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Abstract: To address the problem of low accuracy and efficiency in trajectory planning algorithms for
interceptors facing multiple constraints during the midcourse guidance phase, an improved trajectory
convex programming method based on the lateral distance domain is proposed. This algorithm
can achieve fast trajectory planning, reduce the approximation error of the planned trajectory, and
improve the accuracy of trajectory guidance. First, the concept of lateral distance domain is proposed,
and the motion model of the midcourse guidance segment in the interceptor is converted from the
time domain to the lateral distance domain. Second, the motion model and multiple constraints are
convexly and discretely transformed, and the discrete trajectory convex model is established in the
lateral distance domain. Third, the deep reinforcement learning algorithm is used to learn and train
the initial solution of trajectory convex programming, and a high-quality initial solution trajectory is
obtained. Finally, a dynamic adjustment method based on the distribution of approximate solution
errors is designed to achieve efficient dynamic adjustment of grid points in iterative solving. The
simulation experiments show that the improved trajectory convex programming algorithm proposed
in this paper not only improves the accuracy and efficiency of the algorithm but also has good
optimization performance.

Keywords: trajectory planning; convex optimization; lateral distance domain; deep reinforcement
learning; approximate solution error

1. Introduction

In actual combat, to maximize intercept effectiveness, the interceptor system seeks to
reduce the response time from the detection system’s detection of the target to the launch of
the interceptor. Moreover, as the longest duration part of the combined guidance process,
the trajectory design of the midcourse guidance section largely determines the terminal
intercept capability of the interceptor and is a key factor in determining the success or
failure of the intercept mission. At the same time, the trajectory planning problem in the
midcourse guidance phase is a complex non-linear problem with multiple constraints,
which requires the overall consideration of physical constraints, such as dynamic pressure,
overload, and thermal flow density during the flight process, while ensuring that the
terminal constraints are met. Therefore, this problem places high demands on the accuracy
and efficiency of the midcourse guidance trajectory optimization algorithm.

In addition to satisfying certain constraints, trajectory planning also requires finding a
particular trajectory, which satisfies some performance indices from the initial position to
the target position [1]. Currently, the previous method used in the study of such problems
for their solution is the indirect method. In Ref [2], the analytical solution of the shooting
equation for the on-line trajectory optimization problem of planetary landing is derived,
and the indirect method is improved by combining the homotopy theory technology to
achieve an optimal propellant. Grant and Braun [3] design a fast trajectory optimization
method by combining indirect optimization, continuation, and symbolic manipulation
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theories. Shen et al. [4] propose an optimization method combining the indirect method
and homotopy approach for solving an impulse trajectory. In the research of dealing
with the problem of difficult selection of the initial values of co-state variables in indirect
methods, Lee et al. [5] propose a non-functional approximation or extrapolation initial
guess structure to deal with specific energy targeting problems. Ren et al. [6] simplify the
dynamic model and, based on it, design an initial guess generator with high computational
efficiency, which allows the initial value to be obtained by analytically solving a linear
system of equations. For the trajectory optimization problem, the indirect method not
only has the advantage of high computational accuracy, but it also theoretically proves the
optimality of the optimized trajectory. However, the difficulty in selecting the initial values
of the co-state variables has not been fully solved, which severely limits the development
and application of the indirect method.

The principle of the direct method of problem solving is different from that of the
indirect method. It discretizes the problem, which makes the procedure for solving the
problem simple and avoids the inaccuracy of the initial value solution in indirect methods. It
has been widely applied to the solution of optimal trajectory problems [7–10]. Especially in
recent years, with the significant improvement in scientific computing hardware capabilities,
the pseudospectral method, as a typical method of point collocation in direct methods, has
been widely applied by researchers to solve trajectory planning problems, and its theory
has been improved and extended [11,12]. Zhang et al. [13] design a multi-objective globally
optimal homing trajectory for a wing parachute based on the Gaussian pseudospectral
method. Zhang et al. [14] propose an improved Radau pseudospectral method combined
with deep neural networks to solve the chase and escape game problem of orbital trajectory.
Li et al. [15] propose a hybrid optimization method based on the conjugate gradient method
and pseudospectral point matching method for the optimal trajectory planning problem
during rocket landing. However, all types of pseudospectral methods have the problem
of imprecise efficiency solution accuracy, which is a major obstacle to their application in
practical engineering.

In addition, intelligent optimization algorithms are often used to solve trajectory plan-
ning generation problems due to their ability to effectively handle complex multi-constraint
and multi-dimensional optimization problems [16,17]. Zhao et al. [18] generate reliable
constrained glide trajectories for hypersonic gliding vehicles by improving the pigeon in-
spired optimization (PIO) algorithm. Duan et al. [19] combine the direct collocation method
and the artificial bee colony algorithm to optimize and generate the re-entry trajectory of
hypersonic aircraft. Zhou et al. [20] establish a dynamic pressure profile-based optimization
model for the hypersonic vehicle trajectory optimization problem, transform the problem
into a parameter optimization problem, and solve it using an improved particle swarm
optimization algorithm. Li et al. [21] propose an improved particle swarm optimization
algorithm combined with gradient search to solve the problem of rapid re-entry trajectory
optimization of a hypersonic glider—which solves the problem of insufficient accuracy due
to early convergence of the algorithm—and apply it to problem solving. Gaudet et al. [22]
combine the adaptability of reinforcement learning and the fast learning ability of meta
learning, proposing a missile guidance and control method based on reinforcement meta
learning. D’Ambrosio et al. [23] combine the Pontryagin maximum principle with the
powerful learning ability of neural networks to propose a fuel optimal trajectory learning
method based on the Pontryagin neural network. However, intelligent optimization algo-
rithms face the problem of falling into local optima. How to avoid this problem is a key
issue, which needs to be addressed in current research.

