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Abstract: Rotor system of aviation engines is often made of multiple rotors connected by the clutch.
Due to manufacturing and assembly errors, there is a clutch misalignment, including the parallel
misalignment and the angle misalignment. This misalignment produces additional torque in the
operation of the system, leading to an abnormal increase in its oscillation, which causes the rubbing
between the stator and the rotor. The rub-collision poses great harm to the safety and stability of
the aero-engine. The analytical model of the rotor system with misalignment and rubbing faults
is established, and the influence of the rotational speed, the misalignment, and the rubbing on the
nonlinear characteristics of the rotor is investigated. Considering the nonlinear Hertz contact force
and bearing gap, the model of the inter-shaft bearing is built; the parallel and angle misalignments
of clutch are taken into account to analyze the characteristic frequency of the faults. For raising
the thrust-to-weight ratio of aviation engines, the hollow shaft is often adopted, and the effect of
the wall thickness for the shaft on the nonlinear vibration of the system is also investigated. It
is innovative to study the transfer mechanism from wall thickness to the nonlinear vibrational
responses of the overall structure. The result indicates that, with the increase in the wall thickness of
the shaft, the second critical rotating speed increases, while the first critical rotating speed is almost
unchanged. The characteristic frequencies for the three-rotor system with coupling faults are obtained.
Despite intuition, the parallel misalignment can inhibit rub-collision vibration to a certain extent. The
research has important reference values for the fault recognition and structural optimization of the
three-rotor system.

Keywords: three-rotor system; rub-collision; misalignment; hollow shaft; dynamic behavior

1. Introduction

Compared with the traditional single-rotor system, the multi-rotor structure has a
better performance; thus, it is widely used in aviation engines, gas turbines, and other
transportation and energy production fields. The rotor structures are often connected by the
clutch. Due to manufacturing or installation errors, there is parallel misalignment or angle
misalignment of the rotors at the clutch, and the type of misalignment leads to an abnormal
increase in rotor vibration. When the vibration is greater than the stationary clearance,
the rotor and the stator collide. Rub-collision causes cracks or even damage to rotor
components, such as the blades, the casings, and the clapboards. Hence, it is of momentous
academic worth and application value for structural design and fault identification to
investigate the dynamic characteristics of the rotor system with coupling faults.

Recently, the identification and diagnosis of the rubbing-impact fault for the rotor
system have attracted the attention of scholars. Fu et al. [1] researched the uncertain
dynamic behavior of the dual-rotor system with rubbing faults, and a surrogate model
combined with the efficient polar angle interpolation (PAI) was developed to predict the
response range affected by uncertainty. A dynamical model of the rotor system under
the consideration of rub-collision and squeeze oil film forces was built by the FEM [2].
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The influences of the rubbing-impact rigidity, the oil film gap, and the bearing clearance
on the vibrational responses of the system were studied in detail. The research result
indicated that the oil film gap has the largest influence on the dynamical characteristics of
the system. Zhao et al. [3] developed the rubbing-impact dynamical model of the bearing
system and studied the influence of the operating variables on the behavior of the falling
rotor system, and they found that the power amplifier failure led to the maximum degree
of rotor dropping collision achieved by experiments. Song et al. [4] studied the nonlinear
dynamic behaviors of an aviation engine drum with the rubbing-impact faults of the rotor
and stator blades, and the theoretical research results were confirmed by experiments. A
new method for identifying the rubbing faults of the rotor system by energy characteristics
was proposed by Zhang et al. [5]. Xu et al. [6] studied the vibrational characteristics of
the spindle-bearing-housing-belt system with rub-collision by the means of the theoretical
modeling method and FEA, and the results showed that the dynamic parameters of the belt
have little effect on the vibrational response of the system. Hou et al. [7] revealed the law
of frequency modulation through the simulation and experimentation of the blade-casing
friction and developed an empirical formula for judging the type of rub-collision fault
based on the law. Jin et al. [8] revealed the nonlinear vibration characteristics of a dual-
rotor-bearing-coupled misalignment system with local blade rub-collision fault through
numerical analysis and experimental validation. Li et al. [9] proposed an approach to
represent the rub-collision fault by detecting the dynamic loads on the rotor and the stator.

Many scholars have also conducted several studies on the misalignment of the rotor
system. Wang et al. [10] constructed an analytical model of the dual-rotor structure to study
the vibrational characteristics of the rotor system with the imbalance and misalignment
by the means of the experiments and numerical calculations. Huang et al. [11] presented
a novel method to calculate the rigidity of the spline clutch, and the correctness of the
method was validated by the means of the FEA. Tiwari et al. [12] developed the algorithm
for identifying the faults of the magnetically levitated flexible rotor system, including
the imbalance, the misalignment, and so on. Prasad V et al. [13] investigated the rotor
system with the imbalance and misalignment by applying the support vector machine and
conducted the related experiment to validate the accuracy of the method. Zhang et al. [14]
constructed the universal model of the spline joint by considering the stationary and
dynamical misalignments and explored the effect of the misalignment on the vibrational
responses of the system. Zhao et al. [15] researched the effect of the misalignment of rolling
bearing rings on the vibrational responses of the rotor systems. Through the analysis of
the contact model between the rollers and the rings, it is proven that the back loading
can increase the contact stability of the system. Tang et al. [16] investigated the influence
of operating variables and fault factors on the system via theory and experiment, and
the results showed that the angle misalignment has almost no influence on the dynamic
responses, and the effect of the rubbing is remarkable. Xu et al. [17] presented a novel
approach combining the Newton–Raphson and the Newmark-β methods to study the
vibrational responses of the rolling element system with the misalignment fault. Wang
et al. [18] investigated the vibrational responses of the angle misalignment and the cage
break faults by simulation analysis and experiments. The results indicate that the cage
fracture leads to the increase in the amplitude of the system. Wu et al. [19] researched
the random base motions of the rotor system with a misalignment fault in DMU, and the
research shows that the nonlinear response of the DSM to the deterministic base motion
is faster than the vibration of the rotor. Tuckmantel et al. [20] researched the vibration
signal of the multi-span rotor structure with clutch under angle misalignment. Lees [21]
studied the parallel misalignment in rigid rotors connected by bolts, and the expressions of
amplitude and the phase of the nonlinear vibration were developed.

