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Abstract: Guidance commands of flight vehicles can be regarded as a series of data sets having fixed
time intervals; thus, guidance design constitutes a typical sequential decision problem and satisfies
the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we
consider the scenario where the escape flight vehicle (EFV) generates guidance commands based
on the DRL technique, while the pursuit flight vehicles (PFVs) derive their guidance commands
employing the proportional navigation method. For every PFV, the evasion distance is described
as the minimum distance between the EFV and the PFV during the escape-and-pursuit process.
For the EFV, the objective of the guidance design entails progressively maximizing the residual
velocity, which is described as the EFV’s velocity when the last evasion distance is attained, subject
to the constraint imposed by the given evasion distance threshold. In the outlined problem, three
dimensionalities of uncertainty emerge: (1) the number of PFVs requiring evasion at each time instant;
(2) the precise time instant at which each of the evasion distances can be attained; (3) whether each
attained evasion distance exceeds the given threshold or not. To solve the challenging problem,
we propose an innovative solution that integrates the recurrent neural network (RNN) with the
proximal policy optimization (PPO) algorithm, engineered to generate the guidance commands of
the EFV. Initially, the model, trained by the RNN-based PPO algorithm, demonstrates effectiveness in
evading a single PFV. Subsequently, the aforementioned model is deployed to evade additional PFVs,
thereby systematically augmenting the model’s capabilities. Comprehensive simulation outcomes
substantiate that the guidance design method based on the proposed RNN-based PPO algorithm is
highly effective.

Keywords: escape flight vehicle; multiple pursuit flight vehicles; guidance design; recurrent neural
network (RNN); proximal policy optimization (PPO)

1. Introduction

In modern escape-and-pursuit scenarios involving escape flight vehicles (EFVs) and
pursuit flight vehicles (PFVs), the guidance design method has garnered significant schol-
arly attention as a pivotal strategy for addressing the intricate dynamics of escape and
pursuit. In the scenario entailing a single EFV and a single PFV, numerous efficacious
evasion guidance methods have been meticulously proposed, as documented in refer-
ences [1–4]. Nonetheless, the aforementioned research outcomes are not directly applicable
to scenarios involving a single EFV and multiple PFVs, which constitutes the primary focus
of this paper. In the concerned scenario, many scholars [5–8] have explored guidance design
methods from the perspective of the pursuit side. However, these findings are inapplicable
to the escape side, the primary concern of this paper, owing to the fundamental divergence
in objectives between PFVs and EFVs. In order to improve the escape capability of EFVs,
the following three research areas have been widely studied, namely, evading based on
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the no-fly zones, evading based on the optimal control theory, and evading based on deep
reinforcement learning (DRL).

In the domain of guidance design based on the no-fly zones, Liang et al. [9] articulated
a guidance method grounded in a feedback mechanism tailored for irregularly shaped
no-fly zones, subsequently substantiating the algorithm’s effectiveness. Liang et al. [10]
introduced an innovative design method predicated on dynamic pressure for yaw angle
control, facilitating continuous circumnavigation of multiple no-fly zones. Zhao et al. [11]
delineated a design approach leveraging multi-stage convex optimization to adeptly navi-
gate around multiple no-fly zones, with the algorithm’s performance rigorously validated.
Zhou et al. [12] proposed an approach by redefining a maneuverable design dilemma
as an obstacle evasion challenge, achieving a flight vehicle’s penetration trajectory with
exemplary performance. Yu et al. [13] proposed a method to derive the high-precision
analytical solution of flight time for a group of coordinated flight vehicles, and designed a
guidance law to achieve the goal of simultaneous arrival in the presence of multiple no-fly
zones. The aforementioned research work did not encompass a comprehensive considera-
tion of the PFVs’ pursuit capabilities. Consequently, assuring EFV evasion effectiveness
becomes challenging in scenarios marked by intense confrontation, wherein PFVs possess
the capability to directly approach the EFV.

In the domain of guidance design based on the optimal control theory, Yan et al. [14]
delved into the escape dynamics of flight vehicles amidst a scenario characterized by the
coordinated pursuit from multiple PFVs, proposing an evasion guidance strategy framed
in a constrained optimal control paradigm. Wang et al. [15] studied the escape-and-pursuit
game problem and demonstrated that the escape flight vehicle employed differential
game theory can evade much easier compared to traditional strategies. Shen et al. [16]
tackled the trajectory optimization challenge for glide vehicles confronted by two PFVs,
crafting an evasion strategy predicated solely on the initial line-of-sight (LOS) angles
derived from the interceptors. Nath et al. [17] investigated a game theoretical conundrum
featuring two PFVs and a single EFV, devising a bifurcated evasion strategy for the latter,
ingeniously integrating the path planning method with adept maneuvering. In contrast to
the methods derived from the no-fly zones research, maneuvers based on optimal control
exhibit markedly enhanced adaptability to dynamic conditions. However, the solution
to the escape-and-pursuit problem invariably entails the online management of intricate
equations, which requires a large amount of computing resources. Hence, this method is
inappropriate for EFVs, which have limited computing resources.