In recent years, convex optimization methods have become a powerful tool in air-
craft trajectory planning research due to their fast solution speed and ability to handle
constrained problems [24–26]. In Ref [27], for the optimal guidance problem of planetary
orbit insertion, the problem is transformed into a convex optimization problem through
constrained convex relaxation, linearization, and discretization, and a convex optimization
algorithm based on the interior point method is proposed. Based on convex optimization
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methods, Liu et al. [28] propose a regularization technique to ensure the accuracy of con-
vex relaxation and solve the optimal terminal guidance problem of aerodynamic control
missiles. Cheng et al. [29] accelerate the efficiency of the convex optimization algorithm to
solve the trajectory planning problem of the ascent phase of the launch vehicle by using
the Newton–Kantorovich/pseudospectral method to iteratively solve the initial solution.
In Ref [30], for the aircraft re-entry guidance problem, the continuous linearization and
convexification techniques are used to transform the problem into a continuous convex
programming problem, and a convex optimization re-entry guidance method is designed
to solve the problem, which reduces the sensitivity of the initial guess accuracy. Zhou
et al. [31] improve the efficiency and accuracy of the algorithm by designing a dynamic ad-
justment grid point method based on the original sequence convex programming algorithm.
In Ref [32], a pseudospectral convex optimization technology combining the advantages
of the pseudospectral method and convex optimization is proposed to achieve optimal
trajectory planning during rocket power descent and landing processes. On the basis of
the pseudospectral convex optimization technology framework, Sagliano et al. [33–35]
further propose the generalized hp pseudospectral convex programming method and the
lobatto pseudospectral convex programming method, which improve the flexibility and
efficiency of the algorithm optimization process. Song et al. [36] propose an adaptive dy-
namic descent guidance method based on multi-stage pseudospectral convex optimization,
which achieves adaptive trajectory planning during rocket landing. The above methods all
perform convex transformation on the aircraft motion equation and constraints in the time
domain, which achieves the optimization and generation of the aircraft trajectory. However,
the relationship between the grid point position and the physical position of the target in
the time domain is not intuitive, which makes it difficult to analyze the approximation
error of the trajectory. In addition, using convex optimization algorithms to solve trajectory
optimization problems requires feasible trajectories, which satisfy the constraints to be used
as initial solutions; otherwise, the algorithm may not find the optimal approximate solution
for a long time, or it may even diverge. This problem also greatly hinders the performance
improvement and application of convex optimization algorithms.

This paper addresses the problem of rapid trajectory optimization generation in the
guidance phase of an interceptor under multiple constraints. In terms of problem model
processing, the motion model and multiple constraints are transformed into convex and dis-
crete forms, allowing the optimization problem to be transformed into a sequential convex
programming problem, which can be solved using convex optimization methods. The prob-
lem model is also transformed from the time domain to the lateral distance domain, which
describes the positional relationship more intuitively. In terms of generating initial solution
trajectories, this paper uses the deep deterministic policy gradient (DDPG) algorithm to
train the planning generation of interceptor midcourse guidance trajectories, obtaining
high-quality initial solution trajectories, which satisfy the basic guidance requirements,
and improving the generation speed and guidance accuracy of optimized trajectories. In
terms of the adjustment of dynamic grid point, this paper uses the distribution of grid point
approximation error to determine the dynamic adjustment of grid points and adjust them
to the appropriate position, thereby reducing the approximation error of the optimized
trajectory and improving the solving efficiency of the convex optimization algorithm. The
main contributions can be summarized as follows:

(1). On the lateral plane of the three-dimensional trajectory, based on the lateral range
of the interceptor, the concept of the lateral distance domain is proposed, which
transforms the problem model from the time domain to the horizontal distance
domain, simplifies the convexification of the problem model, and facilitates the
analysis of the approximation error.

(2). Based on the characteristics of the trajectory planning model in the mid-guidance
phase, the corresponding Markov decision process (MDP) is designed, and the DDPG
algorithm is applied to learn and train the initial solution trajectory planning task,
and a higher quality initial solution trajectory is obtained.
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(3). The dynamic adjustment strategy of grid points in the convex optimization algorithm
is improved. In the iterative solution process, the position distribution of grid points
is adjusted based on the distribution of approximate solution errors of grid points,
which not only reduces the approximate solution error of the whole optimization
trajectory but also improves the efficiency of the algorithm.

The sections of this paper are structured as follows. This first section briefly analyzes
the state of the art in trajectory optimization generation algorithms and outlines the main
contributions of this paper. In the second section, the problem of optimizing the midcourse
guidance trajectory of the interceptor is described. The third section describes the convexity
and discretization of the problem. In the fourth section, the fast method for generating initial
solution trajectories based on the DDPG algorithm is presented. In the fifth section, the grid
point dynamic adjustment method based on the approximate solution error distribution is
designed. In the sixth section, the research content is simulated and verified. In the last
section, the content of this paper is summarized.

2. Problem Description
2.1. Model Establishment

To facilitate the trajectory calculation, the numerical values are normalized, and the
interceptor’s guidance motion model is processed dimensionless. The dimensionless target
motion equation [36] is given by

dh/dt = v sin θ
dz/dt = v cos θ sin ψv
dx/dt = v cos θ cos ψv
dv/dt = −Dα − g sin θ
dθ/dt = Lα cos σ/v − g cos θ/v
dψv/dt = Lα sin σ/v cos θ
dα/dt =

.
α

dσ/dt =
.
σ

(1)

where h, z, and x are the dimensionless position of the centroid of the interceptor under the
northeastern sky coordinate system; v is the dimensionless velocity of the interceptor; θ is
the angle of inclination of the trajectory; ψv is the angle of deflection of the trajectory; α is
the angle of attack; σ is the angle of bank; Dα, Lα, g are the dimensionless drag, lift, and
gravitational acceleration of the interceptor, and their calculation formulae are as follows:

Dα = CD pS/m
Lα = CL pS/m
g = g0(1/(1 + h))2

(2)

where p is the dynamic pressure; S is the characteristic area of the interceptor; m is the mass
of the interceptor; g0 is the acceleration of gravity at sea level, and its value is 9.81 m/s2;
CD and CL are the coefficients of drag and lift, respectively, which can be expressed as a
function of α: {

