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Abstract: In the research field of rotorcraft aerodynamics, there are two fundamental challenges: re-
solving the complex vortex structures in rotor wakes and representing the moving rotor blades in the
ambient airflow. In this paper, we address the first challenge by utilizing a third-order unstructured
finite volume solver, which exhibits lower numerical dissipation than its second-order counterpart. This
allows for sufficient resolution of small vortex structures on relatively coarse meshes. With this flow
solver, the second challenge is addressed by modeling each rotor as an actuator disk (i.e., the actuator
disk model (ADM)) or modeling each blade as an actuator line (i.e., the actuator line model (ALM)). Both
of the two models are equipped with an improved tip loss correction, which is introduced in detail in the
methodology section. In the section of numerical experiments, the numerical convergence properties of
the two types of solvers have been compared in the case of two-dimensional infinite wing. In addition,
the relationship between the ALM and the lifting line theory is discussed in the cases of fixed-wing
calculations. Another goal of these cases is to validate the tip loss correction presented. The validation
of the ALM/ADM and comparisons of computational efficiency are also demonstrated in simulations
involving both hover and forward flight rotors. It was found that the combination of the third-order
finite volume solver and the ALM/ADM with the improved tip loss correction presents an efficient way
of performing the aerodynamic analysis of rotor-induced downwash flow.

Keywords: actuator line model; actuator disk model; tip loss correction; high-order finite volume
unstructured solver

1. Introduction

The simulation of helicopter rotors has always been a challenging task in aviation.
Moving overlapping grid computational techniques developed in studies [1–3] have shown
to be successful. However, they require a significant amount of computational resources,
intricate geometric modeling, and a large number of grid cells, particularly boundary layer
cells. Modeling discrete blade elements as momentum sources is an appealing strategy to
drastically save computational costs [4]. The actuator line model (ALM) and the actuator
disk model (ADM) have been introduced in [5]. These models have been widely used in
simulating wind turbines with incompressible flow solvers [6]. For helicopter rotors, the
ALM/ADM requires users to provide specific parameters such as rotor diameter, blade
chord length, and twist angle for modeling. When applied to a rotor design, it is only
capable of designing for these few parameters rather than modeling complex geometries.
However, in a rotor–fuselage aerodynamic layout design, for example, where the simulation
of a rotor–fuselage interaction is necessary [7], the design variables are often the position of
the rotor relative to the fuselage or the geometry of the fuselage, rather than the geometry
of the rotor itself. Similarly, the simulation of complex interactions arising from the ship–
rotor wake for different wind angles and shipboard landing locations is another situation
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where application may be performed [8–10]. In the simulation of such problems, where
the geometry of blades is constant, it is often necessary to have unstructured meshes
to fit the complex fuselage/ship geometry and sufficient resolution to predict a rotor-
induced downwash flow. The aim of this paper is to enhance the use of the ALM/ADM for
helicopter rotor simulations with compressible flow solvers on unstructured meshes.

The ADM regards the time average of the swept area of the blade as a source of mo-
mentum. On the other hand, the ALM represents blade motion by placing the momentum
source at changeable actuator lines over time. Control volumes surrounding actuator points
are used to distribute body force in order to reduce numerical instabilities and transform
sectional force into body force. Usually, a projection function with a Gaussian shape is
used since it is simple and easy to construct. A lot of studies have examined applications
of these two models, focusing in particular on the critical parameters influencing their
results [6,11]. The Gaussian length scale ϵ has been identified as a crucial parameter. When
ϵ/c > 0.25, it leads to an inadequate vortex strength relative to actual values, resulting in
an underestimated downwash velocity at the blade tip region and, consequently, an overes-
timation of lift. However, to keep the numerical stability, it is important that ϵ/∆grid ⩾ 4,
resulting in a considerable number of grid cells when ∆grid/c ⩽ 1/16, which damages
the computational cost-effectiveness advantage of the models. The isotropic spherical
volume force projection used by the standard ALM is obviously not reasonable for the
real load distribution along the blade span. In particular, when the number of actuator
points is insufficient (∆b > ∆grid), the projection may lead to computational instability. We
have adopted the advanced ALM developed in [12], which successfully resolves this issue
and expands it to the ADM in this article. Discussions are held regarding normalization
functions [13], which guarantees that the sum of weighting functions close to the tip equals
one, producing numerical results that are more consistent. An integral sampling strategy is
compared with the point sampling strategy that is used widely.