In the domain of guidance design based on the DRL technique, He et al. [18] pro-
posed a guidance method based on the deep deterministic policy gradient (DDPG) al-
gorithm, which adeptly balances guidance accuracy, energy efficiency, and pursuit tim-
ing, thereby yielding superior performance relative to conventional guidance paradigms.
Jiang et al. [19] proposed an evasion guidance law utilizing the actor–critic (AC) algorithm,
potentially apt for scenarios involving multiple PFVs. Shen et al. [20] concentrated on
formulating evasion trajectories for EFVs, aimed at evading two PFVs. The proposed
method, augmented by deep neural networks, showcased effectiveness in scenarios with
a fixed number of PFVs. Guo et al. [21] introduced an intelligent maneuvering strategy
founded on the twin delayed deep deterministic policy gradient (TD3) algorithm, with its
performance validated through simulation results. Hui et al. [22] proposed a novel training
method for bank angle optimization utilizing the proximal policy optimization (PPO) algo-
rithm. They demonstrated that the PPO algorithm could engender the performance of a
“new quality”, surpassing the capabilities traditionally achieved by conventional guidance
design methods. Pham et al. [23,24] introduced an innovative Takagi–Sugeno–Kang elliptic
type-2 fuzzy brain-imitated neural network (TSKET2FBINN), which they integrated into
the guidance design of the flight vehicles. The effectiveness of the proposed method was
substantiated through simulation results obtained from scenarios involving three flight
vehicles. The aforementioned studies collectively underscore the effectiveness of the DRL
technique in addressing escape-and-pursuit challenges. Nevertheless, their focus is pre-
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dominantly on evasion strategies tailored for scenarios with a predetermined number of
PFVs, thereby limiting their applicability in scenarios where the number of PFVs is variable.

Against this backdrop, this paper aims to employ a recurrent neural network (RNN)-
based proximal policy optimization (PPO) algorithm to generate real-time guidance com-
mands for the EFV, particularly in scenarios characterized by a varying number of PFVs,
which rely on traditional methods for their guidance commands. Our novel contributions
are summarized as follows.

1. The agent, employing the fully connected neural network (FCNN), is restricted to
addressing problems with a fixed dimensionality of the input state st due to the fixed
number of nodes in the FCNN’s input layer. Given that the dimensionality of the
input state st is a positive correlation with the number of PFVs requiring evasion
(denoted as iP), an FCNN-based agent alone is not capable of addressing the problem
characterized by a varying number of PFVs in the escape-and-pursuit scenario. To
address this challenging problem, we design a composite architecture integrating both
the RNN and the FCNN. The proposed architecture employs the RNN to effectively
handle the varying number of PFVs. Specifically, (1) the input of the RNN consists of
a series of data sets, each comprising six elements representing the vector of relative
position and velocity between the EFV and the ith PFV; (2) the number of data sets
corresponds to the number of PFVs requiring evasion (iP); (3) the input state st, with
the dimensionality of 6 × iP, undergoes processing iP times, with each processing step
involving six elements; (4) The output of the RNN is defined as the last hidden state
of the RNN. Regarding the FCNN, the number of nodes in its input layer matches the
dimensionality of the RNN’s hidden state. Consequently, the RNN and FCNN can be
interconnected, enabling the FCNN to generate guidance commands for the EFV.

2. The hidden state of the RNN is crucial for generating a reasonable output based
on the integration of both previous and current input states; thus, it is essential to
utilize the hidden state in training the agent of the EFV. In the conventional DRL
techniques, the training data in the form of (st, at, rt, st+1), with each element having
fixed dimensionality, are produced through the ongoing interactions between the
agent and its environment, and then stored in the replay buffer. Subsequently, a
batch of training data are randomly selected from the replay buffer to facilitate the
training of the agent. To address the challenge of variable dimensionality in st, we
have developed a two-step strategy. In the first step, we incorporate both the current
hidden state ht and the next hidden state ht+1 into each training data, transforming
its structure from (st, at, rt, st+1) to (st, at, rt, st+1, ht, ht+1). In the second step, we in-
troduce an innovative dual-layer batch training approach. Specifically, the outer layer
batch is constructed by segmenting the replay buffer based on the number of PFVs,
thus ensuring that all training data in the same outer layer batch possess consistent
dimensionality. Regarding the inner layer batch, it is generated by randomly selecting
training data from the corresponding outer layer batch. These data, characterized by
consistent dimensionality, are then utilized to train the agent in the EFV using the
method employed in conventional DRL techniques.

3. The purpose of this paper is to generate optimal guidance commands that enable
the EFV to effectively evade the PFVs while maximizing the residual velocity. To
address the problem, a novel reward function is designed, by taking into account the
prospective states (i.e., evasion distance and residual velocity) derived from a virtual
scenario where the guidance commands of the EFV are predefined, facilitating rapid
acquisition of feasible evasion distances and residual velocities. Given that this design
uses future information for current decision-making, the agent of the EFV invoked for
continuously generating the guidance commands according to the various real-time
situations of the EFV and the PFVs can be trained in a more efficient manner.

The rest of this paper is organized as follows. In Section 2, we first present the system
model, and then formulate the problem and analyze its complexity. In Section 3, we propose
the evasion guidance design method based on the RNN-based PPO algorithm. In Section 4,
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the simulation results of guidance design are presented and discussed. Our conclusions are
drawn in Section 5.

2. System Model and Problem Formulation
2.1. System Model

We consider a escape-and-pursuit scenario composed of a single EFV and up to three
PFVs, in which the EFV’s guidance commands are generated with the aid of the DRL
technique, and each PFV’s guidance commands are generated based on the traditional
method. For clarity, the combat scenario is illustrated in the geocentric coordinate system,
as shown in Figure 1.

Figure 1. A escape-and-pursuit scenario composed of a single EFV and up to three PFVs in the
geocentric coordinate system.

Specifically, O represents the center of the Earth and is also the origin of the geocentric
coordinate system, while OX, OY, and OZ are the three axes of the geocentric coordinate
system. E denotes the center of the mass of the EFV; rOE = [rx,E, ry,E, rz,E] is the position
vector from the center of mass of the EFV to the Earth’s center, and vE = [vx,E, vy,E, vz,E] is
the velocity vector of the EFV. Additionally, Pi denote the center of the mass of the ith PFV;
rOPi = [rx,Pi , ry,Pi

, rz,Pi ] is the position vector from the center of mass of the ith PFV to the
Earth’s center, and vOPi = [vx,Pi , vy,Pi

, vz,Pi ] is the velocity vector of the ith PFV.
Furthermore, the following assumptions are made:

1. Both the EFV and PFV can accurately observe the present and historical position
and velocity of each other, and can use the information to generate its own guidance
commands. Nonetheless, the future position and velocity of them are hard to predict
due to the interacting behavior of the EFV and each PFV.

