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Abstract: In this paper, an optimisation procedure is introduced that uses a significantly cheaper, and
CFD-free, objective function for aerodynamic optimisation than conventional CFD-driven approaches.
Despite the reduced computational cost, we show that this approach can still drive the optimisation
scheme towards a design with a similar reduction in drag coefficient for wave drag-dominated
problems. The approach used is ‘CFD-free’, i.e., it does not require any computational aerodynamic
analysis. It can be applied to geometries discretised using meshes more conventionally used for
‘standard’ CFD-based optimisation approaches. The approach outlined in this paper makes use of
the transonic area rule and its supersonic extension, exploiting a mesh-based parameterisation and
mesh morphing methodology. The paper addresses the following question: ‘To what extent can an
optimiser perform (wave) drag minimisation if using ‘area ruling’ alone as the objective (fitness)
function measurement?’. A summary of the wave drag approximation in transonic and supersonic
regimes is outlined along with the methodology for exploiting this theory on a typical CFD surface
mesh to construct an objective function evaluation for a given geometry. The implementation is
presented including notes on the considerations required to ensure stability, and error minimisation,
of the numerical scheme. The paper concludes with the results from a number of (simple and complex
geometry) examples of a drag-minimisation optimisation study and the results are compared with
an approach using full-fidelity CFD simulation. The overall conclusions from this study suggest
that the approach presented is capable of driving a geometry towards a similar shape to when using
full-fidelity CFD at a significantly lower computational cost. However, it cannot account for any
constraints, driven by other aerodynamic factors, that might be present within the problem.

Keywords: evolutionary optimisation; area ruling; wave drag; Sears–Haack

1. Introduction

In recent decades, much work has been undertaken to exploit the Computational Fluid
Dynamics (CFD) simulation of aerodynamic flows, coupled with both gradient-based [1–3]
and gradient-free [4–8] optimisation to undertake aerodynamic design optimisation. A
thorough review of the state of the art in aerodynamic shape optimisation is provided by
Skinner and Zare-Behtash in [9] in which they identify the advantages and drawbacks
of the vast range of aerodynamic optimisation approaches commonly used in academia
and industry.

Gradient-based methods take advantage of knowledge of the gradient of the objective
function with respect to the design parameters in order to guide the optimisation process,
usually in a sequential manner. Gradient-free approaches rely on knowledge of the objective

Aerospace 2024, 11, 298. https://doi.org/10.3390/aerospace11040298 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11040298
https://doi.org/10.3390/aerospace11040298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-3662-9583
https://orcid.org/0000-0002-6451-265X
https://doi.org/10.3390/aerospace11040298
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11040298?type=check_update&version=2


Aerospace 2024, 11, 298 2 of 21

function across a ‘population’ of designs (without the requirement to compute a gradient
of the objective function) and then uses this distribution of objective functions, for example
by ranking designs from best to worst, to choose a new population to test. This leads
to global searching of the design space and avoids the risk of the optimiser becoming
‘trapped’ in a local minimum or maximum as can be the case for gradient-based approaches.
However, there is a significant cost involved in multiple (often 10 s or 100 s) objective
function computations at each iteration of the optimiser. This can be particularly expensive
if high-fidelity CFD simulations are being used to compute the objective function. Even
when taking advantage of surrogate models [7,10,11], these approaches are all ultimately
computationally expensive. A single design point evaluation on a realistic 3D geometry
of interest to aerospace vehicle designers might take many hundreds of CPU hours to
determine, for example, lift and drag predictions to a reasonable degree of accuracy.

For this reason, this paper presents a massively cheaper approach to computing the
objective function for certain classes of aerodynamic design problem, i.e., minimisation of
drag when the transonic/supersonic wave drag component dominates, in the early stages of
optimisation using a gradient-free (evolutionary optimisation) approach. An optimisation
procedure is introduced that uses a significantly cheaper, CFD-free, optimisation objective
function and we show that the approach can still drive the optimisation scheme towards a
design with a similar design and reduction in drag coefficient. The approach used is ‘CFD-
free’ (i.e., it does not require any computational aerodynamic analysis) and is therefore
a significantly cheaper approach for guiding a wave drag-dominated design problem
towards an optimal, minimum drag solution on geometries discretised using meshes more
conventionally used for ‘standard’ CFD-based optimisation approaches. The decision
was made to use mesh-based definitions of the body geometries in order to allow this
approach to be easily adopted into otherwise CFD-based optimisation algorithms using
conventional CFD meshes as the geometry definition. Mesh-based optimisation has become
popular [5,12–14] over the last decade as a solution to avoid the challenging ‘bottleneck’
that often exists practically in going from CAD-based geometry definitions to CFD meshes.