The complex coupling faults in the rotor system have been studied by many re-
searchers. Fu et al. [22] investigated the nonlinear vibration of the hydraulic turbine with
the imbalance, the misalignment, and the rubbing faults. Lu et al. [23] analyzed the dynamic
behavior of the dual-rotor system with the misalignment, the rubbing, and the coupling
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fault, respectively. Jin et al. [24] developed an approach that was applied for identifying
the position of the cracks of the hollow rotor structure by CNN-C. Han et al. [25] presented
a nonlinear joint element to study the dynamical responses of the bolt-connected rotor
structure with the skewness of disk. Chen et al. [26] proposed a novel HB-AFT approach
to investigate the vibrational responses of the rotor-bearing-casing system, and the ap-
proach is more efficient than the traditional method. Fan et al. [27] analyzed the bifurcation
characteristic in the rub vibration of a piecewise linear stator–rotor system. Lu et al. [28]
adopted the POD approach to reduce dimension of the rotor structure and conducted the
corresponding experiments to validate the correctness of the proposed method. Li et al. [29]
developed a fault diagnosis model frame of the rotor-bearing system. The model based on
deep convolutional generative adversarial networks (TF-DLGANs) shows an excellent fault
diagnosis performance. Xiang et al. [30] proposed a new transfer unsupervised learning
approach for the fault diagnosis of the rotor in the experiment.

Researchers have conducted a significant amount of research on the rotor systems
with rubbing–misalignment coupling faults. However, most of the research objects are
single-rotor or dual-rotor system, and little research has been conducted on three rotors
with coupling faults. The analytical model of the three-rotor system with angle and parallel
misalignment faults is built in this paper; the effects of the rotating speed, the misalignment
parameters of the clutch, the rubbing parameters, and the wall thickness of the hollow
shaft on the dynamics of the system are studied. It is novel to conduct research on the
transfer mechanism from the wall thickness to the dynamic responses of the three-rotor
system. Compared with the traditional study of the rotor system with faults, the research
object and research content of this paper have certain novelty, and the studies have crucial
academic worth and application worth for fault recognition and structural optimization of
the three-rotor system.

2. Modeling of the Three-Rotor-Bearing System
2.1. Physical Model of Three-Rotor-Bearing System

The rotor structure in an aviation engine is composed of multiple rotors in which the
dual-rotor system is often connected by the inter-shaft bearings. Figure 1 is a schematic
diagram of the physical model of the three-rotor system. Both ends of the low-pressure
(LP) hollow rotor system are connected to the stator by the bearing 1 and bearing 2, and
the clutch is supported by the bearing 3 and 4; one end of the high-pressure (HP) rotor is
connected to the stator at the bearing 5, and the other end is connected to the LP turbine by
the bearing 6, which is called the inter-shaft bearing. The position relationship and size of
each structure of the rotor system are presented in Figure 1.
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This study focuses on the overall vibration characteristics of the three-rotor structures.
For convenient calculation and analysis, the HP shaft is regarded as the rigid shaft in mod-
eling, the torsional vibration and axial vibration are ignored, and the effect of temperature
is also neglected. The lumped mass of the LP rotor at the bearing 1 is m1; the lumped mass
of the impeller for the LP compressor is m2; the sum of the clutch mass and the rotor mass
at bearing 3 and bearing 4 is m3; the lumped mass of the LP rotor at bearing 6 is m4; the
concentrated mass of the disk for the LP turbine is m5; the lumped mass of the LP rotor at
the bearing 2 is m6; the centralized mass of the disk for the HP rotor is mh. The support
stiffness and damping of the bearing 1, bearing 2, bearing 3, bearing 4, and bearing 5 are k1,
c1, k2 c2, k3, c3, k4, c4, k5, and c5, respectively. The displacements of each concentrated mass
are x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, xh, and yh, respectively. The rotating degrees of
the HP rotor around the x axis and the y axis are θx and θy, respectively. The eccentricities
of the HP rotor, the LP compressor, and the LP turbine are eh, e1, and e2, respectively. The
flexible modulus for the LP shaft is E, and the moment of inertia for the cross-section is I.
The polar moment of inertia for the LP disk is Jp, and the diameter moment of inertia for
the disk is Jd. The material damping of the shaft segment between the lumped mass i and j
is cij. The rotational speed ratio of the HP rotor and the LP rotor is λ.

In order to study the dynamics of the multi-rotor structure with misalignment and
rub-collision faults, an accurate analytical model composed of the rub-collision, the rolling
element bearing, and the misalignment of clutch should be established. The detailed
modeling procedure is as follows.

2.2. Contact Model of the Rotor and the Stator

The rub-collision of the rotor and the stator for the three-rotor system with discs
may occur in the HP rotor or the LP turbine, or in both simultaneously. As the radial
displacements of the rotor are larger than the gap, the collision-rub occurs between the
rotor and the stator, and the collision-rub model is shown in Figure 2; two instantaneous
forces appear at the contact point, one is the normal impact force that is described by
the linear spring model; the other is the tangential friction force that is described by the
Coulomb friction model. Both of these forces exhibit non-smooth properties and are
dependent on the vibrational amplitudes of the rotor, as shown in Equation (1); as the
radial displacements of the rotor are less than the gap, the collision-rub does not exist.{

Pn(x, y) = kp(
√

x2 + y2 − δ)
Pτ(x, y) = f Pn

, i f
√

x2 + y2 − δ ≥ 0 (1)

where kp represents the impact stiffness; f represents the coefficient of friction between the
rotor and the stator; and δ denotes the stationary clearance between the rotor and the stator;
x and y denote the lateral displacements of the rotor. By projecting Pn and Pτ onto the x
axis and the y axis, the force components can be expressed as Equation (2). Px = kp(x − f y)(1 − δ√

x2+y2
)

Py = kp( f x + y)(1 − δ√
x2+y2

)
, i f

√
x2 + y2 − δ ≥ 0 (2)
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Figure 2. Contact model of the rotor and the stator.

2.3. Modeling of Inter-Shaft Bearing

The rolling bearings are generally applied in an aviation engine, and the intermediary
bearing, which is one type of rolling bearing, is used to connect the HP and LP rotors. The
type of bearing has an important effect on the dynamics of the rotor system because of the
two connecting rotors. Therefore, it is indispensable to make a fine model for the inter-shaft
bearing, and the basic assumptions are as follows.

(a) Ignore the friction and the relative sliding between the rolling element and the inner
raceway and the outer raceway.

(b) The rolling element and the inner and outer rings only have a radial flexible force that
satisfies the Hertz contact theory.

(c) The rolling elements are evenly arranged and spaced equally between the inner and
outer rings.