2. The EFV is characterized by its plane-symmetrical structure, with its guidance com-
mands formulated through the DRL technique. These commands are primarily com-
posed of the composite angle of attack (The composite angle of attack is mathematically
defined as αcx = arccos(cos αcx · cos βcx).) (denoted by αcx) and the angle of heel (de-
noted by γcx). The range of αcx is [−16.0◦, 16.0◦], and the range of γcx is [−90.0◦, 90.0◦].
Conversely, each PFV demonstrates axial symmetry with its guidance commands de-
rived using the proportional navigation technique [25]. These commands incorporate
the angle of attack (represented by αcx) and the angle of sideslip (denoted by βcx). The
range of both αcx and βcx is [−20.0◦, 20.0◦].

3. The EFV is capable of detecting PFV when the distance between them is less than
2000.0 m, and the PFV possesses the capability to capture the EFV if the distance
between them is less than 20.0 m. More precisely, the exact number of PFVs requiring
evasion is determined by two factors: firstly, the total number of PFVs present in the
scenario; secondly, the number of instances where the distance between the EFV and
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each PFV is less than 2000.0 m. Furthermore, to successfully evade the PFVs, the EFV
is required to maintain a distance larger than 20.0 m for each PFV during the entire
escape-and-pursuit process.

4. For both the EFV and the PFVs, the time interval between the generation of succes-
sive guidance commands is maintained at a fixed value. Specifically, the step time
∆t = ti+1 − ti remains constant throughout the escape-and-pursuit simulation.

The purpose of this paper is to use the DRL technique to generate the guidance
commands of the EFV so that the EFV’s residual velocity satisfying evasion distance
constraint can be maximized. Since the PFVs can be regarded as a rival to facilitate the
evaluation of the performance of the guidance command generating method designed
for the EFV, it is sufficient to assume that the PFVs use the conventional proportional
navigation method to generate their guidance commands.

The vector form of the kinematics model of flight vehicles in the geocentric coordinate
system [25] is expressed as

mE
d2rOE

dt2 = FE + RE + mEgE,

mPi

d2rOPi

dt2 = FPi + RPi + mPi gPi ,

(1)

where mE is the mass of the EFV, FE = [Fx,E, Fy,E, Fz,E] is the EFV’s control force vector
with each element being a function of αcx and γcx, RE = [Rx,E, Ry,E, Rz,E] is the EFV’s
aerodynamic force vector with each element also being a function of αcx and γcx, and
gE = [gx,E, gy,E, gz,E] is the EFV’s acceleration vector of gravity, whose elements are the
functions of rOE. In addition, mPi is the mass of the ith PFV, FPi = [Fx,Pi , Fy,Pi , Fz,Pi ] is the
ith PFV’s control force vector, RPi = [Rx,Pi , Ry,Pi , Rz,Pi ] is the ith PFV’s aerodynamic force
vector, and gPi

= [gx,Pi , gy,Pi , gz,Pi ] is the acceleration vector of gravity. Each element of FPi
and RPi is a function of αcxi and βcxi , while each element of gPi

is a function of rOPi .

2.2. Evasion Distance and Residual Velocity

The time-varying relative distance vector between the EFV and the ith PFV is di(t),
which is constituted by di,x(t), di,y(t), and di,z(t). The value of the relative distance di(t) is
given by 

di,x(t) = rx,E(t)− rx,Pi (t),

di,y(t) = ry,E(t)− ry,Pi (t),

di,z(t) = rz,E(t)− rz,Pi (t),

di(t) =
√

di,x(t)
2 + di,y(t)

2 + di,z(t)
2.

(2)

The evasion distance is the minimum relative distance between the EFV and the ith
PFV during the escape-and-pursuit process, and the residual velocity is the velocity of the
EFV when the evasion distance is attained. The calculation method of the discrete-time
evasion distance di(tj) and residual velocity vE(tj) is shown in Figure 2, where di(t) is the
relative distance between the EFV and ith PFV, and vE(tj) is the EFV’s velocity at the time
instant ik at which the conditions di(tj) ≥ di(tj−1) and di(tj−1) > 0 are satisfied.
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Figure 2. The calculation method of the evasion distance and the residual velocity.

2.3. Problem Formulation and Analysis

Each single step of simulating the escape-and-pursuit scenario composed of the EFV
and up to three PFVs is described in Figure 3, and it consists of four major stages, i.e.,
Stage (1): The EFV generates its guidance commands based on its observation of the
position and velocity of the PFVs at previous time instant, and it is imperative to note that
the number of PFVs is variable, contingent upon whether the relative distance between the
EFV and the ith PFV falls below the predefined threshold of 2000.0 m; Stage (2): According
to the guidance commands generated by itself and its kinematics model, the EFV updates
its own position and velocity at current time instant; Stage (3): The ith PFV generates its
guidance commands based on its observation of the position and velocity of the EFV at
previous time instant; Stage (4): Similarly, the ith PFV updates its position and velocity
at current time instant according to the guidance commands generated by itself and its
kinematics model.

Figure 3. The iterative process of updating the positions and velocities of the EFV and the PFVs.



Aerospace 2024, 11, 361 7 of 20

Based on the above description, we can obtain the following insights:

1. The kinematics model of the EFV is expressed by (1), which means that the po-
sition and velocity of the EFV are readily available if the output of Stage (1) has
been determined.

2. According to its own position and velocity, the guidance commands of the ith PFV
are readily available if the position and velocity of the EFV have been determined by
executing the assumed proportional navigation method.