In particular, the development of tip correction methods has been a research emphasis to
improve the benefits of actuator models and obtain more accurate results on coarser grids,
especially in the context of the ALM. As an illustration, consider the Prandtl correction [14],
which can occasionally result in lift values that are underestimated due to its empirical charac-
ter. In contrast with techniques that depend on chord length (ϵ = 0.25c), Jha [15,16] presented
an elliptical distribution for the Gaussian length scale ϵ, requiring fewer grid cells. However,
it may exhibit numerical instability near the blade tip and present difficulties when extending
to the ADM. Although vortex-based correction has recently been devised [17], its demanding
assumptions and intricate computing techniques make it unsuitable for extension to rotor
computations. Additionally, a filtered ALM [18] was first used in fixed-wing applications
and has been expanded to wind turbine simulations, using a finite difference methodology.
It gives an effective way to use the ALM on coarser grids, but this method employs a finite
difference approach that leads to lift overestimation at the blade tip section. To deal with this
shortcoming, we present an improved correction based on it by adding ghost sections and
successfully extend the improved correction to both the ALM and ADM in this study.

High-order methods perform well in simulations containing a rotorcraft because of the need
to capture complex flow structures, such as tip vortices. For these simulations, finite difference
methods based on structured grids have been widely used. Nevertheless, these structured
grid solvers usually require substantial preprocessing and present formidable obstacles when
working with intricate geometries. As a result, unstructured solvers have become a more flexible
option for solving these problems. Efforts have been made to extend ALM and ADM models
within commercial software, such as CFX [11] and StarCCM+ [19,20]. However, conventional
second-order unstructured solvers often produce significant numerical dissipation, and the
complex structures of tip vortices can be smeared by their numerical dissipation, which can
reduce the accuracy of the results. Furthermore, to resolve these problems, more grid cells are
required or high-order methods are used. High-order unstructured solvers can be roughly
categorized into two main classes: the first one is based on high-order finite volume methods [21],
and the second one is based on discontinuous Galerkin methods [22]. We used a high-order
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unstructured solver [23] that is coded in the framework of OpenFOAM [24]. The solver is
based on implicit third-order compact finite volume methods. The solver relies on implicit
variational reconstruction to achieve high-order accuracy [25,26], which has the advantages of
efficiency and compactness compared with other reconstruction methods for high-order finite
volume methods [27,28]. However, for efficiency, the linear equations for reconstruction need
to be computed only once at the beginning of the computation, and are therefore limited for
problems that require the use of a static mesh. The ALM/ADM, on the other hand, can simulate
rotor blades on a static mesh and can be easily embedded into this solver for rotor simulations.
The solver with models presented in this article has enabled us to more effectively address the
challenges associated with rotor computational fluid dynamics more effectively.

The rest of this article is organized as follows: The methods for governing equations,
spatial discretization, and temporal discretization are introduced in Section 2.1. For an
overview of advanced ALM and ADM models, see Section 2.2. The tip correction techniques
refined in this paper are presented in Section 2.3. The implementation algorithm is shown in
Section 2.4. The numerical experiments carried out in this work are discussed in Section 3.
The conclusion is finally given in Section 4.

2. Numerical Methodology
2.1. Flow Solver
2.1.1. Governing Equations

In this article, the numerical tests are a simulation of compressible flows governed
by Reynolds-averaged Navier–Stokes (RANS) equations, and the Spalart–Allmaras (SA)
one-equation model is used. The nondimensional forms of the compressible RANS-SA
equations can be expressed as follows:

∂U
∂t

+∇ · (Fc − Fv) = S (1)

where

U =


ρ

ρu
ρE
ν̂

, Fc =


ρu

ρu⊗ u + ¯̄Ip
ρEu + pu

ν̂u

,

Fv =
Ma
Re


0
¯̄τ

¯̄τ · u + λ∇T
ν+ν̂

σ ∇ν̂

, S =


0

f body
f body · u

ST

.

(2)

In Equation (2), U is the conservative variables, and Fc and Fv are the convective flux
and viscous flux, respectively. Ma and Re are the free-stream Mach and Reynolds numbers.
Furthermore, S represents the source term. The velocity u =

[
ux, uy, uz

]T ∈ R3 is the
velocity of the flow field. f body is introduced in the following sections. For the calculation
of the convective flux, viscous flux, and source term ST about the turbulent variable, we
employ the SA-neg model [29].

