamic behavior of the
system error trajectory.

Part 1: First, it is established that the sliding-mode variable s converges to a predefined
neighborhood of the origin s = 0 within a fixed-time Ts, in accordance with fixed-time
stability theory.

The following Lyapunov function is selected:

V =
1
2

K3|s|2αs +
1
2

K3|s|2βs +
1
2

W̃⊤Γ−1W̃ (25)

where W̃ = W∗ − Ŵ is the estimation error vector of RBF and the derivative form of V can
be obtained:

V̇ =K3

(
αssig2αs−1(s) + βssig2βs−1(s)

)
ṡ + W̃⊤Γ−1 ˙̃W

=− K2
3

(
αs|s|3αs−1 + βs|s|3βs−1 + αs|s|2αs+βs−1 + βs|s|αs+2βs−1

)
− K3

(
αssig2αs−1(s) + βssig2βs−1(s)

)
εmax + N(s)

(
W̃⊤Φ + ε

)
− W̃⊤Γ−1 ˙̂W

≤− K2
3

(
αs|s|3αs−1 + βs|s|3βs−1 + αs|s|2αs+βs−1 + βs|s|αs+2βs−1

)
− K3

(
αssig2αs−1(s) + βssig2βs−1(s)

)
(εmax − ε)

≤0.

(26)

The boundedness of the sliding variable s and estimate error W̃ can be mathematically
established from Equation (26), and the system disturbance ∆ = M−1(W̃⊤Φ + ε − εmaxsign(s))
is similarly bounded.

The system ṡ = ρ(s, 0) and ṡ = ρ(s, ∆) is constructed with unmodeled dynamic
estimates as

ρ(s, 0) : ṡ = −K3

(
sigαs(s) + sigβs(s)

)
ρ(s, ∆) : ṡ = −K3

(
sigαs(s) + sigβs(s)

)
+ M−1

(
W̃⊤Φ + ε − εmaxsign(s)

)
.

(27)
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Taking the limit of the system ṡ = ρ(s, 0), the approximation function can be derived
in the two asymptotic limits 0 and ∞ as follows:{

ρ0(s, 0) = −K3sigαs(s)

ρ∞(s, 0) = −K3sigβs(s).
(28)

Furthermore, as established in [34], system ṡ = ρ(s, 0) exhibits homogeneity with
respect to the bilateral limits of the associated triple (r0, k0, ρ0(s, 0)) and (r∞, k∞, ρ∞(s, 0)).

Reselect the Lyapunov function as shown below:

Vs =
1
2

s2 (29)

and its derivative:
V̇s = s⊤ ṡ = −K3

(
sigαs(s) + sigβs(s)

)
s

= −K3

(
|s|αs+1 + |s|βs+1

)
.

(30)

From the above, the Lyapunov function V is positive definite, its time derivative V̇
is negative definite, and the equality V̇ = 0 holds if and only if s = 0. These conditions
guarantee that the system is globally asymptotically stable at the origin.

For the cases of ṡ = ρ0(s, 0) and ṡ = ρ∞(s, 0), the Lyapunov function (29) is further
expressed as

Vs0 = Vs∞ =
1
2

s2 (31)

and their derivatives are also expressed accordingly:

V̇s0 = −K3|s|αs+1 ≤ 0

V̇s∞ = −K3|s|βs+1 ≤ 0.
(32)

Similar to the previous derivation, it can be obtained that both the system ṡ = ρ0(s, 0)
and ṡ = ρ∞(s, 0) are globally asymptotically stable.

Based on Lemma 1, it can be deduced that the system ṡ = ρ(s, 0) is fixed-time-stable.
Given dVs0 = 2αs and dVs∞ = 2βs, it can be derived that dVs0 > max(αs, 1), ∀αs ∈ ( 1

2 , 1) and
dVs∞ > max(1, βs), ∀βs ∈ (1, 3

2 ). Furthermore, there exists a continuous positive definite
function Vsm such that δVsm

δsi
remains homogeneous and negative definite in the bi-limit

of the associated triples (r0, dVsm − r0,i,
δVsm
δsi

) and (r∞, dVsm − r∞,i,
δVsm
δsi

), and δVsm
δsi

ρ(s) is
negative definite.