3. The kinematics model of the PFV is also expressed by (1). Therefore, the position
and velocity of the ith PFV are readily available if the output of Stage (3) has been
determined.

4. The only “independent variable” that can vary actively in every single step of sim-
ulating the escape-and-pursuit scenario, as illustrated by Figure 3, is the guidance
command of the EFV, namely, αcx and γcx, which constitute the output of Stage (1).

Following the above analysis, we conduct a simulation study, where the EFV ignores
the three PFVs and takes no measure to evade them. The simulation result between the
EFV and the first PFV is shown in Figure 4. It can be observed from Figure 4a that the first
PFV flies to the EFV directly, and from Figure 4b that the evasion distance is as small as
0.2 m, far less than 20.0 m, which means the EFV is captured by the first PFV completely.
The parallel predicaments are observed in the interactions between the EFV and the other
two PFVs (i.e., second and third PFV).

(a) (b)

Figure 4. The simulation result without the maneuvering of the EFV: (a) The flight trajectories of the
vehicles; (b) The relative distance of the vehicles.

Therefore, we conclude that it is necessary for the EFV to take advantage of its maneu-
verability proactively to evade the PFVs, and it is essential to study the guidance design
method of the EFV, in order to obtain the maximum residual velocity satisfying the evasion
distance constraint. Based on the previous discussions and derivations, this problem can
be formulated as

max
αcx(ti),γcx(ti),n

vE(tn−1),

s.t. n = max(1k, 2k, 3k),

d1(t1k ) > 20.0 m,

d2(t2k ) > 20.0 m,

d3(t3k ) > 20.0 m,

αcx(ti) ∈ [−16.0◦, 16.0◦],

γcx(ti) ∈ [−90.0◦, 90.0◦],

i ∈ [1, n].

(3)

In Poblem (3), 1k, 2k, 3k are the time instant at which the evasion distance between the
EFV and the corresponding PFV is attained according to Figure 2, and n is the maximum
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value in the set [1k, 2k, 3k]. It should be noted that if the ith PFV is not present in the scenario,
its corresponding evasion distance time instant ik defaults to 0, and its corresponding
evasion distance di(tik ) defaults to 2000.0 m. As depicted in Figure 2, the specific time
instant 1k that satisfies d1(t1k ) ≥ d1(t1k−1) and d1(t1k−1) > 0 is uncertain, because it is
influenced by the guidance commands generated at the previous time instants by the
EFV. Similarly, this uncertainty applies to 2k and 3k if the corresponding PFV exists in
the scenario. Therefore, the process of analytically deriving an optimal solution for the
problem (3) poses an enormous challenge.

3. The Proposed RNN-Based PPO Algorithm

In the traditional flight vehicle guidance designs, the input information is the state of
the target, and the purpose of the generated guidance commands is to take the flight vehicle
to the target continuously based on the state of the flight vehicle itself. For the proposed
evasion guidance design, the input information of the EFV consists of the position and
velocity of the PFVs, but the objective is to maximize the EFV’s residual velocity, satisfying
the constraint of the evasion distance. Therefore, it is difficult to adapt the traditional
guidance design method to the escape-and-pursuit problem considered in this paper.

Guidance commands of flight vehicles can be regarded as a series of data sets having
fixed time intervals, according to the assumptions in Section 2.1; thus, guidance design
constitutes a typical sequential decision problem and satisfies the basic conditions for
using the DRL technique. As discussed in Section 2.3, the only independent variable in
every single step of simulating the escape-and-pursuit scenario is the output of Stage (1) in
Figure 3, namely, the guidance commands of the EFV (αcx and γcx). Because these guidance
commands take their legitimate values from multi-dimensional continuous spaces, in
principle, the family of policy gradient algorithms can be the appropriate candidates for
the solving method. Policy gradient algorithms are generally divided into two categories,
namely, the on-policy and the off-policy algorithms. The on-policy algorithms use a policy
neural network to interact with the environment so that the training data can be generated,
which is then utilized to update the policy neural network itself immediately. Therefore,
in on-policy algorithms, the obtained training data can only be used once. As a result,
typically on-policy algorithms require a longer training time than off-policy algorithms.
On the other hand, during the initial period of the training process, the policy neural
network of both the on-policy and off-policy algorithms may be updated dramatically,
because significant differences can exist between the training data obtained at neighboring
episodes (The significant difference is due to exploration in a huge action space with a
policy neural network yet to be optimized.). In this case, it becomes difficult for the policy
neural network to quickly find a good solution. To address this issue, the researchers from
OpenAI proposed the PPO algorithm [26], which imposes constraints on the magnitude
of the update carried out by the policy neural network. The PPO algorithm has been
demonstrated effective in solving problems that are featured with multi-dimensional
continuous action space, such as path planning [27,28], and swarm robots control [29]. In
what follows, we will employ the PPO algorithm to solve the problem considered. Aiming
to solve the proposed problem (3), the research design is structured as follows:

1. We design the framework of the proposed RNN-based PPO algorithm, utilizing the
RNN to dynamically manage the dimensionality of the environment state that varies
due to the different number of PFVs requiring evasion at different time instants in a
single escape-and-pursuit simulation.

2. We design the structure of the training data by putting the hidden state of the RNN
into it. Furthermore, we engineered a dual-layer batch method to adeptly manage the
dimensional variances between environment states, enhancing both the stability and
the efficiency of the training task.

3. We design the architecture of both the actor and critic networks by integrating RNN
and FCNN. Furthermore, we propose two distinct training strategies depending on
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whether the model is initialized using pre-trained weights from scenarios involving a
smaller number of PFVs.

4. We design an elaborate reward function by creating a virtual escape-and-pursuit
scenario, enabling rapid calculations of future evasion distance and residual velocity
for generating current guidance commands of the EFV.