The approach outlined in this paper makes use of the transonic area rule and its super-
sonic extension [15,16], exploiting the mesh-based parameterisation and mesh morphing
methodology developed by Smith et al. [17]. To the authors’ knowledge, very little work
has been carried out in recent years to explore how the principles of ‘area ruling’ could
be used to accelerate modern aerodynamic optimisation processes. However, in a recent
report by Armenta and Takahashi [18], they acknowledge that there is potential for this
theory to be exploited, particularly in the early, conceptual design stage of an aerodynamic
design process. The ultimate question answered within this work is: ‘To what extent can
an optimiser perform (wave) drag minimisation if using area distribution alone as the
objective (fitness) function measurement?’.

In the remainder of the paper, a summary of the wave drag approximation in transonic
and supersonic regimes is outlined along with the methodology for using this theory on a
typical CFD surface mesh (triangulation) to construct an objective (fitness) function evalua-
tion for a given geometry. The implementation is then presented including notes on the
considerations required to ensure stability and error minimisation of the numerical scheme.
The paper concludes with the results from a simple (sphere) and complex (spaceplane)
geometry example of a wave-drag-minimisation optimisation study. The results are com-
pared with an approach using a full-fidelity CFD simulation. The overall conclusions from
this study suggest that the approach presented is capable of driving a geometry towards
a similar shape to when using full-fidelity CFD at significantly lower computational cost.
However, it cannot account for any constraints, driven by other aerodynamic factors, that
might be present within the problem, e.g., constraints on the lift coefficient.

2. Background Theory

There has been extensive research, both theoretical and empirical, on the relationship
between the longitudinal area distribution and wave drag of 3D bodies within the transonic
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and supersonic regimes [15,16,19–21]. Overall drag within these regimes becomes highly
sensitive to the cross-sectional area distribution of the geometry along its length. This
section begins by discussing the key theoretical ideas that lead to the analytical wave drag
formulae used within this work.

2.1. Transonic Area Rule

The area rule was introduced by Whitcomb [16] and is commonly referred to as
‘Whitcomb’s area rule’. A relationship between the drag-rise profiles of complex geometries
and bodies of revolution was observed, and Whitcomb presented a generalised theory
that the drag rise observed was driven by the development of the cross-sectional area
distribution along the length of the geometry. The theory was investigated using wind
tunnel experiments for a range of bodies in which the smoothness of the area distribution
for a wing–body geometry had been optimised to give a substantial drag reduction [16].
The empirical tests of bodies at transonic speeds from Whitcomb’s work demonstrated the
significant drag reduction by cutting or wasting of the body of a wing–body geometry to
drive the area distribution of it towards that of the original body definition.

The experimental results were given more theoretical consideration and extended to
the supersonic regime by Jones [15], where a mathematical approach was developed to
determine the wave drag as a function of the area distribution of a geometry. The wave
drag for a given geometry as M → 1 is given by Equation (1) where S(x) represents the
cross-sectional area of a body of length, l, at longitudinal position, x.

The integral is scaled by the freestream conditions, where density, ρ∞, and velocity,V∞,
are given in Equation (1). The cross-sectional area is calculated from the intersection
between the geometry and an ‘intersection plane’ perpendicular to a longitudinal geometry
reference line (the same reference line used to measure the angle of attack).

D = −ρ∞V2
∞

4π

∫ l

0

∫ l

0
S′′(x1)S′′(x2)ln|x1 − x2|dx1dx2 (1)

This theory is valid when the cross-sectional area, S(x), is defined as perpendicular to the
freestream; however, it is only valid within the transonic regime close to the speed of sound.
Within this work, this cross-sectional area is often computed by taking a ‘slice’ through
the mesh defining the 3D geometry and what we refer to as the ‘intersection plane’. The
wave drag theory that leads to Equation (1) can be extended into the supersonic regime
by angling the intersection plane when calculating the area distribution. The plane is first
angled relative to the x-axis by an angle µ, a function of the freestream Mach number, M∞,
as shown in Equation (2), and then rotated around the x-axis by an angle ψ. An example of
the plane inclination at angle µ from Jones’ original work is shown in Figure 1a [15].

µ = arcsin(
1

M∞
) (2)

The intersection plane, rotated by angle ψ, is used to calculate the wave drag following
the same method as previously (Equation (1)), but now as a function of the angle of
revolution around the x-axis of the inclined plane,

D(ψ) = −ρ∞V2
∞

4π

∫ l

0

∫ l

0
S′′(x1, ψ)S′′(x2, ψ)ln|x1 − x2|dx1dx2. (3)

The wave drag at x is then calculated by averaging all values of D(ψ) for ψ ∈ [0, 2π]
such that

D =
1

2π

∫ 2π

0
D(ψ)dψ. (4)

An example of this plane rotation is given in Figure 1b from Lomax [22]. For cases
where M∞ = 1, the angle of inclination µ = 0. Thus, area calculation is unaffected by
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rotation of the plane about the x-axis and the equations reduce to the original form shown
in Equation (1).