(d) The inner ring and outer ring of the bearing are rigidly connected to the shafts, with
no relative sliding.

The schematic diagram of the physical model for the inter-shaft bearing is presented
in Figure 3. The line velocities of the contact point between the rolling elements and the
inner ring and the outer ring are vr and vR, respectively. The rotating velocities of the inner
and outer raceways are ωr and ωR, respectively. If the linear and angular velocities for the
cage are vcage and ωcage, respectively, the expressions of vr, vR, and vcage are as follows:{

vr = ωr × r
vR = ωR × R

(3)

vcage =
1
2
(vr + vR) (4)

Because the inner ring and the outer ring of the bearing are rigidly connected with the
shafts, and there is no relative rotation between the rings and the shafts, and the angular
velocity of the cage is maintained as follows:

ωcage =
vr × r + vR × R

r + R
(5)

The continuous periodic change in the bearing stiffness and the unbalanced force
of the bearing lead to the varying compliance (VC) vibration of the rolling bearing. The
vibrational frequency caused by the unbalanced force is the rotation frequency of the rotor.
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Assuming that the number of rolling elements is Nb, then, the passing frequency of rolling
elements is as follows:

ωvc = Nb × ωcage (6)
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The contact angle of the j rolling element is θj, the normal contact deformation of the j
rolling element is δj, and the clearance of the intermediate bearing is ε; then, the obtained
equations are as follows:

θj = ωcage × t + (j − 1)
2π

Nb
(7)

δj = x · cos θj + y · sin θj − ε (8)

Based on the Hertz flexible contact theory, the contact force between the j rolling
element and the raceway is as follows:

Fj = Kb · δ1.5
j × H(δj) (9)

where Kb is the contact stiffness of the rolling bearing, H is the Heaviside step function.
After the force of each rolling element is concentrated on the centroid of the rolling bearing,
the radial bearing force of the rolling bearing is as follows:

Fx =
Nb
∑

j=1
Fjx =

Nb
∑

j=1
Kb(x cos θj + y sin θj − ε)1.5 × H(x cos θj + y sin θj − ε) cosθj

Fy =
Nb
∑

j=1
Fjy =

Nb
∑

j=1
Kb(x cos θj + y sin θj − ε)1.5 × H(x cos θj + y sin θj − ε) sinθj

(10)

2.4. Modeling of Clutch Misalignment

The parallel misalignment and the angle misalignment of the clutch are considered in
this modeling. The schematic diagrams of the rotor misalignment are presented in Figure 4
where ω2 is the rotational speed of the LP rotor, ∆e represents the parallel misalignment,
and α denotes the angular misalignment.

The rotor system is driven by airflow that makes the turbine disk rotate. Because
the supports at both ends of the rotor have different centers, there is an angle between
the shaft and the torque of the driving force, and the angle brings additional moment of
flexure to the system. The analysis of the misalignment torque is presented in Figure 5.
By decomposing T into the direction of the shaft and the direction vertical to the shaft,
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respectively, Tα and Ts are obtained. The moment caused by the airflow exciting force is
leftward, the angle of the misalignment is α, and the intersection angle between the y axis
and Ts is β. By decomposing Ts in the x-axis direction and the y-axis direction, respectively,
Tx and Ty are acquired.
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Based on the geometrical relationships, the equations that can be obtained are as follows:

Tα = T cos α (11)

Ts = T sin α (12)

Tx = Ts cos β = T sin α cos β (13)

Ty = Ts cos β = T sin α sin β (14)
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Assuming that the misalignment displacements of the bearings at both ends of the
rotor system are ∆x and ∆y, respectively, during the actual operation of the rotor system,
then, the obtained equations are as follows:

α = arct
√

∆x2 + ∆y2

l
(15)

β = arct
∆y
∆x

(16)

Since the lateral displacement of the rotor at the bearing is far less than the length of
the bearing, α and β are treated as constants. Based on the Euler’s equation, Tx, Ty, and Tz
are expressed as follows: 

Tx = Ix
.

ωx + ωyωz(Ty − Tz)
Ty = Iy

.
ωy + ωzωx(Tz − Tx)

Tz = Iz
.

ωz + ωzωx(Tz − Tx)
(17)

where ωi is the angular velocity for the rotor; Ii is the main moment of inertia from the
rotor to the shaft, I = x, y, z.

Because the rotor rotates around the z axis, ωx = ωy =
.

ωx =
.

ωy = 0, the Euler’s equation
for rotating around the fixed point can be simplified as follows:

Tz = T cos α = Izεz (18)

where εz is the angular acceleration for the rotor. Iz can be expressed as follows:

Iz =
π

64
[D4 − (D − 2 × ∆d)4] (19)

where D denotes the outer diameter of the LP shaft, and the ∆d is the wall thickness of the
LP shaft. The relationship of the angular velocity and the misalignment angle is written
as follows:

ω/ωd = M/(1 + N cos 2θd) (20)

where ω is the rotational angular velocity of the rotor, ωd is the angular velocity of the tur-
bine disk excited by the airflow, and θd represents the angular displacement for the turbine
disk. The rotating speed of the turbine disk and the rotor is approximately equal under a
small-angle misalignment. M and N are coefficients related to the misalignment angle.(

M = 4 cos α/(3 + cos 2α)
N = (1 − cos 2α)/(3 + cos 2α)

(21)

Considering the differential of β, the angular acceleration can be expressed as follows:

εz =
2MN sin(2ωt)

[1 + N cos(2ωt)]2
ω2 (22)

By substituting Equation (21) into the Euler equation, torque T can be written as follows:

T =
2Izω2MN sin(2ωt)

[1 + N cos(2ωt)]2 cos α
(23)

The misalignment torque is decomposed into each axis, and each component can be
expressed as follows:

Tx =
2Izω2MN sin(2ωt)

[1 + N cos(2ωt)]2 cos α
tan α sin β (24)
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Ty =
2Izω2MN sin(2ωt)

[1 + N cos(2ωt)]2 cos α
tan α cos β (25)

2.5. Equation of Motion for the Three-Rotor System

For studying the nonlinear dynamic characteristics of the misalignment–rubbing cou-
pling of the three-rotor system, the equation of motion for the system should be developed
first. The kinetic energy of the high-pressure rotor can be expressed as follows:

Ek =
1
2

mh(
.
xh

2
+

.
yh

2
) +

1
2

Jd(
.
θh

2
+

.
θh

2
) +

1
2

Jpω1
2 − Jpω1

.
θx

.
θy (26)