CD = cd1 + cd2α + cd3α2

CL = cl1 + cl2α
(3)

where cd1, cd2, and cd3 are the drag parameters; cl1 and cl2 are the lift parameters. The
calculation of p is as follows:

p = 0.5ρ(v
√

g0re)
2 (4)

where re is the earth’s radius, and it is 6371.2 km; ρ is the air density, and its calculation
formula is as follows:

ρ = ρ0e−hre/H (5)
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where ρ0 is the air density at sea level, and it is 1.266 km/m3; H is the reference height, and
it is 7254.24 m. The linear distance l between the interceptor and the target in the transverse
plane is defined as

l =
√
(x − x0)

2 + (z − z0)
2 (6)

where x0 and z0 are the initial values representing the initial value of the position coordinate.
The linear velocity vl of the interceptor in the transverse plane is

vl = dl/dt = v cos θ cos(ψl − ψv) (7)

where ψl is the angle of the line of sight of the missile and the target in the transverse plane,
expressed as

ψl = arccos
(
(z f − z)/

√
(z f − z)2 + (x f − x)2

)
(8)

where xf and zf are the final values of the position coordinate.
Given the initial and final positions of the interceptor in the xOz plane, as shown in

Figure 1, each grid point position of the planned trajectory in the lateral distance has a
corresponding point on its linear distance. When the grid point positions of the planned
trajectory are determined, their lateral distance and linear distance expressions can be
converted to each other, i.e., the lateral distance of the planned trajectory can be expressed
as the superposition of the segmented distances of the initial and final positions of the
interceptor in the linear direction. This can visually reflect the physical relationship between
the grid point positions and the terminal positions, which is useful for analyzing the
approximation error of the trajectory.
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The model Equation (1) is transformed by Equation (7) to obtain the midcourse
guidance motion model in the lateral distance domain as follows:

dh/dl = tan θ/cos(ψl − ψv)
dz/dl = sin ψv/cos(ψl − ψv)
dx/dl = cos ψv/cos(ψl − ψv)

dv/dl = −D/(v cos θ cos(ψl − ψv))− tan θ/
(
(1 + h)2v cos(ψl − ψv)

)
dθ/dl = L cos σ/

(
v2 cos θ cos(ψl − ψv)

)
− 1/

(
(1 + h)2v2 cos(ψl − ψv)

)
dψv/dl = L sin σ/

(
v2 cos2 θ cos(ψl − ψv)

)
dα/dl =

.
α

dσ/dl =
.
σ

(9)

2.2. Problem Formulation

According to the model analysis in Section 2.1, the state equation of the interceptor
can be expressed as
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.
s = f (s, l) + Bu(l) l ∈ [0, l f ] (10)

f (s, l) =



tan θ/cos(ψl − ψv)
sin ψv/cos(ψl − ψv)
cos ψv/cos(ψl − ψv)

−D/(v cos θ cos(ψl − ψv))− tan θ/
(
(1 + h)2v cos(ψl − ψv)

)
L cos σ/

(
v2 cos θ cos(ψl − ψv)

)
− 1/

(
(1 + h)2v2 cos(ψl − ψv)

)
L sin σ/

(
v2 cos2 θ cos(ψl − ψv)

)
0
0

(11)

B =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]T

(12)

where s = [h, z, x, v, θ, ψv, α, σ] is the state variable of interceptor, and u = [
.
α,

.
σ] is the control

variable of interceptor. During the midcourse guidance phase, the interceptor flies at high
altitude and high speed for a long time, which is subject to constraints on heat flux density
Q, dynamic pressure p, overload n, angle, and control variables. Therefore, the following
constraints should also be met [37].

Q = CQρ0.5(v
√

g0re)
3.05 ≤ Qmax

p = 0.5ρ(v
√

g0re)
2 ≤ pmax

n =
√

L2 + D2(1 + h)2 ≤ nmax

(13)


|θ| ≤ θmax
|ψv| ≤ ψvmax
|α| ≤ αmax
|σ| ≤ σmax

(14)

{ ∣∣ .
α
∣∣ ≤ .

αmax∣∣ .
σ
∣∣ ≤ .

σmax
(15)

where CQ = 1.291 × 10−4 is the computational constant of Q, and Qmax, pmax, nmax, θmax,
ψvmax, αmax, σmax,

.
αmax,

.
σmax are the maximum limit value of constraints. The purpose of

trajectory planning is to achieve guidance tasks under constraint conditions; therefore, the
objective function of the problem can be written as

J0 = k1

(
(z∗f − z f )

2 + (x∗f − x f )
2
)
+ k2(h∗f − h f )

2 (16)

where x∗f , y∗f , z∗f are the expected final position coordinates; k1 and k2 are the weighting
coefficients. In summary, the problem of rapid optimization and generation of midcourse
guidance trajectory can be expressed as

P0 : min (16)
subject to : (10), (12), (13), (14), (15)

s(l = 0) = [h0, z0, x0, v0, θ0, ψv0, α0, σ0]
v(l = l f ) ≥ v f

(17)

3. Problem Convexity and Discretization Processing

In order to treat problem P0 with a convex optimization approach, it is necessary to
ensure that the equation constraints in problem P0 are linear and that the objective function
and inequality constraints are both convex and linear. However, the model equations and
process constraints of problem P0 are non-linear and are not convex optimization problems.
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Therefore, the following treatment is required before the convex optimization algorithm
can be used to solve problem P0.