(a) Inclined Plane (b) Rotated Plane

Figure 1. Visualisation of the intersecting plane applied to a simple wing–body geometry. In (a), the
plane is inclined at the Mach angle µ relative to the freestream. (b) shows the subsequent rotations
of the plane at an angle ψ around the roll axis. The parallel planes along the length of the geometry
are shown behind the highlighted plane in each case. Figures from [23]. Note that Harris uses θ to
denote the rotational angle; however, ψ is used throughout this paper to avoid confusion with θ as
the coordinate transformation variable.

2.2. Evolutionary Optimisation

Evolutionary algorithms (EAs) are a class of metaheuristic algorithm that have become
a widely adopted gradient-free, ‘global search’ optimisation tool. They can be categorised
under the field of bioinspired optimisation, i.e., methods that draw inspiration from nature
to mimic natural behaviours observed in nature [24]. Specifically, an EA replicates the
biological mechanisms of evolution, natural selection and genetics [25]. Evolutionary
algorithms often involve making changes to a ‘population’ of n individuals, often referred
to as ‘agents’, evolving over number of ‘generations’.

Some examples of classifications of EAs are evolution programming (EP), evolution
strategies (ESs), genetic programming (GP) and genetic algorithms (GAs) [26,27]. They
follow similar methodologies, aiming to simulate the evolutionary process; however, they
differ in their implementations [25]. An exhaustive review of genetic algorithms introduced
between 1957 and 1993 demonstrates the rapid growth of the field [28].

One particular EA we used throughout the work presented in this paper is Particle
Swarm Optimisation (PSO) [29] although the novel approach presented for exploiting area
ruling to (cheaply) evaluate the objective function from the area distribution is equally
applicable to all of the aforementioned optimisation strategies.

3. Methodology

The wave drag equation (Equation (3)) was used as the basis for defining the objective
function given that the theoretical wave drag is proportional to the integral of the square of
the second derivative of the area (note that in the EA literature the term ‘fitness function’ is
often used interchangeably with ‘objective function’). In theory, wave drag can therefore be
minimised by reducing the magnitude of the integral of the second derivative across the
length of the body.

3.1. Objective Function

The objective function used in this work, J, is defined in Equation (5). This gives an
indication of the ‘smoothness’ of the geometry’s longitudinal area distribution such that,
according to Equation (1), minimising wave drag equates to minimisation of J. Throughout
this work, 3D geometries were discretised using unstructured, surface meshes as typically
used in CFD for two reasons:
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• To allow direct comparison with full-fidelity CFD results using the same geome-
try description;

• To lend this approach to being used as the starting point in a CFD-based aerodynamic
optimisation study (i.e., as a ‘cheap’, low-fidelity approach in the early stage of a
design cycle).

The optimum geometry for a given baseline design and design space in each case is
the mesh, M, with the lowest value of J.

J(M) =
∫ l

0
(S′′(x))2dx (5)

For a geometry parameterised using n independent design variables (parameters),
ϕ = ϕ(ϕ1, ϕ2, . . . , ϕn), the optimisation problem is min(J, M(ϕ)). Since the PSO algorithm,
typically, is framed as a maximisation problem, the objective function in this work was
negated. Note that the objective function J is sometimes referred to as the ‘smoothness’
of the geometry throughout this work, such that a low value of J implies a ‘smooth’ area
distribution. The remainder of this section of the paper outlines the numerical scheme
used to compute this objective function on a triangular surface mesh representation of
a geometry.

3.2. Numerical Scheme
3.2.1. Area Computation

To calculate the area distribution of a given surface mesh, the Python module
trimesh [30] was used to calculate the geometry cross-sectional area at intersection slices
at user-defined locations. The trimesh module reads a watertight surface triangulation as
input, so any hybrid meshes with quad elements were first passed through the Python
module pyvista, which was used to triangulate a hybrid mesh as required.

The function section was used from the trimesh module, which returns the intersection
curve between a given mesh and intersection plane. The object returned for the intersection
curve also provides the area of this intersection slice as one of its built-in properties. Figure 2
shows an example of the intersection slice resulting at a particular x station along the length
of the complex geometry case considered in this paper.

(a) (b)
Figure 2. Intersection plane cutting through a spaceplane geometry and the intersection curve/slice
between the geometry and the plane. (a) Side view with plane location. (b) Cross-sectional intersection.

3.2.2. Differentiation

Second-order central differencing was used to calculate derivatives of S using Equation (6),
where h represents the step size between uniformly distributed values of x. Boundary values
were handled and compared using two different methods: extrapolating the domain using
a constant, and using the forward difference (Equation (7)) and the backward difference
(Equation (8)) where appropriate.

S′(x) =
S(x + h)− S(x − h)

2h
(6)
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S′(x) =
−3S(x) + 4S(x + h)− S(x + 2h)

2h
(7)

S′(x) =
3S(x)− 4S(x − h) + S(x − 2h)

2h
(8)

The same treatment was used for second-order derivatives, for which the central, forward
and backward difference stencils are shown in Equations (9), (10) and (11), respectively.