The potential energy of the high-pressure rotor can be written as follows:

Ep =
1
2

k5(xh1
2 + yh1

2) (27)

where xh1 and yh1 are the lateral displacements at support 5,{
xh1 = xh − θyl7
yh1 = yh − θxl7

(28)

and the dissipation energy of high-pressure rotor is given by the following:

Ed =
1
2

c5(
.
xh1

2
+

.
yh1

2
) (29)

The external forces of the HP rotor include the imbalance, the rubbing force, the
gravity, and the support force of the intermediate bearing. Applying the Lagrange equation,
the equations of motion for the HP rotor are established as follows:

mh
..
xh + k5(xh − θyl6) + c5(

.
xh −

.
θyl6) = Fx + mhehω1

2 cos(ω1t) + Px1

Jd
..
θy − 1

2 Jpω1
.
θx − k5l6(xh − θyl6)− c5l6(

.
xh −

.
θyl6) = Fxl6 + Tx

mh
..
yh + k5(yh + θxl6) + c5(

.
yh +

.
θxl6) = Fy + mhehω1

2 sin(ω1t) + Py1 + mhg
Jd

..
θx +

1
2 Jpω1

.
θy + k5l6(yh + θxl6) + c5l4(

.
yh +

.
θxl6) = −Fyl7 + Ty

(30)

where Px1 and Py1 denote the components of the rubbing force of the HP disc in the x
direction and the y direction, respectively.

Based on Newton’s second law, the equation of motion for the LP rotor is developed
and is as follows:

m1
..
x1 + k1x1 + c1

.
x1 + k12(x1 − x2) + c12(

.
x1 −

.
x2) = 0

m1
..
y1 + k1y1 + c1

.
y1 + k12(y1 − y2) + c12(

.
y1 −

.
y2) = −m1g

m2
..
x2 + k12(x2 − x1) + c12(

.
x2 −

.
x1) + k23(x2 − x3) + c23(

.
x2 −

.
x3) = m2e1ω2

2 cos(ω2t)
m2

..
y2 + k12(y2 − y1) + c12(

.
y2 −

.
y1) + k23(y2 − y3) + c23(

.
y2 −

.
y3) = −m2g + m2e1ω2

2 sin(ω2t)
m3

..
x3 + k3x3 + c3

.
x3 + k23(x3 − x2) + c23(

.
x3 −

.
x2) + k34(x3 − x4) + c34(

.
x3 −

.
x4) = m3∆e(2ω2)

2 cos(2ω2t)
m3

..
y3 + k3y3 + c3

.
y3 + k23(y3 − y2) + c23(

.
y3 −

.
y2) + k34(y3 − y4) + c34(

.
y3 −

.
y4) = −m3g + m3∆e(2ω2)

2 sin(2ω2t)
m4

..
x4 + k34(x4 − x3) + c34(

.
x4 −

.
x3) + k45(x3 − x4) + c45(

.
x4 −

.
x5) = −Fx

m4
..
y4 + k34(y4 − y3) + c34(

.
y4 −

.
y3) + k45(y3 − y4) + c45(

.
y4 −

.
y5) = −Fy − m4g

m5
..
x5 + k45(x5 − x4) + c45(

.
x5 −

.
x4) + k56(x5 − x6) + c56(

.
x5 −

.
x6) = Px2 + m5e2ω2

2 cos(ω2t)
m5

..
y5 + k45(y5 − y4) + c45(

.
y5 −

.
y4) + k56(y5 − y6) + c56(

.
y5 −

.
y6) = Py2 − m5g + m5e2ω2

2 sin(ω2t)
m6

..
x6 + k2x6 + c2

.
x6 + k56(x6 − x5) + c56(

.
x6 −

.
x5) = 0

m6
..
y6 + k2y6 + c2

.
y6 + k56(y6 − y5) + c56(

.
y6 −

.
y5) = −m6g

(31)

where kij is the bending stiffness for the flexible shaft segment between the concentrated
mass I and the concentrated mass j.
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3. Analysis of Fault Features

The fault features of each rotor in the system are analyzed for fault diagnosis in this
section, t. The main variables used in the calculation example are shown from Table 1, and
the Runge–Kutta approach is applied to obtain the solution of Equation (31), and the initial
transient data are abandoned, and the steady state data is kept for analysis. In order to
investigate the fault characteristic for the multi-rotor system, with ∆d = 4 × 10−3 m, the
waterfall diagrams of each rotor under no fault (∆e = 0, α = 0, δi > ∀

√
xi

2 + yi
2, µi = 0),

only misalignment (∆e = 1 × 10−5, α = 5, δi > ∀
√

xi
2 + yi

2, µi = 0), only rubbing
(∆e = 0, α = 0, δi = 5 × 10−5, µi = 0.1), coupling faults of misalignment, and rubbing
(∆e = 1 × 10−5, α = 5, δi = 5 × 10−5, µi = 0.1) are drawn.

Table 1. Specific parameters of the multi-rotor system.

Parameters Values Parameters Values

Lumped mass m1 (kg) 1.5 Length of l1 (m) 0.3
Lumped mass m2 (kg) 6 Length of l2 (m) 0.3
Lumped mass m3 (kg) 10 Length of l3 (m) 0.8
Lumped mass m4 (kg) 2 Length of l4 (m) 0.2
Lumped mass m5 (kg) 6 Length of l5 (m) 0.2
Lumped mass m6 (kg) 1.5 Length of l6 (m) 0.3
Lumped mass mh (kg) 8 Length of l7 (m) 0.3
Support stiffness k1 of bearing 1 (N/m) 3 × 106 Damping coefficient c12 of flexible shaft segment (N·s/m) 800
Support stiffness k2 of bearing 2 (N/m) 3 × 106 Damping coefficient c23 of flexible shaft segment (N·s/m) 800
Support stiffness k3 of bearing 3 (N/m) 3 × 106 Damping coefficient c34 of flexible shaft segment (N·s/m) 800
Support stiffness k4 of bearing 4 (N/m) 3 × 106 Damping coefficient c45 of flexible shaft segment (N.s/m) 800
Support stiffness k5 of bearing 5 (N/m) 3 × 106 Damping coefficient c56 of flexible shaft segment (N·s/m) 800
Support damping coefficient c1 of bearing 1 (N·s/m) 1200 Polar moment of inertia Jp (kg·m2) 0.04
Support damping coefficient c2 of bearing 2 (N·s/m) 1200 Diameter moment of inertia Jd (kg·m2) 0.02
Support damping coefficient c3 of bearing 3 (N·s/m) 1200 The flexible modulus E of the shaft (kg·m2) 2 × 1011