The viscous stress tensor can be represented in vector notation as follows:

¯̄τ = (µL + µT)

[
∇u +∇uT − 2

3
¯̄I(∇ · u)

]
.

The thermal conductivity, denoted as λ, is described by the following:

λ = Cp(
µL
PrL

+
µT
PrT

),



Aerospace 2024, 11, 296 4 of 30

where Cp represents the specific heat at constant pressure, and µL is the coefficient for
laminar kinetic viscosity evaluated through the Sutherland law:

µL = T3/2
(

1 + T0/T∞

T + T0/T∞

)
,

in which T0 = 110.4K and T∞ = 273.15K. The laminar Prandtl number is indicated as
PrL = 0.72, while the turbulent Prandtl number is PrT = 0.9.

2.1.2. Spatial and Temporal Discretization

To find the influence of high-order solvers on rotorcraft aerodynamics, a second-order
solver based on Gauss linear reconstruction (p = 1) and a third-order solver based on
implicit variational reconstruction (p = 2) were employed. Both of the two solvers are
implemented in the framework of OpenFOAM [24]. To avoid the influence of the temporal
discretization, a third-order implicit dual time-stepping method is used. Here, we will
focus on the third-order solver.

In Figure 1, within the elements, conserved quantities are represented using degree p
piecewise polynomials:

ui(x) = ūi +
N(p)

∑
l=1

ul
i φl,i(x), N(p) =

(p + 1)(p + 2)(p + 3)
6

− 1. (3)

(a)

(b)

Figure 1. Comparison of approximate solutions (solid lines) and exact solutions (dashed lines): (a)
piecewise polynomials of degree p = 1; (b) piecewise polynomials of degree p = 2.

The nondimensional Taylor basis functions can be found in [23]. The coefficients
u =

[
u1, u2, . . . , uN(p)

]
of the solution polynomials can be determined through a variational

reconstruction. The cost functions employed in this approach offer flexibility, and the
specific cost function utilized in this article is defined as follows:

ILR =
1

dLR

∫
ΓLR

×
2

∑
p=0

(
wp

∂puL
∂x̃p (dLR)

p − wp
∂puR
∂x̃p (dLR)

p
)2

dΓ, (4)
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where [w0, w1, w2] = [1, 0.44, 0.18] is selected according to [23]. The coefficients of these
polynomials are determined by solving a system of linear equations:

Aiui − ∑
j∈Si ,j ̸=i

Bj
iuj = bi, i = 1, 2, . . . , N, (5)

in which Si denotes the neighbor cells sharing the interfaces with the current cell. The
specific forms of the matrices are as follows:

Ai =

 ∑
j∈Si,j ̸=i

∫
Γij

2

∑
p=0

w2
p

∂P φp,i

∂x̃p
∂p φm,i

∂x̃p (dij)
2p−1dΓ


9×9

,

Bj
i =

[∫
Γij

2

∑
p=0

w2
p

∂p φl,i

∂x̃p
∂p φn,j

∂x̃p (dij)
2p−1dΓ

]
9×9

,

bi =

[
∑

j∈Si ,j ̸=i

1
dij

∫
Γij

w2
0 φl,i(ūj − ūi)dΓ

]
9

.

(6)

The method we utilize to solve this linear system is the symmetric Gauss–Seidel (SGS)
iterative method, as follows:

u(s+1)
i = (Ai)

−1

 ∑
j∈L(i)

Bj
iu

(s+1)
j + ∑

j∈U(i)
Bj

iu
(s)
j − bi

. (7)

To achieve third-order accuracy approximation, a sufficient number of Gauss–Legendre
points are required to evaluate values related to the quadratic polynomials. For convective
flux and diffusive flux in Equation (1), computation over all Gauss–Legendre points on
the interfaces is needed. When solving source terms, evaluation of values at each volume
Gauss–Legendre point is necessary.

Equation (1) is integrated in time according to the following:

Ūn+1 = Ūn + ∆Ū. (8)

For steady-state simulations, such as fixed wings with the ALM and rotors with the
ADM, GMRES with a matrix-free LU-SGS preconditioner method [30] was used to compute
∆Ū. The temporal discretization employed in unsteady simulations is the second-order
dual time-stepping method as presented in [31]. ∆Ū is computed in the pseudo-time-
stepping inner iteration using the following:(

Ω
∆τ

I +
3Ω
2∆t

I −
(

∂R
∂Ū

)(s)
)

∆Ū = Rt

Rt = R(s) − Ω
2∆t

(
3Ū(s) − 2Ūn

+ Ūn−1
)

.