S′′(x) =
S(x + h)− 2S(x) + S(x − h)

h2 (9)

S′′(x) =
S(x + 2h)− 2S(x + h) + S(x)

h2 (10)

S′′(x) =
S(x)− 2S(x − h) + S(x − 2h)

h2 (11)

3.2.3. Integration

For the implementations outlined in this paper, only integrals over one dimension are
required. Therefore, the trapezium rule was used to approximate the integral in Equation (5)
to determine the objective function.

3.3. Testing the Numerical Scheme

The practical implementation of the method outlined was explored in order to under-
stand the numerical stability of the scheme on a variety of meshes. The effectiveness of
this discrete implementation of area-distribution approximation was assessed using 3 test
cases. The smoothness-driven optimisation procedure was then evaluated using a specific,
complex geometry test case of particular interest to the authors: a single stage to orbit
spaceplane being developed by Reaction Engines Ltd. [31], ‘Skylon’.

3.3.1. Sphere

The unit (m) radius sphere was used as the first test case because the analytical area
distribution for this geometry is known and easy to calculate. The mesh-based geometry
definition used is shown in Figure 3 with a mean cell size of 0.05 m. This cell size was
chosen in order to provide a (qualitatively) reasonable geometric representation of the
sphere. Clearly, as the cell size increases the quality of the geometric representation reduces
and hence the effectiveness of the approach reduces; however, a detailed study into this
was deemed beyond the scope of this work.

Figure 3. Unstructured, triangular mesh used to define the geometry of a unit (m) radius sphere.
Mean triangle (cell) size is 0.05 m.

Figure 4 shows a comparison of the analytical solution and discrete (numerical) ap-
proximations for the area distribution and first and second derivatives of the area. It is
clear that, for an extremely simple case such as this, when using just four slices the second
derivative is calculated almost exactly whereas increasing the number of slices to 10 intro-
duces some (minor) numerical error near the leading and trailing edges of the sphere. This
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simple example shows that it is therefore important to think carefully about how many
slices to use, and where to position them, when applying the approach to more complex
geometries as will be considered in the next sections.

(a) (b)

Figure 4. Comparison between analytical and discrete area distributions (and derivatives) for a
sphere using 4 and 10 slices. (a) Four slices; (b) ten slices.

3.3.2. Sears–Haack Body

A geometry with a more practical relevance to the topic of wave-drag and area-
distribution analysis is the Sears–Haack body [21]. This is the body that gives the theoretical
minimum wave drag for a given length and volume, or given radius at a fixed length. The
analytical definition of the area distribution is known for this geometry and well studied.
The analytical solutions for the distribution and derivatives are given in Figure 5a. The
same mesh as used by Smith et al. [17] as their ‘coarse’ mesh example, with body maximum
radius, Rmax = 3.15 m, was used as shown in Figure 5b.

0 10 20 30 40 50 60 70 80

x− (m)

−5

0

5

10

15

20

25

30

35

f
(x

)

S(x)−m2

S′(x)−m
S′′(x)

(a) (b)

Figure 5. Analytical solution of the area distribution, its derivatives and example 3D mesh of
the Sears–Haack body with parameters Rmax = 3.15 m and l = 81.0 m. (a) Cross-sectional area
distribution; (b) 3D surface mesh.

Intersection planes (slices) were initially calculated in increments of 100, starting from
100. The RMSE of the discretised scheme compared to the analytical solution was calculated.
From Figure 6a we can see that the RMSE increases significantly across this range and
Figure 7a shows that this is due to the introduction of numerical fluctuations as early as
200 slices driven by the sensitivity to h (the distance between slices) of computing gradients
as h becomes small.

The procedure was repeated, testing the number of slices within the range [4, 100] ⊂ N.
The results from this are shown in Figure 6b where a smooth reduction in error up to
17 slices can be seen, after which it seems likely that numerical error is introduced. From
here, the error increases unpredictably from this point, in a fashion similar to the coarser
pass in Figure 6a. Unlike the clear numerical error shown when using 200 slices, the
area-distribution derivatives in Figure 7b do not show significant numerical error and the
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discrete curve still matches very closely to the analytical solution. Most of the error in
this example originates from the boundary calculations. This study, again, demonstrates
the importance in the number (and location) of the slices used to compute the cross-
sectional area.

200 400 600 800 1000
number of slices

0.00

0.05

0.10

0.15

0.20

0.25

rm
se

 o
f f

xx

(a)

0 20 40 60 80 100
number of slices

0.006

0.007

0.008

0.009

0.010

0.011

rm
se

 o
f f

xx

(b)

Figure 6. RMSE as a function of number of discrete intersection slices taken over the length of the
body. (a) Increasing in steps of 100, starting from 100; (b) increasing in steps of 1, starting from 4.