Support damping coefficient c4 of bearing 4 (N·s/m) 1200 Inner-ring radius r (m) 40.1 × 10−3

Support damping coefficient c5 of bearing 5 (N·s/m) 1200 Outer-ring radius R (m) 63.9 × 10−3

Mass eccentricity e1 of LP compressor disk (m) 5 × 10−5 Rolling element number Nb 8
Mass eccentricity e2 of LP turbine disk (m) 5 × 10−5 Stiffness Kb of inter-shaft bearing (N/m) 13.34 × 109

Mass eccentricity eh of HP rotor disk (m) 3 × 10−5 Clearance ε of inter-shaft bearing (m) 5 × 10−6

The rotational speed ratio λ of HP and LP rotors 1.6 Outer diameter D of the LP shaft (m) 3.936 × 10−2

3.1. LP Compressor

The waterfall diagrams of the LP compressor without fault and with various faults
are shown in Figure 6. Comparing with Figure 6a, the new double frequency (2×) of the
rotor vibration occurs only under the misalignment fault in Figure 6b, and the amplitude
of 2× frequency is significantly larger than that of 1.6× frequency, and the amplitude of
1× frequency is slightly increased (only 0.35%). It is inferred that the new 2× frequency
may be the characteristic frequency of the rotor misalignment fault. As can be seen in
Figure 6a,c, the misalignment fault does not produce a new frequency doubling (2×), but
only increases the amplitude of the 1× frequency by 2.05%. As can be seen in Figure 6d,
under the action of the two faults, the amplitude peak caused by the superposition of
rubbing and misalignment increases by 2.18%.
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3.2. LP Turbine

The waterfall diagrams of the LP turbine without fault and with various faults are
presented in Figure 7. As can be shown from Figure 7a,b, the new 2× frequency component
occurs only under the misalignment fault, and the amplitude of 1× frequency increases
by 0.71%. Comparing Figures 7a and 7c, complex frequency components such as 0.4×,
0.2×, 2.2×, and 2.6× appear only under the rubbing fault, and the amplitude peak of the
1× frequency decreases by 48.80%. As can be shown from Figure 7d, the vibration of the
LP turbine under coupling faults is more complex, but the overall amplitude-frequency
characteristics are similar to those under only the rubbing fault, indicating that under
coupling faults, the rubbing fault occupies the dominant position in influencing the rotor
vibration. It can be inferred that the characteristic frequencies of the rubbing fault are 0.4×,
0.2×, 2.2×, 2.6×, and other sub-harmonics, and rubbing has some inhibitory impact on the
amplitude of the vibrational response.
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3.3. HP Rotor

The waterfall diagrams of the HP rotor without fault and with various faults are pre-
sented in Figure 8, where the new minor 2× frequency occurs under only the misalignment
fault. Comparing Figure 8a and Figure 8c, it can be seen that the relative relationship of
each frequency component has changed significantly. The amplitude of the 1× frequency
has decreased significantly, with a decrease of 84.70%, and the amplitude of 1.6× frequency
has increased significantly, with a maximum increase of 158.55%. It can be observed from
Figure 7d that the overall amplitude–frequency characteristics under coupling faults are
similar to those under only rubbing, indicating that rubbing has a significant effect on
the vibrational response of the rotor system under coupling faults. At the same time, the
amplitude is slightly affected by misalignment, only with a decrease of 4.40%. For the
HP rotor, the rubbing characteristic is that the 1.6× frequency component dominates the
vibrations, and the misalignment has a somewhat inhibiting impact on the amplitudes of
the vibrational response.
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3.4. Characteristic Frequency

In the three-rotor system, the LP compressor, the LP turbine, and the HP rotor all
have 2× frequency when the system only has the misalignment fault; three rotors all have
0.4× frequency when the system only has the rub-collision fault; three rotors all have
the superposition of the characteristic frequency when the system has coupling faults of
misalignment and rub-collision. It can be inferred that, for this multi-rotor system, the
characteristic frequency of the misalignment fault is 2×, and the characteristic frequency of
rub-collision fault is 0.4×, which is often accompanied by 0.6×, 2.2×, and other frequency
components. The characteristic frequency of coupling faults mainly includes 2×, 0.4×, 0.6×,
etc., and the frequency component is more complicated than that of a single fault. When
the system has only the misalignment fault, the vibration amplitude of each rotor from
large to small is for the LP compressor, the LP turbine, and the HP rotor. This difference
is related to the distance of each rotor and the clutch, and the farther the distance is, the
greater the vibration decay is. For the HP rotor, when there is a rub-collision fault, the 1.6×
frequency component dominates the whole spectrum. This research is meaningful for the
arrangement of sensors in fault diagnosis experiments.

4. Influencing Factors of Dynamic Characteristic for Multi-Rotor System
4.1. Influence of Rotational Speed

The most basic variable of the rotor system is the rotational speed. For studying the
effect of the rotating speed on the nonlinear characteristics of the multi-rotor system, the
speed range of 100~3000 rad/s is chosen for the LP rotor, along with the rub-collision
stiffness of kpi = 4 × 108 N/m, the rub-collision gap of δ = 5 × 10−5 m, the misalignment
angle α = 5◦, and the clutch parallel misalignment ∆e = 1 × 10−5 m, and the bifurcation
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diagram of the vibrational amplitude for the low-pressure turbine rotor with change in the
speed is shown in Figure 9 where the system exhibits complex dynamical behaviors such
as the periodic, multi-periodic, quasi-periodic, and chaotic motions with an increase in the
rotating speed.
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The research object is the aero-engine rotor whose working speed has some gears, and
the typical speeds are chosen at different gears. For studying the characteristics of each
typical dynamic behavior, the typical rotating speeds of 300 rad/s, 800 rad/s, 1500 rad/s,
and 2000 rad/s are selected, respectively, and the time history, the frequency spectrum, the
Poincaré section, and the axis trajectory of the vibrational response of the low-pressure
turbine are obtained, as shown in Figures 10–14. It can be shown from Figure 10 that the
amplitude and frequency change with the increase in the rotational speed. As can be seen
in Figure 11a, when the speed is 300 rad/s, the dominant frequency is 1.6×; there are five
independent points in the Poincaré diagram, indicating that the system is under the state
of Period-5, as seen in Figure 11b; and the LP turbine rotor and the downside casing collide
in the vertical direction, as seen in Figure 11c; the dominant frequency component is also
1.6×, as shown in Figure 12a; it can be shown from Figure 12b that, when the rotating
speed is 800 rad/s, the spectrum becomes more complicated than that of 300 rad/s, and
the Poincaré diagram presents the irregular scatter points; the axis trajectory becomes
disordered, as seen in Figure 12c, indicating that the system is under a chaotic state. It can
be seen in Figure 13 that, when the rotating speed is 1500 rad/s, the dominant frequency
component is 1×, and the frequency components of the high-frequency part increase, and
the amplitude of the 4.4× frequency is larger, as seen in Figure 13a; and five clusters of
scattered points appear in the Poincaré diagram, as shown in Figure 13b, denoting that the
system is under the quasi-periodic state at this time. It can be seen in Figure 14 that the
system exhibits a periodic motion again as the rotation speed is 2000 rad/s.
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Figure 12. (a) Spectrum, (b) Poincaré maps, and (c) axis trajectory maps for ω = 800 rad/s.
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4.2. Influence of Misalignment Parameters