3.1. Problem Convexity Processing

The motion model Equation (10) of the problem, as an equality constraint, must be
linear in convex optimization problems. Therefore, it is necessary to linearize the non-linear
part of Equation (10) in the problem, as shown below:

.
s = f (s)

∣∣∣s=sk + f (s)′
∣∣∣s=sk (s − sk) + Bu (18)

Assuming A = f (s)′|s=sk and C = f (s)
∣∣∣s=sk − f (s)′

∣∣∣s=sk sk , Equation (18) can be ex-
pressed as

.
s = As + Bu + C (19)

A =



0 0 0 0 a15 a16 0 0
0 0 0 0 0 a26 0 0
0 0 0 0 0 a36 0 0

a41 0 0 a44 a45 a46 a47 0
a51 0 0 a54 a55 a56 a57 a58
a61 0 0 0 a65 a66 a67 a68
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(20)


a41 = reD/(Hv cos θ cos(ψl − ψv)) + 2 tan θ/

(
(1 + h)3v cos(ψl − ψv)

)
a51 = −reL cos σ/

(
Hv2 cos θ cos(ψl − ψv)

)
+ 2/

(
(1 + h)3v2 cos(ψl − ψv)

)
a61 = −reL sin σ/

(
Hv2 cos2 θ cos(ψl − ψv)

) (21)

 a44 = D/
(
v2 cos θ cos(ψl − ψv)

)
+ tan θ/

(
(1 + h)2v2 cos(ψl − ψv)

)
a54 = 2/

(
(1 + h)2v3 cos(ψl − ψv)

) (22)


a15 = 1/cos2 θ cos(ψl − ψv)

a45 = −D tan θ/(v cos θ cos(ψl − ψv))− 1/
(
(1 + h)2v cos2 θ cos(ψl − ψv)

)
a55 = tan θL cos σ/

(
v2 cos θ cos(ψl − ψv)

)
a65 = 2 tan θL sin σ/

(
v2 cos2 θ cos(ψl − ψv)

) (23)





a16 = −tan θ tan(ψl − ψv)/cos(ψl − ψv)
a26 = (cos ψv − sin ψv tan(ψl − ψv))/cos(ψl − ψv)
a36 = −(sin ψv + cos ψv tan(ψl − ψv))/cos(ψl − ψv)
a46 = D tan(ψl − ψv)/(v cos θ cos(ψl − ψv))

a56 =
(
tan(ψl − ψv)/

(
v2 cos(ψl − ψv)

))(
1/(1 + h)2 − L cos σ/cos θ

)
a66 = − tan(ψl − ψv)L sin σ/

(
v2 cos2 θ cos(ψl − ψv)

)
(24)


a47 = −

(
(cd2 + 2cd3)/(cd1 + cd2α + cd3α2)

)
(D/(v cos θ cos(ψl − ψv)))

a57 = (cl2/(cl1 + cl2α))
(

L cos σ/
(
v2 cos θ cos(ψl − ψv)

))
a67 = (cl2/(cl1 + cl2α))

(
L sin σ/

(
v2 cos2 θ cos(ψl − ψv)

)) (25)

{
a58 = −L sin σ/

(
v2 cos θ cos(ψl − ψv)

)
a68 = L cos σ/

(
v2 cos2 θ cos(ψl − ψv)

) (26)

At the same time, to reduce the linearization error of the motion model, trust region
constraints are added as follows: ∣∣∣s − sk

∣∣∣ ≤ δ (27)

where δ is the trust region constraint radius, which is the same as the s dimension. The heat
flow density, dynamic pressure, and overload constraint functions shown in Equation (13)



Aerospace 2024, 11, 314 8 of 19

are strongly non-linear and neither convex functions nor concave functions; therefore, it is
still necessary to linearize these functions as follows:

Q = Qk + ∂Q/∂h|s=sk (h − hk) + ∂Q/∂v|s=sk (v − vk) ≤ Qmax
p = pk + ∂p/∂h|s=sk (h − hk) + ∂p/∂v|s=sk (v − vk) ≤ pmax
n = nk + ∂n/∂h|s=sk (h − hk) + ∂n/∂v|s=sk (v − vk) + ∂q/∂α|s=sk (α − αk) ≤ αmax

(28)

{
∂Q/∂h|s=sk = −reρ0.5CQ(v

√
g0re)

3.15/2H
∂Q/∂v|s=sk = 3.15ρ0.5CQ(v

√
g0re)

3.15/v
(29)

{
∂q/∂h|s=sk = −reρCv2g0re/2H
∂q/∂v|s=sk = ρvg0re

(30)
∂n/∂h|s=sk = (1 + h)

√
L2 + D2(2 − re(1 + h)/H)

∂n/∂v|s=sk = 2(1 + h)2√L2 + D2/v
∂n/∂α|s=sk =

(
(cl1 + cl2α)cl2 + (cd1 + cd2α + cd3α2)(cd2 + cd3α)

)
(1 + h)2√L2 + D2/(C2

L + C2
D)

(31)

The objective function shown in Equation (16) is a convex function formed by the combi-
nation of an absolute value function and a linear function. In this paper, an additional term is
added to Equation (16) in order to make the manipulated variable smoother and to avoid excessive
amplitude oscillation.

J1 = J0 + k3

∫ l f

0

∣∣ .
α
∣∣+ ∣∣ .

σ
∣∣dl (32)

where k3 is the weighting coefficient. In summary, problem P0 can be transformed into a new convex
problem P1.

P1 : min (32)
subject to : (19), (27), (28), (14), (15)

s(l = 0) = [h0, z0, x0, v0, θ0, ψv0, α0, σ0]
v(l = l f ) ≥ v f

(33)

3.2. Problem Discretization Processing
Problem P1 is a convex optimization problem in a continuous distance domain, with continuous

state and control variables, which makes it difficult to solve directly. It is necessary to transform it
into a discrete mathematical programming problem with finite parameters for optimization, so that it
can be solved by numerical methods.