0 10 20 30 40 50 60 70 80
x

2

1

0

1

2

f(x
)

S'(x) analytical
S''(x) analytical
S'(x) discrete
S''(x) discrete

(a)

0 10 20 30 40 50 60 70 80
x

2

1

0

1

2

f(x
)

S'(x) analytical
S''(x) analytical
S'(x) discrete
S''(x) discrete

(b)

Figure 7. Two examples of the discretised calculation of first and second derivatives of the area
distribution for a Sears–Haack body compared with the analytical solutions. (a) uses 200 slices and it
can be clearly seen around x = 43 that there is significant numerical error. (b) uses just 20 slices and
is qualitatively very close to the exact solution except at the boundaries.

Note that computationally this approach is so inexpensive (the 200-slice example
running in under a second on a modern desktop PC) that the primary consideration is
simply of appropriate number of slices to minimise the introduction of numerical error in
the objective function computation rather than consideration of balancing accuracy against
computational cost as would normally be the case.

3.3.3. Complex Geometry—‘Skylon’ Spaceplane

Figure 8a shows the area distribution of the baseline Skylon geometry used in this
work at M = 1.0 using the method described in Section 3.2 with 80 slices along the length
of the body. The significant difference in the cross-sectional areas between the slices before
and after the end of the wings/nacelles at x ≈ −25 results in a discontinuity in the cross-
sectional area at this point. This has a signficant impact on the area-distribution smoothness
calculation, with ‘spikes’ in S′′(x) around this point. Increasing the number of slices by just
1 results in a decrease in magnitude of the spike (Figure 8b), while increasing the number of
slices to 200 results in a steep increase in magnitude of the spike (Figure 8c). Distributions
for 81 and 200 slices are shown in Figure 8. In the worst case of these examples, with
200 slices, the second derivative at this point dominates the smoothness calculation, J
(Equation (5)).
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(c)
Figure 8. Area-distribution plot for the Skylon spaceplane using varying numbers of slices along
the length of the geometry, calculate at conditions M = 1.0, α = 0.0: (a) 80 slices; (b) 81 slices;
(c) 200 slices.

The differences in the size of discontinuity between the different numbers of slices
is due to the different locations along the length of the geometry at which the slices are
taken. As the slices are uniformly distributed along the length, changing the number of
slices changes the positions of the slices around the discontinuity in cross-sectional area.
The slight changes in position in Figure 8a,b show how significant this effect can be on the
numerical estimation of the second derivative of area and therefore the overall smoothness
computation. Again, this reinforces the point about the importance of selecting appropriate
locations for the intersection planes when using this discrete approach.

Mach Angle Inclination

When extending the transonic area rule at Mach 1 into the supersonic regime, the
intersection planes used to slice the geometry must be inclined as described in Equation (2).
At M∞ = 1.2, the resulting inclination angle µ = 0.663 radians. Figure 9 shows the
area-distribution curves for the Skylon example when making this assumption.

(a) (b)
Figure 9. Mach plane cutting through the Skylon geometry inclined at Mach 1.2 and the slice this cut
makes. (a) Side view with plane location; (b) cross-sectional intersection.

Inclination Plane Rotation

Rotation of the intersection plane, as shown in Figure 1, can reduce the effect of
any discontinuities in the area distribution. The continuous integration can be handled
discretely by averaging over n rotations. A sensible choice would be 360 rotations, at a
rate of 1 slice per degree of rotation. A sensitivity study was conducted to determine
approximately how many rotations should be made.

Initially, 80 slices were taken across the length of the body, with the number of rotations
varying from 1 to 360, for which the convergence history of the geometry smoothness is
shown in Figure 10a. The results exhibit numerous peaks that diverge significantly in
value compared to their adjacent tests. Repeating this test with 81 slices instead results in
the convergence history shown in Figure 10b in which the spikes, while still present, are
significantly reduced in magnitude.
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(b) 81 Slices
Figure 10. Comparison between the convergence of the area-distribution smoothness computation, J,
with number of rotations for 80 (a) and 81 (b) lengthwise slices.

The main reason for running this convergence study was to determine whether increas-
ing the number of rotations toward 360 resulted in the smoothness calculation converging.
This is apparent from Figure 10b; however, computationally, this takes 360 times longer
to calculate than with just one plane. Where computational resources are limited, it is
beneficial to identify whether fewer rotations can be used and still achieve a similar value
of smoothness. To determine this, the relative error from the previous number of rotations
used and the absolute error compared to using 360 rotations is considered.

If the smoothness calculation with 360 rotational slices is taken as the ‘truth’ value,
then the percentage error of this value is shown in Figure 11b. Using just 32 slices results in
a difference of just 0.8% and a relative error of using 31 slices of 2.3e− 5. This is a reasonable
approximation, while taking significantly less time. Based on this, where computation time
is of consequence, 32 slices can be used.

0 50 100 150 200 250 300 350

0.0
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0.4

0.6

0.8

1.0

1.2

(a)

0 50 100 150 200 250 300 350

0

500

1000

1500

2000

(b)
Figure 11. Relative error from previous iteration (a) and percentage error compared with using
360 rotations (b) using 81 slices along the length of the Skylon geometry. (a) Relative error; (b) abso-
lute error.