(9)

In the implicit inner iteration step s, the reconstruction iteration in Equation (7) is
resolved once before an inner iteration step that employs the matrix-free LU-SGS approach,
as proposed in [32]. In this article, the maximum of inner iteration steps is set to 20.
The coupled technology makes the convergence of reconstruction and inner iteration
synchronously, which can reduce the computational cost, obviously. It provides a third-
order numerical accuracy, which is consistent with the spatial discretization accuracy used
in this study. For more extensive details regarding the implementation of the third-order
solver, please refer to [23].
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2.2. Advanced Actuator Line/Disk Modeling

Actuator line and actuator disk models were integrated with each of the two solvers
for comparative analysis. In this section, we will first introduce the standard ALM and the
recently developed advanced ALM. As shown in Figure 2, the former applies the volume
force source terms of segmented blade elements to the control volumes using an isotropic
Gaussian projection method, with the projection domain being a spherical shape. In
contrast, the latter employs a linear distribution along the blade span, addressing the issue
of inconsistency between the model and the actual force distribution. This inconsistency
becomes particularly noticeable, especially when the density of force distribution is low at
certain locations along the span, such as at the actuator points.

Figure 2. Projection domain of standard actuator line model in blade (a) and advanced actuator line
model in blade (b). Blade (c) and blade (d) show the blade element section discretization.

For the standard ALM, the volume force density at the center of the control volume
for the mth actuator point (aerodynamic point at 1/4 chord length) on the nth blade can be
represented as follows:

F p(xp) = −∑
n

∑
m

Fn,m(xn,m) · ηn,m. (10)

The projection function is denoted as follows:

ηn,m =
1

ϵ3π3/2 exp[−(d/ϵ)2], rroot ⩽ rp ⩽ rtip. (11)

Here, d = |xp − xN,m| represents the distance between the control volume center and
the actuator point. ϵ is the Gaussian length scale, and the projection function decays to
1% of its maximum value when d = 2.15ϵ. Therefore, the number of control volumes
corresponding to each actuator point is finite, ensuring that the computational cost required
for the ALM and ADM is limited.

The projection function for the advanced ALM can be expressed as follows:

ηn,m =
1− ps

ϵ2π∆b
exp[−(pn/ϵ)2], (12)

where ∆b = |xn,m+1− xn,m| represents the spacing between actuator points, and the distance
from the center of the control volume to the actuator line of the corresponding control point
on the blade can be expressed as follows:

pn =
|(xp − xn,m)× (xp − xroot)|

rn,m − rroot
, rm−1 ⩽ rp ⩽ rm+1. (13)
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Additionally, ps is defined as follows:

ps =
|rp − rn,m|

∆b
, rm−1 ⩽ rp ⩽ rm+1, (14)

where ps ∈ [0, 1]. For the control volume center radial coordinates rp, they must satisfy
rroot ⩽ rp ⩽ rtip . Special considerations need to be taken into account, and ps = 0 for the
root region rroot ⩽ rp ⩽ r1 of the first actuator point m = 1 and tip region rM ⩽ rp ⩽ rtip
of the last actuator point m = M. Compared with the standard actuator line model, the
projection domain of this model follows a cylindrical distribution, and the linear radial
distribution is more reasonable.

To prevent numerical instability caused by insufficient grid resolution or projection
function volume integrals less than the unit at the root and tip of the blades, it is necessary
to normalize Equation (10), denoted as follows:

βnorm
n,m =

1∫
V ηn,mdV

,

F p(xp) = −∑
n

∑
m

βnorm
n,m · Fn,m(xn,m) · ηn,m.

(15)

The calculation of loads on the segmented rotor blades is determined by the following:

Fn,m(xn,m) = (Fx + Fy) ·
NBlades
NLines

. (16)

When NBlades = NLines, it corresponds to the ALM. However, if NLines exceeds NBlades, it
corresponds to the ADM, where the right-hand term introduces a time-averaging effect.
In the case of using the ADM, NLines > 2πR/ϵ is typically chosen to evenly distribute the
time-averaged load over the disk area. Additionally, the calculations of blade element force
in Figure 3 are based on the following:

urel = (Ω · rn,m + usampled · ex) · ex + usampled · ey,

ϕ = − arctan
(

urel · ey

urel · ex

)
, α = θ − ϕ,

L =
1
2

ρ|urel|2CL(α)c∆b,

D =
1
2

ρ|urel|2CD(α)c∆b,

Fy = (L cos ϕ + D sin ϕ) · ey,

Fx = (D cos ϕ− L sin ϕ) · ex.