Two shafts are connected by a clutch in the multi-rotor system. There will be misalign-
ment at the clutch due to manufacturing and installation errors, and this misalignment has
an important effect on the dynamic characteristics of the system. This misalignment mainly
includes the parallel misalignment and the angle misalignment.

4.2.1. Parallel Misalignment

The parallel misalignment is selected as the control variable to investigate the effect of
parallel misalignment on the nonlinear response of the multi-rotor system, and the waterfall
diagram of the vibration amplitude with the parallel misalignment and the frequency ratio
is drawn, as shown in Figure 15. The relevant parameters are as follows: the rotational
speed ω2 = 1500 rad/s, the angle misalignment is 0, the frequency ratio is in the range
of 0.1 to 0.6, and its step size is 0.01; the parallel misalignment is from 0 to 1 × 10−4 m,
and its step size is 3 × 10−6 m, and the other parameters are consistent with Section 4.1. It
can be seen in Figure 15 that with an increase in the parallel misalignment, the amplitude
of the LP turbine decreases as a whole. It can be deduced that the parallel misalignment
can inhibit the vibration of the LP turbine to some extent. The causes of this phenomenon
are analyzed and are as follows. In the misalignment–rubbing coupling fault system,
the additional bending moment caused by the parallel misalignment is linear, while the
rubbing force caused by the rub-impact is nonlinear; when the parallel misalignment fault
enhances gradually and becomes the dominant fault in the coupling faults, the vibrational
response of system with the coupling faults is dominated by the misalignment vibration
characteristics, and the chaotic and quasi-periodic motions caused by the nonlinear rubbing
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force are inhibited. Therefore, the parallel misalignment can suppress the vibration of the
low-pressure turbines to some extent.
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Figure 15. The waterfall diagram of the LP turbine with different parameters of parallel misalignment.

The parallel misalignment parameters ∆e = 1 × 10−5 m, 3 × 10−5 m, 9 × 10−5 m are
selected, respectively, for studying the typical nonlinear behaviors of the system; and the
corresponding time history, the spectrum, and the Poincaré and axis trajectory maps are
drawn, respectively, as shown in Figures 16–18. It can be shown from Figure 16 that, when
the parallel misalignment ∆e = 1 × 10−5 m, Figure 16c shows some points, and two of
these points each pair up together; the orbit diagrams of the axle center of the LP turbine
(Figure 16d) is a relatively clear and regular circle that is always beyond the red circle (the
red circle is the boundary circle of whether rub-collision occurs), and it is inferred that
the whole cycle’s rub-collision occurs between the rotor and the stator. When the parallel
misalignment ∆e = 3 × 10−5 m, Figure 17c shows five isolated points, denoting that the
rotor is under the motion state of Period-5, and the axis trajectory is a more complex circle,
as seen in Figure 17d. When the parallel misalignment ∆e = 9 × 10−5 mm, Figure 18c shows
five clusters of irregular scattered points, denoting that the rotor is in a quasi-periodic
state. It can be seen in Figures 16b, 17b and 18b that, with the increase in the parallel
misalignment, the relative relationship of each frequency component of the rotor system
with misalignment and rub-collision coupling faults changes, and the amplitude of 2×
gradually increases, which is positively correlated with the increase in the misalignment,
and the amplitude of 0.4× is relatively decreased. It can be deduced that the parallel
misalignment can inhibit rub-collision vibration to a certain extent, which is consistent with
the conclusion of Figure 15.
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Figure 16. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
∆e = 1 × 10−5.
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Figure 17. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
∆e = 3 × 10−5.
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Figure 18. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
∆e = 9 × 10−5.

4.2.2. Angle Misalignment

For studying the impact of angle misalignment on the dynamic response of multi-rotor
system, the angle misalignment is selected as the control variable, and the waterfall diagram
of vibration amplitude with angle misalignment and frequency ratio is drawn, as shown
from Figure 19. The relevant parameters are as follows, the rotating speed ω2 = 1500 rad/s,
the parallel misalignment is 0, the frequency ratio is from 0.1 to 0.6, and its step size is 0.01;
the angle misalignment is in the range of 0◦ to 10◦, the step size is 3 × 10−6, and the other
parameters are consistent with Section 4.1. It can be seen in Figure 19 that, as the angle
misalignment increases, the vibration amplitude of the LP turbine increases, which is more
significant at low-frequency ratios.

In order to study the impact of this parameter on the typical nonlinear behaviors
of the rotor, the misalignment angles α = 2◦, 5◦, 8◦ are selected, respectively, and the
corresponding time history, spectrum, Poincaré and axis trajectory diagrams are drawn, as
shown in Figures 20–22. It can be shown from Figure 20 that, when the misalignment angle
α = 2◦, the dominant frequency is 1×, and there is no obvious high-frequency doubling,
as shown in Figure 20a. Figure 20c shows five isolated points, and Figure 20d presents
some complex irregular circles, indicating that the rotor is in the motion state of Period-5.
When the misalignment angle α = 5◦, the amplitudes of 1× and 0.4× decrease, and some
significant high frequency components such as 2.2×, 3.2×, 3.8×, and 4.4× appear, as seen in
Figure 21b. Figure 21c shows five piles of irregular scattered points, denoting that the rotor
is in a quasi-periodic state. When the misalignment angle α = 8◦, the frequency history is
extremely complex, the amplitudes of 1× and 0.4× continue to decrease, and the amplitude
of 3.2× increases significantly, as shown in Figure 22b. The axis trajectory is extremely
chaotic (Figure 22d), and Figure 22c shows a large number of irregular scatters, denoting
that the system is in a chaotic state at this time. It can be seen in Figures 20a, 21a and 22a
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that, as the angle misalignment increases, the vibration displacement of the rotor increases.
It can be seen in Figures 20b, 21b and 22b that, with the increase in the angle misalignment,
the maximum amplitude gradually decreases, and the amplitude of 0.4×, as the feature
frequency of the rub-collision, also decreases. It can be inferred that the angle misalignment
restrains the rub-collision vibration. The high frequency amplitude increases relatively,
especially 3.2×. It is evident that the angle misalignment has an obvious influence on the
vibration energy distribution. Compared with Section 4.2.1, the enlargement of the angle
misalignment does not change the amplitudes of the misalignment feature frequency 2×,
and it indicates that 2× is mainly excited by the parallel mismatch.
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Figure 20. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for α = 2◦.
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Figure 21. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for α = 5◦.