The reliability of using a coarser approximation with just 32 rotations can be qual-
itatively confirmed by comparing the area-distribution plots. Figure 12 shows the area-
distribution plots when using 1, 4, 32 and 360 rotations. This figure highlights the differ-
ences between the plots when 4 and 360 slices are used, and the similarity between the
plots when using 32 and 360 rotations.
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As the number of lengthwise slices used has a clear impact on the calculation of
the area-distribution smoothness, the analysis of all geometries within the optimisation
procedure should be compared using the same number of lengthwise slices. It should be
noted that, for some geometries, the selected value may not be the optimal value for that
geometry and a large spike in smoothness may be erroneously calculated. All of the spikes
lead to an increase in smoothness value, which could lead to a well-performing design
being erroneously calculated to be a poorly performing design. This false negative may lead
the optimiser to avoid some good designs. On the other hand, consider the scenario where
the optimiser drives towards false positives. A false positive in this instance would be that
a poor design is identified as a good design. This would be a significantly worse outcome.
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Figure 12. Area-distribution calculations for the baseline Skylon design using varying num-
bers of rotational planes: (a) 1 rotational plane; (b) 4 rotational planes; (c) 32 rotational planes;
(d) 360 rotational planes.

Angle of Attack

So far, in all cases presented, it has been assumed that the angle of attack is 0, i.e., the
flow is aligned with the x-axis. The comparative CFD-driven optimisation studies, taken
from [17], were subject to a lift constraint at an angle of attack of 4◦. The handling of this
is included in Jones’ report [15] such that the normal of the interception plane should be
parallel to the incoming stream.

The impact of including the additional plane inclination in the area-distribution curve
calculation can be seen by comparing the distributions for the baseline design at 0 and
4 degrees angles of attack, Figure 13. Although subtle, the changes in area distribution
resulting from the intersection plane angle change required to account for body of angle of
attack is significant (34% in the case shown).
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Figure 13. The area-distribution curves and derivatives for the baseline Skylon geometry at varying
angles of attack, α. While the distributions are visually very similar, a clear difference in the shape
of the peak in the range −40 ≥ x ≥ −20 can be seen. There is also a significant difference in the
smoothness; J = 14.70 at α = 0 and J = 19.71 at α = 4, a 34% difference. (a) α = 0◦; (b) α = 4◦.

4. Optimisation Results

The Sears–Haack body was not used as a baseline geometry for an optimisation case
given that it is already an optimal shape. The following sections detail the results when
using the unit sphere (simple geometry case) and Skylon spaceplane (complex geometry
case) as a baseline for a drag-minimisation optimisation study.

4.1. Simple Geometry—Sphere

The objective of the optimisation was wave-drag minimisation at Mach 1 and the
problem was prescribed to be volume constrained. The expected outcome of the study was
that the geometry should tend towards that of a slender, Sears–Haack type shape to the
extent that the geometry parameterisation allowed. The geometry parameterisation and
surface mesh morphing approach taken from Smith et al. [17] were used with a maximum
perpendicular radius of the geometry (perpendicular to the x-axis, aligned with the flow
direction) used as the single independent design parameter. The length of the geometry
was then adjusted in order to ensure the body’s volume was conserved.

The bounds chosen for the longitudinal scaling were ϕ ∈ [0.3, 1.5] m (with ϕ = 1.0 m as
the baseline) and the PSO algorithm was used with five particles for four generations. The
convergence history for this case is shown in Figure 14 and clearly the optimisation process
is driving the geometry towards a minimum J solution. Within this short (and expensive)
optimisation run, the algorithm converged to an optimal solution with ϕ = 0.3 m, i.e., the
most slender geometry possible, as expected. Comparing geometries, Figure 15b,c, we can
see that, qualitatively, the optimal design tends toward the slender Sears–Haack shape, as
expected, to the extent possible using this simple parameterisation approach. This simple
case provided confidence in the scheme’s ability to provide sensible, minimum-wave-drag
solutions and was therefore next tested with a complex geometry example.

Figure 14. Convergence history of sphere drag optimisation case showing evolution of −J (y-axis)
against generation number for 5 PSO particles across 4 generations. This case has a single independent
(design) parameter (axial radius) and one dependent parameter (body length) used to enforce the
volume constraint. Note that the y-axis range is cropped.
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Figure 15. Geometries (a–c) and area distributions (d–f) of three different designs from the simple
sphere optimisation case. Considering the limited design space, a poor design (a), good design
(b) and optimal design (c) are shown.

4.2. Complex Geometry—Skylon Spaceplane

The aim of this test case was to achieve wave-drag minimisation on a much more
complex and realistic aerospace vehicle geometry and to compare the results with CFD-
driven optimisation. The same parameterisation approach, design space construction,
mesh morphing and initial sampling as used by Smith et al. [17], was used. The geometry
parameterisation approach is shown in Figure 16 where five independent design parameters
(ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5) were used to define the design space and a sixth dependent parameter,
ϕc, was used to enforce the volume conservation constraint. The area distribution for each
geometry was calculated at M∞ = 1.2 and the angle of attack at α = 4.0◦.