(17)
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Figure 3. Schematic diagram of a 2D blade element.

For a blade element, c is the local chord length. The lift coefficient CL and drag
coefficient CD of the segmented 2D airfoil can be obtained based on experimental results
and tables generated by the XFLR5 v6.59 software [33], respectively. ex and ey are the
unit vectors of the local coordinate system of blades. urel is evaluated according to the
sampled velocity usampled and rotor motion velocity, which is required for the computation
of parameters such as the angle of attack α.

To yield stable and accurate sampling results, the velocity sampling method involves
the weighted average of the values of cells surrounding the actuator points, utilizing a
projection function denoted as follows:

usampled =
∫

V
βnorm

n,m · ηn,m · updV. (18)

2.3. Improved Tip loss Correction

In [11,19], the authors have shown that the parameter ϵ in the ALM projection function
has an impact on the vortex core scale near the blade tip. While projection with ϵ ⩽ 0.25c can
produce a reasonable vortex core scale, it required a grid size satisfying ϵ ⩾ 4∆grid to reduce
numerical error due to insufficient resolution. Consequently, it is likely to underestimate
the blade tip vortex core scale for relatively coarse grids and overestimate lift coefficients.
We improve the correction of the filtered ALM originally proposed by [18] and extend its
application to rotor aerodynamic calculations utilizing the advanced ALM and ADM. The
improved correction guarantees the accuracy of load calculation in simulations with coarse
grids.

Following the approach described in [18], this article corrects the sampled velocities in
the flow field. Initially, the free stream velocity is obtained by u∞ = urel − un−1

y
(
zi; ϵPRO

i
)
· ey,

removing the influence of the vortex core scale ϵ. The computation of the variable Gn−1
j using

the circulation Γ(zj) and inflow velocity u∞(zj) in the previous time step according to the
following:

Gn−1
j = Γ(zj)u∞(zj) =

1
2

u2
∞(zj)CL(zj)c(zj), j = 1, 2, . . . , M. (19)

The finite difference of ∆G in [18] is computed using the following:

∆Gn−1
0 = Gn−1

0 , ∆Gn−1
M = −Gn−1

M ,

∆Gn−1
j =

1
2

[
Gn−1

j+1 − Gn−1
j−1

]
, j = 2, 3, . . . , M− 1.

(20)
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The original finite difference approach leads the overestimation of lift coefficients
around the blade tip for a rotorcraft. We take the finite differences ∆G at the interfaces
of sections rather than the centers and add a ghost section to keep G zero at both ends of
blades, which effectively mitigates the problem of insufficient downwash velocity in the
tip section correction. The improved correction using the finite difference according to the
following:

Gn−1
0 = 0, Gn−1

M+1 = 0,

∆Gn−1
j = Gn−1

j − Gn−1
j−1 , j = 1, 2, . . . , M + 1.

(21)

In this process, the improved differential approach is used in Figure 4, adding ghost
sections at both ends, where Gn−1

0 = 0 and Gn−1
M+1 = 0. The tip loss correction is employed

to calculate the new downwash velocity components based on ϵPRO
i and ϵOPT

i :

un
y(zi; ϵi) = −

1
u∞(zi)

M+1

∑
j=1

∆Gn−1
j

1
4π(zi − zj−1/2)

(
1− e−(zi−zj−1/2)

2/ϵ2
i

)
. (22)

Figure 4. Schematic diagram of the distribution of G and ∆G on a blade.

Because the solver employs a dual time-stepping inner iteration approach, the correc-
tion can be performed only once to update the downwash velocity during every pseudo
time step. Through calculations, it is found that the corrected velocity computed by the
following:

ũcorrected = urel + ω
[
un−1

y

(
zi; ϵOPT

i

)
− un−1

y

(
zi; ϵPRO

i

)]
· ey

+ (1−ω)
[
un

y

(
zi; ϵOPT

i

)
− un

y

(
zi; ϵPRO

i

)]
· ey

(23)

converges rapidly when ω = 0.9. Since the number of actuator points is small, this method
does not significantly increase the computational cost.