Assuming that the position of the grid points on the generated trajectory in the lateral dis-
tance domain is li, i = 1, . . ., t represents the position sequence number of the grid points, and
l1 = 0 ≤ . . . ≤ li ≤ li+1 ≤. . . ≤ lt = lf. To keep the transcription process simple, the Euler method is
used to discretize the equation of motion Equation (19).

si+1 = si + ∆li
.
si = si + ∆li(As + Bu + C) (34)

where △li is the position difference between grid points i and i + 1 in the lateral distance domain.
After discretizing the motion equations, a similar discretization is applied to the constraints and
objective function in problem P1. Considering that the size of the trust region required for each
iterative optimization solution may vary, this paper uses the variable trust region method to improve
the convergence efficiency of the algorithm iteration.∣∣∣sj − sk

j

∣∣∣ ≤ λ⊙ δ (35)

where λ = [λh, λz, λx, λv, λθ , λψv, λα, λσ] is the trust region relaxation coefficient, ⊙ representing an
element-by-element multiplication operation. Meanwhile, the objective function Equation (32) in
problem P1 can be transformed into

J2 = J0 + k3

m

∑
j=0

(
∣∣ .
α
∣∣+ ∣∣∣ .

β
∣∣∣)∆lj + k4λ (36)

where k4 is the weighting coefficient. In the objective function J2 shown in Equation (36), the J0 term
is mainly used to ensure that the terminal position constraint is satisfied. The λ is extended to the J2,
which can reduce the optimization space of the algorithm and speed up the convergence efficiency.
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However, what is more important is the optimization of the integral term k3
m
∑

j=0
(
∣∣ .
α
∣∣+ ∣∣∣ .

β
∣∣∣)∆lj in J2.

This processing can make the feasible solution space of the algorithm no longer strictly limited and
avoid situations where convergence cannot be achieved due to the inability to find a feasible solution.
Finally, the problem is transformed into the discretization problem P2.

P2 : min (36)
subject to : (19), (35), (28), (14), (15)

s(l = 0) = [h0, z0, x0, v0, θ0, ψv0, α0, σ0]
v(l = l f ) ≥ v f

(37)

4. Initial Solution Trajectories’ Rapid Generation Method Design
As a relatively mature algorithm in deep reinforcement learning, the DDPG algorithm has

significant advantages over other deep reinforcement learning algorithms (such as deep Q network
(DQN), deterministic policy gradient (DPG), etc.) in handling continuous action spaces, efficient
gradient optimization, utilizing experience replay buffers, and improving stability [37]. This makes
the DDPG algorithm achieve higher performance and efficiency in solving complex continuous
control tasks.

The quality of the initial solution trajectory is one of the key factors affecting the efficiency of
the convex optimization algorithm. In order to improve the quality of the initial solution trajectory,
ensure that it meets the basic guidance requirements, and then improve the search speed of the
algorithm, this paper uses the DDPG algorithm in deep reinforcement learning to learn and train the
problem model, and it obtains the optimal strategy to quickly generate the initial solution trajectory
of the convex optimization algorithm.

4.1. Markov Decision Process Design
The interaction between agents and the environment in the DDPG algorithm follows the Markov

decision process (MDP), which mainly includes state sets, action sets, reward functions, discount
coefficients, and transition probabilities. This paper uses a model-free deep reinforcement learning
method without the transition probability. Design the appropriate MDP based on the characteristics
of the problem in this paper.

When designing a state set, it is important to take as much information as possible, which helps
to solve the problem and discard information, which may interfere with the decision. Based on
the guidance mechanism of the interceptors, this paper defines the missile target distance ltogo, the
longitudinal plane component ηxh, and the lateral plane component ηxz of the velocity lead angle. The
simplified calculation formula, ignoring the influence of earth’s rotation and curvature, is as follows:

ltogo =
√
(x f − x)2 + (h f − h)2 + (z f − z)2 (38){

ηxh = φxh − θ

ηxz = φxz − ψv
(39)

φxh = arcsin
(
(h f − h)/

√
(h f − h)2 + (x f − x)2

)
φxz = arcsin

(
(z f − z)/

√
(z f − z)2 + (x f − x)2

) (40)

where φxh and φxz are the longitudinal plane component and the lateral plane component of the line
of sight angle. The composition of the state set is [h, z, x, v, θ, ψv, ltogo, ηxh, ηxz].

The action set can be composed of the interceptor’s guidance control inputs, namely the control
variables α and σ.

The key to MDP design is the construction of reward functions. Based on the guidance purpose
and mechanism, this article provides two types of reward functions: the final reward and the feedback
reward. The specific design is as follows:{

R f = 1000 − 1.1∑ ∆t i f ltogo < ω

R∆t = −η∆t
xh∆t − η∆t

xz ∆t i f done = False
(41)

where △t is the simulation step; ω is the distance convergence threshold, and its value needs to be
set according to the accuracy requirements of the specific training task (the smaller the value, the
higher the accuracy requirements). η∆t

xh and η∆t
xz represent the ηxh and ηxz values corresponding to
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△t. In this paper, the interceptor is encouraged to reach the terminal position as soon as possible,
using a method where the final reward is inversely proportional to the total simulation step size. At
the same time, to ensure that the speed direction of the interceptor converges to the direction of the
missile target connection as soon as possible, the feedback reward is designed as a negative reward.
Based on the actual defense operations, the interceptor adopts a frontal interception method and sets
the termination condition for iterative training as done = |ηxh| > π/2 or ltogo < ω. Thus, the reward
function is R = Rf + R△t.

The discount coefficient represents the weighting of future rewards to current rewards (between
zero and one). If the value is too small, the current reward is only focused on the size of the next
step reward, which is not conducive to achieving long-term goals. If the value is one, the current
reward is completely divorced from the current reality, and it is difficult to ensure that the training
can converge.