For the perturbed system ṡ = ρ(s, ∆), which is homogeneous in the bi-limit of the asso-
ciated triples ((ro, 2αs − 1), k0, ρ0) and (((r∞, 2βs − 1), k∞, ρ∞)). According to the inequality
equation in the Lemma 2, it yields

δVsm

δsi
ρ(s, ∆) ≤− cvΛ

(
V

dVo +d0
dV0

sm + V
dV∞+d∞

dV∞
sm

)
+ c∆Λ

(
|∆|

dV0
+d0

2αs−1 + |∆|
dV∞+d∞

2βs−1
)

. (33)

In this equation, where ∆ satisfies |∆| < ∆̄, it further follows that both |∆|(dV0+d0)/(2αs−1)

and |∆|(dV∞+d∞)/(2βs−1) are bounded. Furthermore, select the z1 = (dV0 + d0)/(2αs − 1)
and z2 = (dV∞ + d∞)/(2βs − 1); the following formula can be obtained:

Λ(|∆|z1 + |∆|z2) =
|∆|z1

1 + |∆|z1
(1 + |∆|z2)

< |∆|z1(1 + |∆|z2) < Z|∆|z1

(34)
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where Z is the upper bound of 1 + |∆|z2 . The system disturbance ∆ is a smaller value, and
selecting the suitable c∆ and cv can achieve c∆Z|∆|z1 ≤ cv/2.

Reselect z3 = (dVo + d0)/(dV0) and z4 = (dV∞ + d∞)/(dV∞), and there will be two
scenarios for Λ

(
Vz3

sm + Vz4
sm
)
. When the Vsm ≤ 1, this term can be expressed as

Λ
(
Vz3

sm + Vz4
sm
)
=

Vz3
sm

1 + Vz3
sm

(
1 + Vz4

sm
)
≥ 1

2
Vz3

sm +
1
2

Vz3+z4
sm . (35)

Substituting Equations (34) and (35), Equation (33) can be obtained:

δVsm

δsi
ρ(s, ∆) ≤−

( cv

2
Vz3

sm +
cv

2
Vz3+z4

sm

)
+ c∆Z|∆|z1 . (36)

Define a small value χ =
(

2c∆Z|∆|z1

cv

) 1
z3+z4 , when Vsm > χ, the Formula (36) can be

simplified to get
δVsm

δsi
ρ(s, ∆) ≤ − cv

2
Vz3

sm (37)

and it can be established that the system converges to a sufficiently small neighborhood
Qsm = {s|Vsm ≤ χ} of the equilibrium in finite time, where the convergence time satisfies
the bound

Ts1 ≤ 2(V1−z4
sm − χ1−z4)

cv(1 − z3)
≤ 2

cv(1 − z3)
. (38)

In the alternative case with Vsm > 1, the following formulation holds:

Λ
(
Vz3

sm + Vz4
sm
)
=

Vz3
sm

1 + Vz3
sm

(
1 + Vz4

sm
)
≥ 1

2
(
1 + Vz4

sm
)
. (39)

By substituting Equations (34) and (39) in Equation (33), the result is obtained as:

δVsm

δsi
ρ(s, ∆) ≤− cv

2
(
1 + Vz4

sm
)
+ c∆Z|∆|z1 ≤ − cv

2
Vz4

sm. (40)

The system converges to Vsm = 1 within finite time:

Ts2 ≤ 2(1 − V1−z4
sm )

cv(z4 − 1)
≤ 2

cv(z4 − 1)
(41)

and subsequently approaching Qsm with the convergence parameter Ts1.
From the preceding derivation, it follows that the system can converge to the neighbor-

hood Qsm within either Ts1 or Ts1 + Ts2, depending on the initial value of Vsm. Moreover,
the convergence time is independent of the system’s initial state, meaning the system
achieves fixed-time convergence with the following upper bound:

Ts ≤ Ts1 + Ts2 =
2

cv(z4 − 1)
+

2
cv(1 − z3)

. (42)

Part 2: The error vector e1 is guaranteed to converge to the equilibrium point Q along
the sliding surface within a fixed time Td, as per the principles of fixed-time stability theory.

For the sliding surface (20), analyze the fixed time sliding-mode when the error
|e1| > σϕ. Select the Lyapunov function Vd = 1

2 e2
1, take its derivative, and substitute the

above formula into it, and the following function is obtained:

V̇d = −K1|e1|p1+1 − K2|e1|p2+1 + e1s. (43)
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According to Lemma 3, and taking σϕ = 1, we can get the following inequality:

e1s ≤ 1
p
|e1|p +

1
q
|s|q. (44)

By setting p = p2 + 1 and q = (p2 + 1)/p2 and substituting Equation (44) into
Equation (43), we obtain