3.1. Design of the Interaction between the Agent and the Environment

Upon selecting the PPO algorithm, the crucial work is to design the interaction struc-
ture between the environment and the agent, which can generate the guidance commands
of the EFV based on the information obtained from the environment. It is worth noting that
the explicit inputs of Stage (1) in Figure 3 are the position and velocity of the PFVs, while
the outputs of Stage (1) also rely on the position and velocity of the EFV itself implicitly.
As shown in Section 2.1, both the position and velocity of the EFV and the ith PFV are
described by six variables, namely, rx,E, ry,E, rz,E, vx,E, vy,E, vz,E, and rx,Pi , ry,Pi , rz,Pi , vx,Pi ,
vy,Pi , vz,Pi . An intuitive idea is to set the above 12 variables as the inputs of the agent directly.
However, the absolute values of the position and velocity of the EFV and ith PFV are not
really meaningful for the escape-and-pursuit problem considered. Using these absolute
values may cause the agent to treat the absolute values as the feature of the problem mistak-
enly; thus, the generalization capability of the agent trained may be degraded. Therefore, it
is a better alternative to set the relative position and relative velocity, totally six variables
(i.e., rx,E − rx,Pi , ry,E − rz,Pi , rz,E − rz,Pi , vx,E − vx,Pi , vy,E − vy,Pi , vz,E − vz,Pi ), as the inputs of
the agent. As a result, the computational complexity can be reduced while improving the
adaptability of the agent.

As discussed in Section 2.3, the significant feature in the proposed problem is the
varying number of PFVs, attributed to (1) the variable total number of PFVs in the scenario;
(2) the number of detected PFVs, whose relative distance to the EFV is less than 2000.0 m,
is uncertain. Consequently, the standard PPO algorithm, training the agent with the
FCNN alone, encounters significant obstacles owing to the prerequisite of a predetermined
input layer dimensionality (i.e., the fixed dimensionality of the input data). Specifically,
supposing the scenario’s PFVs number up to three, the FCNN input layer’s dimensionality
is accordingly posited to be 3 × 6. When the detected number of PFVs is m (m < 3), the
input layer’s initial m × 6 elements are fed with the relative state between the EFV and the
respective PFVs, while the subsequent (3 − m)× 6 elements can only be filled with 0 (or
other predetermined values), bring more difficult in the training task.

The preceding analysis definitively clarifies that the core of solving the escape-and-
pursuit problem, characterized by a varying number of PFVs, depends on the creation
of a network architecture that is adaptable to dynamically varying data dimensionality.
RNN, with the intrinsic ability to process variable-length data sequences, stands out as a
feasible solution capable of meeting this challenge. Therefore, this paper introduces a novel
RNN-based PPO algorithm to solve the problem as delineated in Figure 5. In this context,
X1 is composed of six elements, specifically: rx,E − rx,P1 , ry,E − rz,P1 , rz,E − rz,P1 , vx,E − vx,P1 ,
vy,E − vy,P1 , vz,E − vz,P1 . Analogously, X2 and X3 share this structure and implication.

Based on Figure 5, we can obtain the following insights:

1. The environment is composed of a single EFV and up to three PFVs, with the agent
integrated in the EFV capable of generating guidance commands (i.e., αcx and γcx) to
evade the PFVs unremittingly.

2. At every interaction step, the state of the environment is represented by a sequence of
nodes, where the number of nodes corresponds to the number of PFVs detected by the
EFV. Each node is composed of six elements, denoting the relative position and velocity
between the EFV and the corresponding PFV. Moreover, the states corresponding to
PFVs detected earlier are prioritized and fed to the agent accordingly. Specifically, the
state illustrated in Figure 5 reveals that the first PFV is detected initially, followed by
the second, and finally, the third PFV.
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3. In the proposed RNN-base PPO algorithm, both the actor and critic networks are
constituted by a combination of the RNN and the FCNN. The actor network receives
the state of the environment as input and generates the EFV’s guidance commands
as output. The critic network’s input encapsulates the environment state, the actor
network’s action, and the reward feedback from the environment, resulting in an
output that is the Q-value corresponding to the above information. The Q-value
emerges as a pivotal metric instrumental in the parameter updating process in both
the actor and critic networks.

Figure 5. The RNN-based PPO algorithm structure.

3.2. Design of the Replay Buffer

As previously mentioned, the PPO algorithm stands as a quintessential example in
the off-policy algorithm family, enabling the reuse of collected data for multiple training
iterations of the agent. It is noteworthy that the training data are stored in a specialized
memory structure, known as the replay buffer. In the conventional PPO algorithm, the
training data’s structure is delineated as (st, at, rt, st+1), where st is the environment state at
the current time instant, at is the action generated by the agent at the current time instant,
rt is the immediate reward obtained from the environment at the current time instant, and
st+1 is the environment state at next time instant following the execution of the action at.

It is widely recognized that the RNN excels in processing sequences of variable lengths,
a skill fundamentally rooted in the management of the hidden state (denoted as ht), which
encapsulates the entirety of previous input information. With the introduction of the RNN
to manage the varying number of PFVs requiring evasion, incorporating the hidden state
into the training data becomes an evident necessity. Consequently, the training data’s
structure is augmented to (st, at, rt, st+1, ht, ht+1), where ht represents the hidden state at
the current time instant, and ht+1 corresponds to the hidden state at the next time instant,
as illustrated in Figure 6.