4.2. Initial Solution Trajectory Rapid Generation
This method collects data through the interaction between the interceptor and the simulation

environment, and it optimizes its own strategy based on the obtained data. The trained strategy
function is the final initial solution trajectory fast generation method. The specific model of the DDPG
algorithm used in this paper and the interceptor’s guidance motion model used for the interaction
between the agent and the environment can be found in Ref [37], and they will not be detailed here
due to space limitations. Figure 2 shows the training framework for the trajectory planning task
based on the DDPG algorithm.
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The specific process of off-line algorithm training is as follows:

(1) Initialize the network parameters and memory capacity, and start the cycle.
(2) Set the initial state of the interceptor, randomly select the target point position, and start a single

trajectory cycle.
(3) Perform the actions and obtain the corresponding status and reward values, and store the data

in a memory bank.
(4) Randomly sample small batches of training data from the memory, update the network param-

eters, and complete a single trajectory cycle.
(5) Determine whether the trajectory has completed the training task. If so, proceed to the next

step. If not, return to Step (2).
(6) At the end of the cycle, output the optimal network parameters and trajectory planning strategy.

After specifying the initial and final conditions, based on the optimal network parameters
trained off-line, the action sequence of the interceptor can be quickly specified, and the state sequence,
i.e., the initial solution trajectory, can be obtained by integration.

5. Grid Points’ Dynamic Adjustment Method Design
In the iterative solution process of convex optimization algorithms for problems, the iterative

solution is represented in discrete form. A reasonable design of the grid points not only improves
the convergence of the algorithm but also affects the approximate solution error of the optimization
trajectory with the accuracy of each grid point [38]. The number of grid points solved in the k-th
iteration is N, and the approximate solution error of the i-th grid point is defined as

χi =

∥∥∥∥∥s(k)(li)−
¯
s
(k)

(li)

∥∥∥∥∥
2

(42)
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where s(k) represents the state vector of the k-th iteration solution;
¯
s
(k)

represents the integral state
vector without linearization error, expressed as

¯
s
(k)

(li) =
∫ li+1

li

.
s(s, u, l)dl (43)

The adjustment function of the grid point is defined as follows:

F′(li) =


1 i f i = 0 or i = N
0 i f χi ≤ χnord (0 < i < N)

χi/χnord i f χi > χnord (0 < i < N)

(44)

where χnord represents the default threshold for the approximate solution error of the grid points. In
this paper, the grid point positions at both ends are set to be fixed; therefore, their function values
remain 1 throughout the iterative solution process. When the approximate solution error of the grid
points is less than the default threshold, its function value is 0, indicating that the degree of non-linear
violation of the grid points here is relatively small, and the position of the grid points here can be
changed. The number of grid points, which need to be adjusted for each iteration solution, is the
number of grid points where all function values are 0.

∆χk = count(F′(li) = 0) (45)

The probability density function of the adjusted grid point is defined as follows:

F(li) = F′(li)/
Nk+1

∑
i=1

F′(li)∆li (46)

According to Equation (46), the probability density of the grid points at any position in the
lateral distance domain can be interpolated and calculated. Calculate the corresponding cumulative
probability distribution function according to F(li), and select the position with a cumulative proba-
bility of j/(∆χk + 1), j = 1, . . ., ∆χk as the corresponding newly added grid point position according to
the number of grid points, which need to be adjusted.

Set the algorithm iteration termination conditions as follows:

max
1≤i≤N

∣∣∣s(k+1)(li)− s(k)(li)
∣∣∣ ≤ ε (47)

where ε is the algorithm convergence threshold, which is the same as the s dimension. The dynamic
adjustment process of the grid points in the algorithm is shown in Figure 3.
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6. Simulation Verification
6.1. Experimental Parameter Setting

It is assumed that the interceptor adopts a high throw re-entry glide trajectory mode, and this
paper focuses on the trajectory of the interceptor in the midcourse guidance re-entry glide phase. The
initial states are set to [h0, z0, x0, v0, θ0, ψv0] = [7 × 104/re, 0, 0, 3 × 103/

√
g0re, −5◦, 0◦]. The process

constraints are limited to Qmax= 1 × 106 J/(m2s), pmax = 1 × 105 Pa, nmax = 8 g. The control variable
constraints are limited to |α| ≤ 30◦, |σ| ≤ 85◦. The constraint radius of the trust region is set to
[δh, δz, δx, δv, δθ , δψv, δα, δσ] = [2 × 104/re, 2 × 103/re, 2 × 103/re, 500/

√
g0re, 20π/180, 30π/180,

10π/180, 90π/180]. The convergence thresholds are set to [εh, εz, εx, εv, εθ , εψv, εα, εσ] = [200/re,
20/re, 20/re, 50/

√
g0re, π/180, 5π/180, π/180, 5π/180]. The number of grid points in the iterative

solution of the convex optimization algorithm is set to N = 200; the maximum number of iterations
is 500; and the approximation solution error threshold is χnord = 1 × 10−6. This paper uses Python
3.10 to program the simulation experiments; MATLAB R2016a to plot the simulation data; and the
ECOS-BB solver for convex sequence planning.

Set the parameters related to the DDPG algorithm as follows. The simulation step size is set to
∆t = 1/

√
re/g0; the discount factor is set to 0.99; the maximum number of training sessions is set to

5 × 104; the number of random training samples is set to 2 × 103; and the capacity of the memory
bank is set to 1 × 106. The actor network adopts the 9-300-2 hierarchical structure; the critical network
adopts the 11-300-2 hierarchical structure; the network parameter optimizer uses the Adam optimizer;
and the network learning rate is set to 0.0001.

6.2. The Effectiveness of Initial Solution Trajectories’ Rapid Generation Method Verification
In order to verify the effectiveness of the rapid initial solution trajectory generation method

based on the DDPG algorithm proposed, this paper evaluates the convergence of the DDPG algorithm
training by observing the changes in average rewards; the specific meaning of average rewards can
be found in Ref [30], and the average reward index is set to 800. Simultaneous selection of multiple
terminal end positions ([h1

f , z1
f , x1

f ] = [3 × 104/re, 0, 3.38 × 105/re], [h2
f , z2

f , x2
f ] = [3 × 104/re,

2.5 × 104/re, 3.38 × 105/re], [h3
f , z3

f , x3
f ] = [3 × 104/re, −2.5 × 104/re, 3.38 × 105/re]) is performed

for initial solution trajectory generation experiments. The simulation results are shown in Figure 4.
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Figure 4. Algorithm validation effect chart: (a) DDPG algorithm training convergence curve; (b) Initial
solution trajectory curve.