V̇d ≤− K1|e1|p1+1 − K2|e1|p2+1 +
1

p2 + 1
|e1|p2+1 +

p2

p2 + 1
|s|

p2+1
p2

≤− 2
p1+1

2 K1V
p1+1

2
d − 2

p2+1
2

(
K2 −

1
p2 + 1

)
V

p2+1
2

d +
p2

p2 + 1
|s|

p2+1
p2

≤− γ1V
p1+1

2
d − γ2V

p2+1
2

d + c3

(45)

where γ1 = 2
p1+1

2 K1, γ2 = 2
p2+1

2 (K2 − 1
p2+1 ), c3 = p2

p2+1 |s|
p2+1

p2 . According to Lemma 4, we
have the following inference that the error vector e1 can converge to the neighborhood

Q =

{
e1|Ve ≤ min

{[ c3

(1 − d)γ1

] 2
p1+1

,
[ c3

(1 − d)γ2

] 2
p2+1

}}
within a fixed-time, and the convergence time parameter satisfies

Td ≤ Td max =
2

dγ1(1 − p1)
+

2
dγ2(p2 − 1)

. (46)

Combining Equation (42) with the above expression demonstrates that the system
error achieves practical fixed-time stability. The error vector converges to a quantifiable
neighborhood Q within a fixed time, where the convergence time upper bound Tt = Ts + Td

remains independent of initial conditions. This completes the proof.

4. Simulation Result
This section employs numerical simulations to validate the efficacy of the proposed

fixed-time sliding-mode controller Equation (22) for the rigid–flexible coupled STS dy-
namics, as per Equation (8). Simulations address a two-body flexible STS attitude control
scenario for a satellite operating in a 500 km near-Earth circular orbit, where terrestrial
gravitational effects are neglected. The objective is to drive the attitude angle and associ-
ated state variables to converge rapidly and stably to reference trajectories. Key physical
parameters, listed in Table 1, align with prior work [20].

Table 1. Parameters of the STS model.

Description Parameters Values

Main satellite mass mm 1000 kg
Sub-satellite mass ms 10 kg

Tether length L0 100 m
Sub-satellite dimension a 1 m

The optimal parameters for the proposed fixed-time NTSMC were systematically
determined through multiple experiments, as listed in Table 2. To comparatively evaluate
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the controller’s advantages, a conventional nonsingular terminal sliding-mode controller
serves as the baseline for comparison:

uc = M−1
(

βα

γ
e(2−γ/α)

2 + Ksign(s)
)

(47)

where s = e1 +
1
β e(γ/α)

2 , and the parameters are selected as α = diag(1, 1), β = diag(0.05, 0.3),
γ = diag(1.07, 1.1), K = diag(0.001, 0.001).

Table 2. Parameters of the controller.

Parameters Values

K1 diag(0.08, 0.6)
K2 diag(0.08, 0.5)
K3 diag(0.09, 0.8)

εmax 0.0001
p1 1.1
p2 [0.99, 0.6]⊤

αs [1.1, 1.8]⊤

βs [0.89, 0.7]⊤

σϕ [0.01, 0.001]⊤

Subsequently, comprehensive comparative simulations were conducted to evaluate
the proposed control scheme. These simulations capture the dynamic response of the
STS system, including detailed attitude angles and thruster output characteristics. The
system’s initial conditions were configured with an in-plane angle of 1◦, attitude angle
of −1◦, and thrust saturation at 0.1 N. The desired reference state for both angles was
0◦. The resultant data, presented quantitatively in Figures 3–7, provide validation of
the controller’s performance. In the figures, FNTSMC denotes the proposed fixed-time
nonsingular terminal sliding-mode controller, while NTSMC refers to the conventional
benchmark controller employed for comparative analysis.
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Figure 3. In-plane angle of STS.



Aerospace 2025, 12, 907 14 of 18

0 10 20 30 40 50

Time(s)

-0.08

-0.06

-0.04

-0.02

0

0.02

In
-p

la
ne

 a
ng

ul
ar

 r
at

e(
°/

s)

NTSMC
FNTSMC

Figure 4. In-plane angular rate of STS.

0 10 20 30 40 50
Time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

A
tti

tu
de

 a
ng

le
(°

)

NTSMC
FNTSMC

Figure 5. Attitude angle of STS.

0 10 20 30 40 50
Time(s)

-0.05

0

0.05

0.1

0.15

0.2

0.25

A
tti

tu
de

 a
ng

le
 r

at
e(

°/
s)

NTSMC
FNTSMC

19 20 21 22

-2

0

2

#10-3

Figure 6. Attitude angular rate of STS.



Aerospace 2025, 12, 907 15 of 18

0 10 20 30 40 50
Time(s)

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

S
at

el
lit

e 
th

ru
st

(N
)

NTSMC
FNTSMC

(a)

0 10 20 30 40 50
Time(s)

-6

-4

-2

0

2

4

6

S
at

el
lit

e 
to

rq
ue

(N
.m

)

#10-3

NTSMC
FNTSMC

(b)

Figure 7. Output of the STS Attitude Controller: (a) Thrust of sub-satellite. (b) Torque of sub-satellite.