Figure 6. The structure of the training data.
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Given the varying number of PFVs, the dimensionality of the environment state (st
and st+1), which has a positive correlation with the exact number of PFVs, stored in the
replay buffer changes accordingly. This variability hampers the ability to sample the replay
buffer conventionally due to the different dimensionality of the data and can not be used
to update the network’s weights in a single operation. Although sampling the replay
buffer for a single piece of data at a time and training the network’s weights appears to
be an alternative, the efficiency of this approach is notably suboptimal. To address this
problem, we propose a dual-layer batch sampling approach, structured in two sequential
stages. Initially, training data entries with the same dimensionality in the replay buffer are
aggregated to form the outer layer batch. Subsequently, the inner layer batch undergoes
random sampling, in line with the traditional DRL technique, as illustrated in Figure 7.

Figure 7. The dual-layer replay buffer structure.

3.3. Design of the Actor and Critic Networks

Following the proposed dual-layer batch approach, the training data obtained by the
random sampling method can be directly employed for updating the weights in both the
actor and critic networks, adhering to the conventional workflow of the PPO algorithm.
The computational procedure of the actor network is delineated in Figure 8.

According to Figure 8, we can obtain the following insights:

1. The lower section of the figure illustrates the various environment states, where X1,
X2, and X3 represent the relative state between the EFV and the first, second, and
third PFVs, respectively. In the depicted scenario, the EFV initially evades the first PFV,
subsequently evading with the second and third PFVs. Upon successfully evading
the first PFV, only the relevant input information, namely, the relative state between
the EFV and the second and third PFVs, is fed to the RNN for processing.

2. Drawing upon the step delineated in the figure, in the RNN computation phase, state
nodes (i.e., X1, X2, X3) are sequentially fed into the RNN’s input layer. This procedure
yields a sequence of hidden states (i.e., h1, h2, and h3), from which the hidden state
located at the last position (h3) is selected as the output of the RNN. Regarding the
FCNN computation phase, the initial input constitutes the output derived from the
RNN computation. This phase culminates in the generation of guidance commands
for the EFV, serving as its output.

Similar to the actor network, the computational workflow of the critic network is orga-
nized into two discrete phases, each corresponding to the RNN and the FCNN, respectively.
Given the RNN’s capacity to handle varying numbers of PFVs utilizing the same structure,
the model that has been initially trained in scenarios with fewer PFVs can proficiently act
as an initial configuration for addressing more complex scenarios involving more PFVs.
Consequently, we have delineated two distinct strategic approaches:
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1. Begin the training task by randomly initializing the weights in both the actor and critic
networks. This approach signifies the model’s initiation without prior knowledge,
enabling it to autonomously develop the evasion guidance strategy.

2. Implement an incremental learning strategy by loading the model’s weights from
previous scenarios. This approach enhances the model’s proficiency in mastering the
evasion guidance strategy, building upon the pre-learned similar knowledge.

Figure 8. The computational procedure of the actor network.

3.4. Design of the Reward Function

In the DRL technique, the reward value obtained from the environment determines
the direction of the optimization of the agent, and the training purpose is to make the
agent steadily obtain the highest possible reward. Therefore, the reward function that can
accurately characterize the effect of the action currently taken subject to the current state is
very important. We propose a domain-knowledge-aided reward function expressed as

R = ∑ Ri,

Ri = ∑ Rpi + R fi
,

i ∈ [1, 2, 3].

(4)

where R is the total reward of a single training episode, Ri is the total reward corresponding
to the ith PFV, Rpi is the immediate reward of every single step about the ith PFV, and R fi

is
the reward of the final step about ith PFV, when the evasion distance between the EFV and
the ith PFV is attained. It should be noted that if the ith PFV does not exist in the scenario,
the corresponding reward Ri is set to 0. Since the goal of the optimization is to maximize
the residual velocity satisfying the evasion distance constraint, the final step reward R fi

is
expressed as

R fi
= Kvi × vE(tik−1) + Kdi

× 20.0, (5)

where Kvi equals 10.0 when the evasion distance d(tik−1) exceeds 20.0 m (i.e., the assumed
safe evasion distance), otherwise it is set to 0, and vE(tik−1) represents the residual velocity
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of the EFV at the time instant of tik−1 when the conditions (i.e., d(tik ) ≥ d(tik−1) and
d(tik−1) > 0) are satisfied in Figure 2. In addition, we have

Kdi
= clip(d(tik−1)/20.0, 0, 1), (6)

where clip(x, min, max) outputs x if min ≤ x ≤ max, outputs min if x < min, and outputs
max if x > max. Hence Kdi

is limited to the range of [0, 1].
It is obvious that it is very hard to learn from the sparse reward (i.e., the total reward

Ri becomes R fi
when setting Rpi to 0; then the agent is trained with R fi

alone). Therefore,
we proposed the calculation method of Rpi , which embodies a function reflecting both the
prospective residual velocity and the prospective evasion distance. Both of them can be
achieved by keeping the current guidance commands generated by the agent of the EFV
fixed, until the end of the virtual escape-and-pursuit scenario created, as described in Figure 9.

Figure 9. The procedure of calculating the prospective residual velocity and the prospective evasion
distance in a virtual escape-and-pursuit scenario.

4. Simulation Results and Discussions

To meticulously evaluate the effectiveness of the RNN-based PPO algorithm in ad-
dressing the proposed escape-and-pursuit problem, characterized by a varying number of
PFVs, we design two distinct kinds of simulation experiments. The first kind of simulation
experiment comprises three distinct scenarios, with the number of PFVs sequentially set at
one, two, and three. The second kind of simulation experiments are engineered to bench-
mark the performance of the RNN-based PPO algorithm against that of the FCNN-based
PPO algorithm, providing a comparative analysis. The detailed results of these simulation
experiments are outlined as follows.