Figure 4a shows that the average reward of the DDPG algorithm shows an overall upward trend
during the training process, and when the number of training iterations is 15,130, the average reward
reaches the set training index, indicating that the DDPG algorithm can converge in the training of
the initial solution generation task of the guidance trajectory. Figure 4b shows that the three initial
solution trajectories generated by this method are not only relatively smooth but also meet the basic
guidance requirements. In addition, the generation time of these three initial solution trajectories is
0.15 s, 0.14 s, and 0.15 s, all of which meet the time requirements for rapid trajectory generation.

6.3. The Superiority of Initial Solution Trajectories’ Rapid Generation Method Verification
In order to verify the superior performance of the trajectory convex optimization algorithm with

the trajectories generated by the DDPG algorithm as the initial solution in this paper, three terminal
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end positions are used as three scenarios in Section 6.2, and a simulation comparison experiment is
conducted using the initial solution trajectory generation algorithm from Ref [38]. The grid point
strategies for both algorithms are uniformly distributed, and the simulation results are shown in
Figure 5.
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Figure 5. Comparison of optimization trajectories between two methods: (a) Lateral trajectory of
Scenario 1; (b) Lateral trajectory of Scenario 2; (c) Lateral trajectory of Scenario 3; (d) Vertical trajectory
of Scenario 1; (e) Vertical trajectory of Scenario 2; (f) Vertical trajectory of Scenario 3; (g) Constraint
curve of Scenario 1; (h) Constraint curve of Scenario 2; (i) Constraint curve of Scenario 3.

In Figure 5, DDPG represents the initial solution trajectory curve obtained using the DDPG
algorithm; Li M. (2023) represents the initial solution trajectory curve obtained using the initial
solution trajectory generation algorithm from Ref [38]; DDPG + CVX refers to the optimized trajectory
curve obtained via convex optimization of the trajectory based on the initial solution trajectory
solved using the DDPG algorithm; and Li M. (2023) + CVX represents the optimized trajectory curve
obtained via convex optimization of the trajectory based on the initial solution trajectory generated
by the algorithm from Ref [38].

As shown in Figure 5, the optimal trajectories obtained by the two convex optimization methods
are very similar, but the guiding effect of the initial solution generated by the DDPG algorithm
is significantly better than that of the method from Ref [31] in all three scenarios (see Figure 5a–f).
Moreover, the optimal trajectories in all three scenarios can satisfy the process constraints (see
Figure 5g–i), indicating that the trajectory planned by the improved convex optimization algorithm
in this paper is effective.
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To effectively assess the comparative advantages and disadvantages of the two methods, this
article randomly selects terminal positions and subsequently carries out 100 Monte Carlo simulations
utilizing both approaches. Each simulation’s resulting data are recorded. Ultimately, the statistical
averages of these data are computed and utilized for comparison, as shown in Table 1.

Table 1. Comparison of simulation data between DDPG + CVX and Li M. (2023) + CVX methods.

Method DDPG + CVX Li M.(2023) + CVX

Iterations 5.27 6.31
CPU Time [s] 30.9623 36.8741

Objective Function Value 0.2144 0.2193
Terminal Position Errors [m] 0.5388 2.3413

As is evident in Table 1, in Monte Carlo simulations, the DDPG + CVX algorithm in this paper
necessitates less iteration to attain an optimized trajectory compared to the convex optimization
method from Ref [31]. Furthermore, the corresponding solving time is reduced by approximately
one-fifth, on average. Notably, despite achieving similar objective function value, the average
terminal position error generated by the DDPG + CVX algorithm is smaller than that of the convex
optimization method from Ref [31]. This is attributed to the fact that the initial trajectory generated
by the DDPG approach in this article exhibits a higher degree of accuracy. Consequently, this serves
as a beneficial prerequisite for the convex optimization algorithm, enabling it to swiftly and precisely
converge to the optimal trajectory during iterative solving.

The simulation results show that the improved convex optimization algorithm proposed in
this paper improves the efficiency and accuracy of solving the trajectory planning problem in the
midcourse guidance phase.

6.4. The Effectiveness of Grid Point Dynamic Adjustment Method Verification
In order to verify the effectiveness of the dynamic adjustment method for grid points based

on the distribution of approximate solution errors designed in this paper, a simulation comparison
analysis with the traditional uniform grid point distribution method was performed using Scenario 2
in Section 6.3 as an example. The simulation results are shown in Figure 6. The approximate solution
error of the trajectory is defined as the integration difference between the optimized trajectory and
the actual trajectory [32].
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Figure 6. Comparison of simulation results between two methods: (a) Improved lateral trajectory;
(b) Improved vertical trajectory; (c) Improved grid point iteration; (d) Traditional lateral trajectory;
(e) Traditional vertical trajectory; (f) Traditional grid point iteration.



Aerospace 2024, 11, 314 15 of 19

As shown in Figure 6, the iterative longitudinal trajectory of both methods can quickly converge
to the optimal trajectory (see Figure 6a,d), but the iterative lateral trajectory of the traditional method
is obviously not as good as that of the improved method (see Figure 6b,e). Compared with traditional
methods, the improved method only requires four iterations, and in the final grid point distribution
of the improved method, the grid points at both ends of the trajectory are relatively sparse, while the
grid points in the middle are relatively dense (see Figure 6c,f). This is because the trajectory turns
laterally in the middle stage, increasing the demand for overload, and the non-linearity of this part of
the trajectory is relatively high. Therefore, the improved method’s grid point adjustment strategy
allocates more grid points in the middle stage of the trajectory.