Aerospace 2024, 11, 319 20 of 25

Aerospace 2024, 11, x FOR PEER REVIEW 21 of 27 
 

 

    
(a) (b) (c) (d) 

Figure 20. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center 
for α = 2°. 

    
(a) (b) (c) (d) 

Figure 21. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center 
for α = 5°. 

Figure 22. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center 
for α = 8°. 

4.3. Influence of Rub-Collision Parameters 
The rub-collision between the stator and the rotor occurs when the amplitude of the 

rotor vibration is greater than the static clearance. The multi-rotor system is subject to 
additional forces during the rub-collision transient state; thus, the dynamical behavior of 
the rotor changes. The impact of the rub-collision stiffness and friction coefficient on the 
nonlinear behaviors of the multi-rotor system is studied in this section. 

  

1.3 1.31 1.32 1.33 1.34 1.35
t(s)

-6

-4

-2

0

2

4

6
10-5

0 1 2 3 4 5 6
Frequency Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 10-5

(0.4X , 1.53×10-5)

(0.4X , 1.25×10-5)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x5(m) 10-5

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

    
(a) (b) (c) (d) 

(0.4X , 5.33×10-6)

(3.2X , 1.47×10-5)

Figure 22. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for α = 8◦.

4.3. Influence of Rub-Collision Parameters

The rub-collision between the stator and the rotor occurs when the amplitude of the
rotor vibration is greater than the static clearance. The multi-rotor system is subject to
additional forces during the rub-collision transient state; thus, the dynamical behavior of
the rotor changes. The impact of the rub-collision stiffness and friction coefficient on the
nonlinear behaviors of the multi-rotor system is studied in this section.

4.3.1. Rub-Collision Stiffness

For investigating the impact of rub-collision stiffness on the multi-rotor system with
coupling faults, the rub-collision stiffnesses kp2 = 4 × 107 N/m and 4 × 109 N/m are chosen,
respectively, to calculate the time history, the spectrum, and the Poincaré and axis trajectory
figures, as shown in Figures 23 and 24, and the rotating speed ω2 is 1500 rad/s, and the
other parameters remain unchanged. As can be shown in Figure 23a and the C zone of
Figures 10 and 24a, when the rub-collision stiffness increases, the vibration displacement
of the LP turbine decreases, and this is because the larger stiffness is more effective for
the vibration reduction; it can be shown from Figures 13a, 23b and 24b that the amplitude
of the characteristic frequency (0.4×) for rub-collision increases with the increase in the
stiffness; Figure 23c shows the Period-5 motion, Figure 13 shows the quasi-periodic motion,
and Figure 24 shows the chaotic motion state; it is deduced from Figures 13, 23 and 24 that
the motion state of system changes significantly, and the nonlinear characteristic gradually
increases with the increase in stiffness.
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Figure 23. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) Orbit diagram of shaft center for
kp2 = 4 × 107 N/m.
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Figure 24. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
kp2 = 4 × 109 N/m.

4.3.2. Friction Coefficient

The coefficient of friction has a direct impact on the tangential rub-collision forces
and then on the nonlinear behavior of the system. For researching the effect of the friction
coefficient on the multi-rotor system with coupling faults, the friction coefficients f2 = 0.02
and 0.2 are chosen, respectively, to obtain the time history, the spectrum, and the Poincaré
and axis trajectory figures, as shown in Figures 25 and 26, and the rotating speed ω2 is
1500 rad/s, and the other parameters remain unchanged.
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Figure 25. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
f 2 = 0.02.

Aerospace 2024, 11, x FOR PEER REVIEW 23 of 27 
 

 

    
(a) (b) (c) (d) 

Figure 25. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center 
for f2 = 0.02. 

Figure 26. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center 
for f2 = 0.2. 

It can be shown from Figure 25a and the C zone of Figures 10 and 26a that when the 
friction coefficient increases, the vibration displacement of the LP turbine remains essen-
tially constant, and this is because the increase in friction coefficient does not lead to the 
change in the rub-collision radial component Pn; it can be shown from Figures 13a, 25b 
and 26b that the amplitude of the characteristic frequency (0.4X) for rub-collision de-
creases with the increase in the stiffness; Figure 25c shows the Period-5 motion, Figure 13 
is the quasi-periodic motion, and Figure 26 shows the chaotic motion state; it is deduced 
from Figures 13, 25, and 26 that the motion state of system changes significantly, and the 
nonlinear characteristics strengthen with the increase in the friction coefficient. 

4.4. Influence of Wall Thickness 
For improving the thrust–weight ratio of the aviation engine, the shaft is often de-

signed as a hollow structure. For studying the effect of the wall thickness of the hollow 
shaft on the dynamical behaviors of the multi-rotor system, the wall thickness of the shaft 
for the LP compressor is selected as the control variable, and the outer diameter of the 
shaft and other parameters are consistent with Section 3.1. The waterfall diagrams of vi-
bration displacement with speed and frequency ratio for the low-pressure compressor are 
drawn, as shown in Figures 27 and 28. Figure 27 is the waterfall diagram of vibrational 
response of low-pressure compressor under the different wall thickness values when the 
system has no fault. It can be shown from Figure 27 that, as the wall thickness of the shaft 
increases, the second-order peak speed increases, while the first-order peak speed is al-
most unchanged. Figure 28 is a waterfall diagram of the system with the coupling faults. 
As can be seen in Figure 28, the second-order peak speed increases with the increase in 

1.3 1.31 1.32 1.33 1.34 1.35
t(s)

-6

-4

-2

0

2

4

6

10-5

2 3 4 5 6 7
x5(m) 10-5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

    
(a) (b) (c) (d) 

0 1 2 3 4 5 6
Frequency Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 10-5

0 1 2 3 4 5 6
x5(m) 10-5

-0.1

-0.05

0

0.05

0.1

0.15

Figure 26. (a) Time history, (b) spectrum, (c) Poincaré maps, and (d) orbit diagram of shaft center for
f 2 = 0.2.