As mentioned in [11,19], the Gaussian length scale needs to satisfy ϵ ≈ 0.25c in
Equation (12) to offer accurate projections of the tip vortex size and the associated down-
wash, resulting in accurate predictions of the tip losses. When the mesh resolution required
to resolve the vortex structure cannot be satisfied, a larger Gaussian length scale ϵ > 0.25c
has to be employed for projection and increase the tip vortex size around the blade tips,
thus underestimating the downwash velocity. This correction can be used to obtain the
desired downwash velocity. ϵPRO = ϵ is the actual Gaussian length scale used for projection
in Equation (12), and ϵOPT = 0.25c is the optimal Gaussian length scale used in tip loss
correction. Furthermore, we attempted to apply this correction method to the ADM, but
ϵPRO as those adopted in the ALM is not suitable for the ADM. The tip vortex cannot
be resolved with the ADM when ϵPRO = ϵOPT , and the correction cannot work in this
situation. In this paper, we used a fixed ϵPRO = c in the correction with the ADM for the
cases of hover flight rotor and forward flight rotor to resolve the problem, and the results
showed the effectiveness of the rule for selecting. This is due to time averaging of the loads
and the unavailability of the tip vortex structure, which requires a larger ϵPRO to represent
the flow structure around blade tips. The limitation of the correction for the ADM is that the
rule for selecting ϵPRO = c lacks sufficient argumentation and requires further validation
to determine its applicability to other rotorcraft problems.
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2.4. Implementation

A flowchart is shown in Figure 5 to illustrate the calculation procedure, and it can be
seen that the ALM/ADM module is easy to embed for CFD solvers. Algorithm 1 mentions
the primary computational process of body force. At the beginning of the computation, a
cylindrical subspace can be defined based on the location of the rotor, to generate a KDTree,
which improves search complexity according to the control volumes in the subspace, which
enhances the computational efficiency of models [8]. Unlike the ALM representing moving
blades, the ADM does not require the further position of actuator points’ updates. During
the correction procedure, ϵPRO = ϵ for the ALM and ϵPRO = c for ADM. Subsequent
numerical experiments demonstrate that this implementation can achieve high parallel
efficiency.

Figure 5. Schematic flowchart of the framework of calculation.

Algorithm 1: Primary computational process of body force

t← t + ∆t;
Rotate actuation lines to new position;
foreach actuator point xn,m do

Search xp in subset domain;
Compute ηn,m(ϵ) and βn,m(ϵ) ;
Sample velocity u from flow field and get urel;

end
Communicate urel between processors;
foreach actuator point xn,m in local processor do

u∞(zn,m)← urel − un−1
y
(
zn,m; ϵPRO

n,m
)
· ey;

Compute Gn−1
n,m = 1

2 u2
∞(zn,m)CL(zn,m)c(zn,m);

end
Communicate Gn−1 between processors;
Compute ∆Gn−1;
foreach actuator point xn,m in local processor do

Compute un
y
(
zn,m; ϵOPT

n,m
)

and un
y
(
zn,m; ϵPRO

n,m
)
;

Correct urel and get ũcorrected;
Compute Fn,m(xn,m) according to ũcorrected;
Project Fn,m(xn,m) to f body;

end
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3. Results and Discussion
3.1. Two-Dimensional Infinite Wing

To investigate the numerical convergence properties of the actuator line model and
to determine the appropriate Gaussian length scale ϵ with respect to the mesh size ∆grid
relative to the blade chord length c, tests were conducted to simulate a two-dimensional
infinite wing using the momentum source according to the following:

f body = −1
2

ρu2
∞cCl

1
ϵ2π

e

(
x2+y2

ϵ2

)
· ey (24)

where u∞ = 0.2 represents the free-stream Mach number, and c = 1 is the chord. The drag
of the wing in the x-direction was not taken into account. We specified Cl = 0.4 to calculate
the lift in the y-direction to exclude the effects of sampling errors. When a momentum
source was added to the flow field, the velocity gradient was high at the center of the
vortex, which was the major source of error in numerical simulations. The computational
domain is shown in Figure 6, and different mesh refinements were performed within a
circular region of radius 3 for the simulation.

Figure 6. Schematic diagram of the two-dimensional infinite wing.