4.1. Training Result of the RNN-Based PPO Algorithm in the Designed Three Scenarios

As previously outlined, the EFV initiates evasion maneuvers against the ith PFV when
the relative distance decreases to below 2000.0 m, continuing until the evasion distance
is attained according to Figure 2. It is necessary to emphasize that in scenarios where
the number of PFVs exceeds one, a concurrent application of multiple evasion distance
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judgment criteria is employed. Specifically, if any of the evasion distances relative to
the PFVs fall below 20.0 m, the escape attempt is deemed unsuccessful, leading to the
termination of the training episode. The training episode is only considered successful
when the EFV manages to successfully evade all PFVs present in the scenario.

In the first phase of our research, we engaged in the training of the EFV’s agent in
a scenario characterized by the presence of one PFV. Given the limited computational
resources of the EFV, our objective is to minimize the parameter scale in the designs of both
the actor and critic networks. Compared to the FCNN, the RNN exhibits a larger parameter
scale, which positively correlates with the number of RNN’s layers. Consequently, we
have opted to set the number of RNN layers to one to efficiently manage the computa-
tional demands. Regarding the additional hyperparameters, such as the dimension of the
RNN’s hidden state, the number of FCNN layers, and the learning rate, we employed the
standard parameters that our research group utilizes for comparable escape-and-pursuit
problems. The specific values of these hyperparameters are delineated in Table 1, and the
corresponding outcomes are illustrated in Figure 10.

Table 1. The hyperparameters set used in the training process for the single PFV.

Parameter Meaning Value

lR The number of the layer in the RNN 1
RD The dimensionality of the hidden state 256
lF The number of the layer in the FCNN 3
FD The number of the nodes in each hidden layer in the FCNN 256
lr The learning rate 1 × 10−4

(a) (b)

Figure 10. The training result of the scenario characterized by one PFV: (a) The curve of the episode’s
reward; (b) The curve of the episode’s residual velocity.

According to the results in Figure 10, the following observations are obtained:

1. As illustrated in Figure 10a, there is a consistent augmentation in the episode rewards,
which serves as a testament to the EFV’s adept evasion of the PFV, facilitated by
the judicious application of the designated reward function and hyperparameters.
This trend unequivocally underscores the successful execution of training tasks, as
evaluated from the perspective of the DRL technique.

2. Figure 10b elucidates a discernible downward trend in residual velocity concomitant
with the increment in episode number. It is imperative to acknowledge that the
EFV’s energy reserves are inherently limited, with a significant allocation dedicated
to modifying its flight trajectory to evade the PFV. This strategic energy deployment
engenders a consistent reduction in residual velocity as the evasion distance increases.

In the second phase of our research, we proceeded to train the EFV’s agent in a
scenario that entails the evasion from two PFVs, applying the specific hyperparameters as
systematically outlined in Table 1. The training results based on the two initial strategies as
described in Section 3.3 are depicted in Figure 11.
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(a) (b)

Figure 11. The training result of the scenario characterized by two PFVs: (a) The curve of the episode’s
reward; (b) The curve of the episode’s residual velocity.

From Figure 11, it is apparent that both training strategies converge to a similar
solution, indicating that the RNN-based PPO algorithm can consistently train the agent in
the EFV across diverse initial conditions. Furthermore, the loading strategy outperforms its
counterpart in terms of episode reward and residual velocity, notably in convergence speed
and terminal values. This demonstrates that utilizing pre-learned knowledge to enhance
effectiveness in addressing the escape-and-pursuit problem is an effective strategy.

In the third phase of our research, we furthered the training of the EFV’s agent in a
scenario involving three PFVs, utilizing the hyperparameters detailed in Table 1. Consistent
strategies were adopted in this scenario in the same way in the previous scenario with two
PFVs, leading to similar insights, which are elucidated in Figure 12.

(a) (b)

Figure 12. The training result of the scenario characterized by three PFVs: (a) The curve of the
episode’s reward; (b) The curve of the episode’s residual velocity.

Beyond the aforementioned analyses, we explore the correlation between the residual
velocity of the EFV and the number of PFVs in the scenarios. As shown in Figure 13,
a negative correlation is evident between the residual velocity and the number of PFVs
requiring evasion. This trend is attributable to the increased energy consumption for
evading a greater number of PFVs, leading to the reduced residual velocity. This phe-
nomenon is further explained with reference to Figure 14. An increased number of PFVs
correlates with longer evasion duration (i.e., t1, t2, and t3 represent the precise time instants
when the evasion distances for the first, second, and third PFVs are respectively attained),
thereby leading to increased energy consumption. Given the limited total energy of the EFV,
greater energy consumption on evasion inversely affects the residual velocity. Additionally,
Figure 15 graphically illustrates the reduction in evasion distances between the EFV and
the three PFVs, which decrease from 2000.0 m to their respective terminal values across
various time instants.



Aerospace 2024, 11, 361 16 of 20

Figure 13. The comparison of the residual velocity among the three scenarios.

(a) (b)

Figure 14. The curve of the guidance commands: (a) The curve of αcx; (b) The curve of γcx.

Figure 15. The evasion distances between the EFV and the three PFVs.

4.2. Comparative Analysis of the RNN-Based PPO Algorithm and The Conventional FCNN-Based
PPO Algorithm

This section details the design of comparative simulation experiments between the
RNN-based PPO algorithm and the conventional FCNN-based PPO algorithm. Considering
the requirement to predefine the dimensionality of the FCNN’s input layer, it is established
as 6 × iP, where 6 represents the relative state between the EFV and ith PFV, and iP
represents the total number of PFVs in the scenarios. As models trained for different
numbers of PFVs possess distinct architectures, the training strategy that incorporates
pre-learned knowledge, as detailed in Section 3.3, cannot be applied to agents exclusively
using FCNN. To conduct a comparative evaluation of the effectiveness of the RNN-based
PPO algorithm versus the FCNN-based PPO algorithm, the three scenarios described in
Section 4.1 are replicated using the FCNN-based PPO algorithm to train the evasion models.
The results of this comparative analysis are comprehensively depicted in Figure 16.