Similar to Section 6.3, to effectively assess the comparative advantages and disadvantages
of the two methods, this article randomly selects terminal positions and subsequently carries out
100 Monte Carlo simulations utilizing both approaches. Each simulation’s resulting data are recorded.
Ultimately, the statistical averages of these data are computed and utilized for comparison, as shown
in Table 2.

Table 2. Comparison of simulation data between improved and traditional methods.

Method Improved Traditional

Iterations 4.36 5.25
CPU Time [s] 25.3326 32.0201

Objective Function Value 0.2141 0.2182
Approximate Solution Error 0.0186 0.0327

As shown in Table 2, the improved method is better than traditional methods in terms of
iterations and CPU time. Although the objective function values obtained by the two methods are
similar, the approximate solution error of the trajectory obtained by the improved method is reduced
by about half compared to the traditional method. This is because the improved method gradually
distributes more grid point positions in areas with higher non-linearity during the iterative solution
process under the designed grid point dynamic adjustment method (such as Equations (42)–(46)),
reducing the degree of non-linearity violation of the trajectory and thus reducing the approximate
solution error of the obtained trajectory.

The simulation results show that the designed grid point dynamic adjustment method based
on the approximation error distribution not only improves the optimization efficiency of the convex
optimization algorithm but also greatly reduces the approximation error of the optimized trajectory,
making it more conducive to the subsequent trajectory tracking processing.

6.5. The Performance of Improved Convex Optimization Method Verification
In order to verify the optimization performance and the ability to meet the constraints of the

method proposed in this paper, a simulation comparison analysis with the Gauss pseudospectral
method (GPM) was performed using Scenario 2 in Section 6.3 as an example. The simulation results
are shown in Figure 7 and Table 3.

In Figure 7, GPM represents the Gauss pseudospectral method.
As shown in Figure 7, the optimized trajectories of the two methods can meet the guidance

requirements, and the trajectories are smooth (see Figure 7a), with relatively stable changes in their
respective state variables (see Figure 7b–d). The changes in the angle of attack and pitch angle of the
optimized trajectory using the DDPG + CVX method are significantly smaller than those of the GPM
method (see Figure 7e,f), indicating that the DDPG + CVX method is more conducive to the tracking
and control of subsequent trajectories. In addition, the optimized trajectories of the two methods can
meet the requirements of process constraints (see Figure 7g,i). As can be seen in Table 3, the trajectory
optimization accuracy of the GPM method is slightly higher, but the optimization accuracies of the
two methods are not much different, and the optimization time and approximate solution error of the
DDPG + CVX method are much smaller than those of the GPM method. Therefore, the comparison
of the simulation data between the two methods shows that the optimization performance of the
two methods is approximately the same, and both can meet the constraints in the guidance process.
However, the optimization efficiency of the DDPG + CVX method is significantly better.
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Figure 7. Comparison of simulation results between two methods: (a) Trajectory; (b) Speed; (c) Tra-
jectory inclination angle; (d) Trajectory deflection angle; (e) Angle of attack; (f) Angle of bank;
(g) Overload; (h) Heat flow density; (i) Dynamic pressure.

Table 3. Data parameters of two methods.

Method Flight Time of Optimized
Trajectory [s] CPU Time [s] Objective Function Value

DDPG + CVX 122.2778 24.5023 0.2143
GPM 120.7305 63.5632 0.2106

7. Conclusions
The aim of this paper is to improve the efficiency and accuracy of convex optimization algo-

rithms in dealing with the problem of midcourse guidance trajectory planning for an interceptor.
The main conclusions are as follows: (1) Propose the concept of lateral distance domain, transform
the motion model from time domain to lateral distance domain, and establish the discrete trajectory
convex optimization model in the lateral distance domain; (2) Design the corresponding MDP based
on the characteristics of the midcourse guidance trajectory planning model, and propose the fast
initial solution trajectory generation method based on the DDPG algorithm; (3) Use the concept
of probability density function, and design the dynamic adjustment method of grid points based
on the distribution of approximate solution error. The simulation experimental data show that the
improved trajectory convex programming algorithm proposed in this paper improves the solving
efficiency and optimization accuracy of the algorithm, reducing the approximate solution error of the
optimized trajectory.

In addition, in the context of the rapid development of big data technology, data-driven trajec-
tory planning is a promising research direction, which also makes the deep reinforcement learning
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algorithm—which can realize this technology—have broad application prospects in trajectory plan-
ning. The research content of this article verifies the feasibility of its application, and future research
will be conducted to extend it to more complex scenarios.
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Nomenclature

Magnitude Meaning Unit
x, h, z Coordinate position of interceptor m
v Velocity of interceptor m/s
θ Trajectory inclination angle rad
ψv Trajectory deflection angle rad
α Angle of attack rad
σ Angle of bank rad
re Radius of earth m
La, Da Lift and drag force of interceptor N
g Gravity acceleration m/s2

g0 Gravity acceleration at sea level m/s2

ρ Air density Kg/m3

ρ0 Air density at sea level Kg/m3

H Reference height m
CL, CD Lift coefficient and drag coefficient
cd1, cd2, cd3 Drag parameters
cl1, cl2 Lift parameters

l
Linear distance between the interceptor and the target in the transverse
plane

m

vl Linear velocity of the interceptor in the transverse plane m/s

ψl
Angle of the line of sight of the missile and the target in the transverse
plane

rad

k1, k2, k3, k4 Weighting coefficients
Q Heat flow density W/m2

p Dynamic pressure Pa
n Overload
J Objective function
ltogo Missile target distance m

ηxh,ηxz
Longitudinal plane component and lateral plane component of the
velocity lead angle

rad

φxh,φxz
Longitudinal plane component and lateral plane component of the line
of sight angle

rad

∆t Simulation step s
ω Distance convergence threshold m
Rf Final reward
R△t Feedback reward
N Number of grid points solved in the k-th iteration
χnord Default threshold for the approximate solution error of the grid points
λ Trust region relaxation coefficient
δ Trust region constraint radius
ε Algorithm convergence threshold
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