It can be shown from Figure 25a and the C zone of Figures 10 and 26a that when the friction
coefficient increases, the vibration displacement of the LP turbine remains essentially constant,
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and this is because the increase in friction coefficient does not lead to the change in the rub-
collision radial component Pn; it can be shown from Figures 13a, 25b and 26b that the amplitude
of the characteristic frequency (0.4×) for rub-collision decreases with the increase in the
stiffness; Figure 25c shows the Period-5 motion, Figure 13 is the quasi-periodic motion, and
Figure 26 shows the chaotic motion state; it is deduced from Figures 13, 25 and 26 that the
motion state of system changes significantly, and the nonlinear characteristics strengthen
with the increase in the friction coefficient.

4.4. Influence of Wall Thickness

For improving the thrust–weight ratio of the aviation engine, the shaft is often designed
as a hollow structure. For studying the effect of the wall thickness of the hollow shaft
on the dynamical behaviors of the multi-rotor system, the wall thickness of the shaft for
the LP compressor is selected as the control variable, and the outer diameter of the shaft
and other parameters are consistent with Section 3.1. The waterfall diagrams of vibration
displacement with speed and frequency ratio for the low-pressure compressor are drawn,
as shown in Figures 27 and 28. Figure 27 is the waterfall diagram of vibrational response of
low-pressure compressor under the different wall thickness values when the system has no
fault. It can be shown from Figure 27 that, as the wall thickness of the shaft increases, the
second-order peak speed increases, while the first-order peak speed is almost unchanged.
Figure 28 is a waterfall diagram of the system with the coupling faults. As can be seen in
Figure 28, the second-order peak speed increases with the increase in wall thickness, while
the first-order peak speed remains unchanged, and these conclusions are consistent with
those of the no-fault system. Comparing Figures 27 and 28, (0.4× and 2×) under the same
wall thickness appear, as shown from the red circle of Figure 28, and these characteristics
are consistent with the conclusion of the previous study.
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Figure 27. The waterfall diagrams of the fault-free LP compressor with different wall thicknesses:
(a) ∆d = 5 mm; (b) ∆d = 9 mm; and (c) ∆d = 15 mm.
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Figure 28. The waterfall diagrams of the LP compressor under coupling faults with different wall
thicknesses: (a) ∆d = 5 mm; (b) ∆d = 9 mm; and (c) ∆d = 15 mm.

5. Validation of Theoretical Modeling Approach

There are some difficulties in the FE modeling of the misalignment and rub-impact
coupling faults. The finite element analysis method is adopted to validate the correctness of
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the theoretical model without fault. The validation of the model without fault can largely
ensure the correctness of the subsequent fault model analysis. The specific steps are as
follows: the geometric model of the rotor with a hollow shaft is established in the Geometry
Module; then, it is imported as a transient structure; and the material property is defined
according to the theoretical calculation. The bearings are equivalent to springs, one end
of the spring is connected to the shaft, the other end is connected to the ground, and the
stiffness of the springs is 3 × 106 N/m. The rotor structure is meshed, the element size
is 5 mm, the type of element is tetrahedral element Solid187, the number of elements
is 141,640, the number of nodes is 219,146, and the finite element model is shown from
Figure 29. The loads including the gravity, the unbalanced force, and the centrifugal force
of the rotation speed of 1500 rad/s are applied to the rotor. The time history and frequency
domain diagrams of the vibration displacement of the disc centroid are drawn. The results
of the finite element method (FEM) and the results of the theoretical modeling approach
(TMA) are compared, as shown in Figure 30a,b.

As the whole model parameter and constraints of the FE modeling are in accordance
with the theory analysis, the results of the FEA and the TMA are comparable. It can be seen
in Figure 30 that the theoretical calculation results are in good agreement with those of the
finite element calculation, and this verifies the reliability of the TMA.
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Figure 29. Finite element model and constraints of the LP turbine.
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Figure 30. Comparison between FEM result and TMM result: (a) time history diagram and (b) fre-
quency domain.

6. Conclusions

The dynamics of the three-rotor system with the coupling faults of rub-collision and
misalignment is investigated by the theoretical modeling method, and the method is
verified by the finite element analysis. The characteristic frequency of the fault for the
multi-rotor system is analyzed, and the influence of the rotational speed, the rub-collision,
the misalignment parameters, and the wall thickness of the hollow shaft on the dynamics
is studied. The main research conclusions are as follows:
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(1) The characteristic frequency of the misalignment fault for this three-rotor system
is 2×; the characteristic frequency of the rub-collision fault is 0.4×, which is often
accompanied by 0.6×, 2.2×, and other frequency components. The characteristic
frequency of coupling faults mainly includes 2×, 0.4×, 0.6×, etc., and the frequency
component is more complicated than that of a single fault.

(2) The rotating speed and clutch misalignment have essential influence on the nonlinear
behaviors of the three-rotor system. The system exhibits complex dynamical behaviors
such as periodic, multi-periodic, quasi-periodic, and chaos with an increase in the
rotating speed. With the increase in the parallel misalignment, the amplitude of 2×
gradually increases, and the amplitude of 0.4× is relatively decreased; the parallel
misalignment can inhibit rub-collision vibration to a certain extent; as the angle
misalignment enlarges, the vibration displacement of the rotor enlarges, and the
amplitude of high frequency such as 3.4× increases relatively; the enlargement of
the angle misalignment does not change the amplitude of the misalignment feature
frequency, which is mainly excited by the parallel misalignment.

(3) The motion state of the system changes significantly, and the nonlinear characteristics
gradually strengthen with the enlargement of the rubbing parameters. When the
rub-collision rigidity increases, the vibration displacement of the LP turbine decreases,
the amplitude for the characteristic frequency (0.4×) of rub-collision increases, and
the amplitude for the characteristic frequency of rub-collision decreases. When the
friction coefficient increases, the vibration displacement of the LP turbine remains
essentially constant. As the wall thickness of the shaft increases, the second critical
rotating speed increases, while the first critical rotating speed is almost unchanged.
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