Comparative analysis across all scenarios indicates that although both the RNN-
based and FCNN-based PPO algorithms achieve convergence, the RNN-based algorithm
consistently surpasses its conventional counterpart in efficiency and terminal values. The
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reason for this superior performance is delineated as follows. Given that FCNN are
constrained to processing input data of fixed dimensionality, the RNN’s input layer nodes
are configured to 6 × iP, where iP represents the total number of PFVs. As analyzed
in Section 3.3, in the same escape-and-pursuit simulation, the number of PFVs requiring
evasion varies sequentially over time—specifically, 1, . . . , (iP − 1), iP, (iP − 1), . . . , 1. During
the training of the RNN-based PPO algorithm, states corresponding to the exact number
of PFVs requiring evasion are fed into the RNN. Conversely, in the FCNN-based PPO
algorithm’s training, a zero-padding method is employed to fill the input layer nodes if
the PFVs are not detected by the EFV or have been successfully evaded. Consequently, the
RNN-based PPO algorithm exhibits superior performance.

(a) (b)

(c)

Figure 16. The comparison of the reward between the proposed RNN-based PPO algorithm and
the conventional PPO algorithm: (a) The reward in one PFV scenario; (b) The reward in two PFV
scenarios; (c) The reward in three PFV scenarios.

To further emphasize the superiority of the RNN-based PPO algorithm over the FCNN-
based algorithm, we deployed the model trained in a scenario involving a single PFV and
applied it to the scenarios featured by two and three PFVs. The results of this simulation
are detailed in Table 2. According to Table 2, the model trained using the RNN-based
algorithm successfully evades all three PFVs, whereas the model trained using the FCNN-
based algorithm manages to evade only the first PFV. The primary reason is elucidated
as follows. In the FCNN mode, the relative states between the EFV and the second and
third PFV cannot be fed to the agent, as the FCNN’s input layer dimensionality is fixed
at 6, which is filled by the relative state of the EFV and the first PFV. Conversely, in the
RNN mode, the relative states between the EFV and all three PFVs can be sequentially
fed to the agent, enabling successful evasion. These simulation results demonstrate that
the model trained with the proposed RNN-based PPO algorithm can handle scenarios not
encountered during training, indicating excellent generalizability and the capability to
manage scenarios involving more than three PFVs.
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Table 2. The simulation result of evading the PFVS in an unknown scenario with pre-trained model.

The Total Number
of the PFV in
the Scenario

The Index
of the PFV

The Evasion Distance
of the RNN-Based

PPO Algorithm (m)

The Evasion Distance
of the FCNN-Based
PPO Algorithm (m)

1 1 20.76 (>20.0, success) 25.41 (>20.0, success)

2 1 22.47 (>20.0, success) 25.41 (>20.0, success)
2 34.22 (>20.0, success) 10.32 (<20.0, fail)

3
1 26.72 (>20.0, success) 25.41 (>20.0, success)
2 37.27 (>20.0, success) 10.32 (<20.0, fail)
3 42.22 (>20.0, success) 3.12 (<20.0, fail)

4.3. Improvement for Future Work

The effectiveness of the proposed RNN-based PPO algorithm is evidenced by the
results of the simulation experiments outlined above. Two aspects of the algorithm can be
further improved:

1. It is posited that the EFV and PFV can obtain each other’s positions and velocities
continuously, accurately, and instantaneously. This assumption simplifies the problem
to a certain extent. Future efforts will concentrate on refining the algorithm through
incremental training involving intermittent, erroneous, and delayed data to enhance
the evasion model’s adaptability.

2. Given the limited computational resources available on the EFV, the RNN was selected
to facilitate the training of the algorithm, rather than the transformer model, which
is prevalent in contemporary artificial intelligence research. Our future work will
explore the compatibility of embedded intelligent processors with the transformer
model and aim to replace the current RNN with the transformer to enhance the
algorithm’s adaptability.

3. This paper primarily investigates an intelligent evasion model designed for scenar-
ios in which a single EFV evades multiple PFVs. There is a potential risk that the
intelligent evasion model might underperform in complex scenarios where multiple
EFVs collaboratively evade multiple PFVs. The primary reason for this is that in
such scenarios, each EFV must effectively evade multiple PFVs while simultaneously
avoiding collisions with fellow EFVs. This scenario constitutes a multi-agent joint
reinforcement learning challenge, extending beyond the single-agent reinforcement
learning framework addressed in this paper. Our future work will involve related
research into these more interesting and challenging problems.

5. Conclusions

In this paper, we have considered the escape-and-pursuit scenario involving a single
EFV and up to three PFVs, aiming to maximize the EFV’s residual velocity under the
constraint of the evasion distance threshold. We assume that the EFV generates guidance
commands with the aid of the DRL technique, while each PFV uses the conventional pro-
portional navigation method. We reveal that, in general, it is difficult to find the analytical
solution to the residual velocity maximization problem because of the varying number
of PFVs. The guidance design problem considered constitutes a typical sequential deci-
sion problem, and the results of the decision in each step are from a multi-dimensional
continuous space, making the PPO algorithm an appropriate choice. However, the con-
ventional PPO algorithm, when employing the FCNN alone, can not manage the varying
number of PFVs requiring evasion. Consequently, we propose the RNN-based PPO algo-
rithm and design the replay buffer, the actor and critic networks, and the reward function
skillfully. Comprehensive simulation results robustly validate the effectiveness of the guid-
ance design method supported by the innovative RNN-based PPO algorithm, particularly
when utilizing pre-trained models developed with fewer PFVs. Additionally, comparative
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analyses with the FCNN-based PPO algorithm further confirm the superior adaptability
and enhanced performance of the RNN-based PPO algorithm, even in scenarios with a
predefined number of PFVs.
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