(a) (b) (c)

(d) (e) (f)

Figure 16. Bounds for parameterised Skylon geometry. (a–e) show the bounds for independent
(design) parameters ϕ1–ϕ5. The dependent parameter, ϕc, was used to constrain the volume, shown
in (f) [17]. (a) ϕ1 ‘nose droop’; (b) ϕ2 fuselage ‘pinching’; (c) ϕ3 centre panel length; (d) ϕ4 centre
panel height; (e) ϕ5 overall ‘pinch’ length; (f) ϕc fuselage length.
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4.2.1. Direct Comparison of Area Distribution and CFD Predictions of Cd

The average of 32 rotated slices was taken at each of 81 slices in the x-direction x
(along the length of the body). The resulting smoothness, Equation (5), for each geometry
was compared against the percentage change from the baseline design. This correlation is
shown in Figure 17 where there is a clear relationship between the CFD-free and CFD-based
approaches. The Spearman rank coefficient between the two data sets was 0.909. This
suggested that using the area distribution to approximate the actual objective function
would result in a pattern of results similar to that when using full-fidelity CFD. There were,
however, some outliers (three cases as seen in Figure 17) and each of these corresponded
to geometries where an intersection slice location coincided with a discontinuity in the
cross-sectional area distribution (as described previously). This, once again, reinforces the
point made previously about being careful about the location of intersection slices.
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%
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C
d

Figure 17. Correlation between full-fidelity (CFD) prediction of drag increase and the area-distribution
approach proposed in this study for a sample size of 60 (using Latin Hypercube Sampling). Eighty-one
lengthwise slices were used for each geometry and there are three clear outliers.

4.2.2. Optimisation Case 1

For the first case, the area distribution was not calculated by rotating the plane about
the x-axis but the plane was tilted by the angle µ. This was performed to reduce the
computational cost but still reduce the impact of the singularities in the second derivative
around the engine inlets/outlets.

The optimisation algorithm used was PSO with 10 particles for 20 generations. The
convergence history, Figure 18, shows that the algorithm converged on a design that
maximises the smoothness (i.e., minimises J, Equation (5)).

Comparing with the results of Smith et al. [17], which used a CFD-driven optimisation,
shown in Figure 19, the wasted, ‘pinch’ centre panel tends towards the same configuration
in both cases. Aerodynamically this is happening to satisfy the basic principles of ‘area
ruling’ [16]. However, the nose droop position differs significantly in that the CFD-driven
optimisation tends towards designs where the nose is drooped down, whereas the CFD-
free-driven optimisation tends towards designs where the nose is drooped upwards, which
is counter to what we would expect to see for this study.
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Figure 18. Convergence history for a PSO optimisation study using the area distribution in the cost
function evaluation.

(a) (b) (c)

(d) (e) (f)
Figure 19. Front and side images of the morphed surface mesh for the baseline design, optimal
design from the CFD-driven optimisation study [17] and the ‘Case 1’ CFD-free approach proposed
in this paper. (a) Baseline—front; (b) CFD-driven—front; (c) CFD-free—front; (d) baseline—side;
(e) CFD-driven—side; (f) CFD-free—side.

It was postulated that the cause of this discrepancy is due to the fact that this initial
study used a single inclined plane at each station x rather than rotating around the axis
and possibly some contribution from numerical error in the area-distribution calculations.
Designs where the nose of the geometry is angled to point in the same direction as the
normal of the plane have lower values of smoothness in area distribution at this point
which will reflect positively in the evaluation function. If this is the case, then we would
expect that changing the angle of the plane would impact the results of the study or, equally,
calculating the area distribution using the full rotation around the axis should average this
impact out of the optimisation.

We explore both of these predictions separately in the following sections.
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4.2.3. Optimisation Case 2—Changing the Angle of the Slice Plane

It was postulated that the optimisation procedure outlined above directly led to raising
the nose of the geometry due to the angle of the Mach plane. Therefore, repeating the same
optimisation procedure but with a plane inclined negatively along the axis should result in
similar designs being obtained, but with the nose droop trending downwards. Figure 20
demonstrates what is implied by the negation of the inclination angle.

(a) (b)
Figure 20. Inclined Mach planes with a positive inclination angle, µ (a), and negative inclination
angle, µ (b).

Figure 21 shows the area-distribution curves for the same geometries as in Figure 22
except that the inclination plane was calculated at a negative angle to the x-axis.
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(b) CFD-driven
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(c) CFD-free
Figure 21. Area-distribution plots where the Mach plane is inclined negatively with respect to the
x-axis for the baseline design (a), the optimal design from the Bayesian study (b) and the initial PSO
optimised study driven by the area distribution (c).
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(c)
Figure 22. Area-distribution plots for the baseline design, the CFD-driven optimisation study [17]
and the ‘Case 1’ CFD-free approach proposed in this paper. (a) Baseline; (b) CFD-driven; (c) CFD-free.