Figures 3 and 4 present the time histories of the STS system’s in-plane attitude angle
and angular rate, respectively. The proposed FNTSMC drives the attitude angle to converge
to 0◦ within approximately 30 s, while the angular velocity converges to 0 around 35 s. This
satisfies the control objective within the prescribed timeframe. In contrast, NTSMC requires
50 s to converge both states to equivalent precision, demonstrating a 40% reduction in
convergence time for the proposed controller.

Figure 5 displays the attitude angle response of the STS system. Analysis reveals that
while the conventional NTSMC demonstrates fast convergence behavior, the proposed
FNTSMC achieves notably superior convergence speed. Specifically, FNTSMC reaches
the target attitude (0◦) within 12 s, representing a 20% improvement over the “NTSMC”
convergence time. Corresponding results for angular velocity are shown in Figure 6. The
convergence characteristics mirror those observed for the attitude angle: FNTSMC achieves
stability in 13 s, whereas NTSMC requires 15 s to converge to the steady-state neighborhood.
Crucially, the conventional controller exhibits persistent low-amplitude chattering in its
steady-state error, as visible in the enlarged area inset. In contrast, the designed FNTSMC
maintains smooth output dynamics throughout the operation. This effective chattering
suppression is attributed to the piecewise sliding-mode surfaces inherent to the proposed
control architecture.

Figure 7a presents the thrust profile of the satellite’s thrusters during the control
maneuver. The simulation reveals that during initial attitude correction, thrusters operate
at maximum capacity to achieve rapid orientation adjustment. Due to the satellite’s low
mass and compact dimensions, significant floating inertia occurs during maneuvering.
Consequently, counter-thrusters activate to compensate for this momentum, followed by
staged pulse modulation during steady-state maintenance. Crucially, comparative analysis
with NTSMC demonstrates FNTSMC’s superior thrust control performance, particularly
in vibration suppression during both transient and steady-state phases. The proposed
controller achieves smoother thrust transitions and significantly reduced actuator oscilla-
tions. Building on the thrust profile analysis, Figure 7b presents the corresponding torque
dynamics generated by the thrusters. The FNTSMC demonstrates markedly superior
control performance, maintaining consistently lower torque magnitudes throughout the
maneuver. This torque reduction stems from the controller’s precise attitude compensation
capabilities and optimized thrust modulation. Critical comparative analysis of Figure 7
reveals severe chattering phenomena in the conventional NTSMC implementation for this
flexible STS configuration. These high-frequency oscillations induce significant actuator
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stress on thrusters, accelerating mechanical fatigue and potentially causing mission-critical
failures. Consequently, FNTSMC’s chattering suppression capability substantially enhances
both operational safety and structural integrity of the STS system.

5. Conclusions
This research has addressed the attitude control challenge for rigid–flexible coupled

space tether systems (STSs) through the development of a novel fixed-time nonsingular
terminal sliding-mode controller. The controller integrates fixed-time convergence theory
with RBF neural network adaptation, establishing two fundamental theoretical advance-
ments. First, the fixed-time framework provides rigorous guarantees for upper bounds
to the convergence time, which is essential for mission-critical STS operations in dynamic
orbital environments. Second, the RBF neural network actively compensates for unmodeled
dynamics and parametric uncertainties inherent in simplified STS models, significantly en-
hancing control accuracy and disturbance rejection robustness. Formal stability guarantees
are established through comprehensive Lyapunov analysis, ensuring theoretical rigor.

Numerical simulations conducted on an established STS dynamic model demon-
strate the controller’s superior performance relative to conventional nonsingular terminal
sliding-mode control. When applied to two-degree-of-freedom attitude states and thruster
dynamics, the proposed FNTSMC achieves a reduction in convergence time and a decrease
in steady-state error and effectively suppresses actuator chattering in thrust/torque outputs.
These performance characteristics substantially improve actuator longevity and operational
safety for long-duration orbital missions, particularly through the elimination of damaging
high-frequency oscillations.

While this study establishes foundational control principles using three core state
variables, future work should extend this framework to address critical STS complexities:
tether deployment/retraction dynamics, full six-degree-of-freedom attitude regulation,
and multi-satellite configurations. Such extensions will enable comprehensive STS maneu-
verability for emerging on-orbit applications, including active debris removal and satellite
servicing, advancing the practical implementation of tether-based space systems.
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