We can indeed see from this a different trend in the calculation of the smoothness of
the area distribution. The convergence history with this negated angle of inclination, µ, is
shown in Figure 23 which has a very similar pattern to that in Figure 18 implying a similar
reduction in drag but, in this case, the nose droop trended downwards.
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Figure 23. Convergence history for a PSO optimisation study using the area distribution in the cost
function evaluation with the slice plane inclined at a negative inclination angle µ.

4.2.4. Optimisation Case 3—Averaging the Rotation of the Slice Plane

Case 1 was also repeated but by calculating the area distribution as the average of
rotated planes. We evaluated the area distribution using 360 averaged rotation planes.
Figure 24 shows the convergence history from this study and the optimal design resulting
is shown in Figure 25.
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Figure 24. Convergence history for the Skylon optimisation with CFD-free PSO using 10 particles
over 20 generations using 360 averaged rotation planes.
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These results confirm the postulation made prior to the study that rotation of the
intersection plane averages out any contribution from the nose droop. The optimal design,
shown in Figure 25b, from this study, when compared to that of the previously un-rotated
study in Figure 19c, has a negligible droop while exhibiting similar wasting around the
central pinch panel to other optimal designs, Figure 25a.

(a) (b)
Figure 25. Front and side images of the morphed surface mesh optimal design when the area-
distribution calculation uses intersection plane rotation. (a) Side; (b) front.

4.2.5. Angle of Attack

The final condition that needs to be included in the calculation of the area distribution
is to account for the angle of attack. Inclining the plane so that the plane normal faces
into the freestream, as discussed in Section 2, achieves this. The area-distribution-driven
optimisation was repeated, again performing the complete rotation of the plane around
the x-axis. The convergence history for the CFD-free PSE optimisation for this is shown in
Figure 26.

The optimal result from this study is shown in Figure 27 where it is clear that the
nose droop has been impacted by this approach and is angled downwards towards the
theoretical freestream flow. The effect on the central ‘pinch’ panel remains largely the same.
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Figure 26. Convergence history for the Skylon optimisation using PSO using 10 particles over
20 generations. The objective function used the area-distribution calculation including the averaged
rotation of the inclined Mach plane with angle of attack correction.
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Figure 27. Front and side profiles (right) and area distribution (left) for the optimal design following
area-distribution-driven optimisation including an angle of attack. (a) Front; (b) side; (c) area distribution.

4.3. Optimal Design Analysis

Using the geometry smoothness instead of CFD to drive the objective function of
the optimisation procedure results in qualitatively very similar designs. In both cases
(CFD-driven and CFD-free), the nose is drooped down and the central side panel is pinched
in towards the payload bay. Quantitatively, it was not possible to directly compare the Cd
reduction achieved using this method with the CFD-driven approach of Smith et al. [17]
since in their work there was the additional constraint of fixing the lift generated. This
constraint cannot be implemented using the methodology outlined in this paper.

However, it is interesting to note that the the optimised design (from case 3 at 4◦ angle
of attack) was 1.2% below the baseline geometry compared with the reduction of 1.6%
achieved by the CFD-driven study [17] (where the angle of attack was altered to fix the lift).
This is impressive considering the seconds of compute time necessary on a desktop PC
for the CFD-driven approach compared with many hundreds of CPU-hours on an HPC
system required for the CFD-driven study.

5. Conclusions and Recommendations

An innovative, CFD-free approach for wave-drag-minimising optimisation problems
for 3D geometries defined on ‘typical’ surface mesh triangulations has been presented. The
approach takes advantage of the basic and fundamental principles of ‘area ruling’. The
approach presented has been shown to be effective as an extremely cheap, even though
somewhat crude, method for guiding an optimiser towards a sensible drag-minimising
design for problems where wave drag dominates. Although effective, it is clear that this
approach cannot completely replace a classical CFD-driven aerodynamic optimiser as it is
incapable of handling complex, non-geometry based constraints, involving aerodynamic
loads other than wave drag (e.g., lift constraints). This study demonstrates the importance
of the placement of the intersection slices used to compute a geometry’s area distribution
and further work is recommended to develop an automated algorithm to suggest the
appropriate placement of these intersection slices. Also, since this paper aimed simply to
prove the principle of this approach, mesh resolution sensitivity studies for each case were
deemed beyond the scope of study. The authors recommend that, in future, if adopting
the approaches outlined here the usual mesh sensitivity analysis should be carried out to
determine the appropriate grid resolution.

Despite its limitations, it is recommended that this approach could be used as a very
efficient and effective method for the early stages of an optimisation process on complex
geometries before switching to the more computationally intensive CFD-driven schemes
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more commonly used which can take into account a broader range of factors (including
other drag terms and phenomena such as flow separation).
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