We compared the results of the third-order solver with those of the second-order solver
to compare and analyze their ability to resolve the vortex structure. Consistent with the
lift line method, the induced velocity should be zero at the actuator point location, i.e., the
origin. According to the results in [11], the radius of the vortex core is mainly determined by
ϵ, which is fixed to 0.25c in this test. Through comparing the results with different grid sizes
ϵ/∆grid = {1/2, 1, 2, 4} in Figure 7, we can find that the third-order solver has a stronger
resolving ability for the vortex structure. To observe the difference between the numerical
methods, we draw the plot with the polynomial solution inside the cell instead of just
taking the average value. Compared with the results of the second-order solver relying on
linear reconstruction, the third-order solver relying on the nonlinear reconstruction of the
flow field can obtain convergent solutions when ϵ/∆grid ⩾ 2. With a smaller mesh size, the
third-order solver has better numerical convergence. Considering that the computational
cost will increase rapidly with the same grid density as the order increases, it is inevitable
to reduce the grid density under the limited computational resources, which will not only
weaken the advantage of the high-order method, but also result in the inability to correctly
capture vortex structures in too large a grid scale. Therefore, this paper does not further
increase the order of accuracy, but only adopts third-order accuracy to compare with the
traditional second-order accuracy.
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Figure 7. Induced velocity profiles with different ϵ/∆grid(ϵ = 0.25c) for 2D infinite wing: (a) results
of the second−order solver; (b) results of the third−order solver.

We also compared the errors of the sampled velocity at the actuator point location,
mainly based on the comparison of magnitude and angle of attack. Figure 8 demonstrates
that the error varies with ϵ/∆grid and ϵ/c. The errors in the angle of attack have greater
impacts on the calculation results than those in the velocity magnitude, which are only
within 1%, because the lift coefficients depend on the angle of the sampled velocity in the
following cases. Compared with ϵ/c, ϵ/∆grid had a more significant impact on errors. It is
clear that the velocities obtained by the third-order solver have a smaller error because its
superior vortex resolution allows for a better description of the velocity profiles shown in
Figure 7. When the mesh resolution satisfies ϵ/∆grid ⩾ 2, this solver obtains the desired
sampled velocity at the actuator point location.
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Figure 8. Sampling error for ALM: (a) error of magnitude of velocity for different ϵ/∆grid ∈ [1, 7],
(b) error of attack of angle for different ϵ/∆grid ∈ [1, 7], (c) error of magnitude of velocity for different
ϵ/c ∈ [0.1, 0.7], and (d) error of attack of angle for different ϵ/c ∈ [0.1, 0.7].

3.2. Three-Dimensional Finite Wing
3.2.1. Constant Circulation Rectangular Wing

To investigate the relationship between the actuator line model and the lifting line
theory and validate the improved tip loss correction method proposed in this paper, the
case of a finite-length fixed wing with a fixed circulation distribution was designed. The
rectangular wing has a chord length of c = 0.1 with a specified lift coefficient of CL = 1
and a span of b = 1. The free-stream velocity u∞ = 0.2. A constant circulation distribution
along the span is given by Γ = 0.5u∞CLc.

According to the lifting line theory used in [11], we can obtain a simple theoretical
solution for the induced velocity, denoted as follows:

uy = − Γ
4π

(
b/2 + z

(b/2 + z)2 + r2
c
+

b/2− z
(b/2− z)2 + r2

c

)
(25)

where z is the spanwise coordinate with the wing’s center as the origin point. The vortex
core radius, rc, is typically between 5% and 10% of the chord length c. In this case, we
verify the consistency of the actuator line model with the lifting line approach by varying ϵ.
The downwash angle can be computed by the following:

αdw = − arctan
(

uy

u∞

)
. (26)
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The applied source terms were the following:

f body = −1
2

ρu2
∞cCl

1
ϵ2π

e

(
x2+y2

ϵ2

)
·
(
sin αdwex + cos αdwey

)
. (27)

Figure 9 shows the mesh used in this case, and refinement around the wing with a
spacing of ∆grid = 0.05c was performed. To preserve the numerical stability, ∆b = 2∆grid was
set according to the work in [15]. The horseshoe vortex system of the numerical solution can be
observed in Figure 9. It has been shown through the research in [11] that the velocity profiles
at the wing tip position are more significantly affected by ϵ than at the middle section. As the
previous research practices, ϵ = 0.25c, mentioned in [11], yields results close to rc = 10%c.

Figure 9. Discription of the mesh for 3D finite wing and isosurface of the Q−criterion with Q = 1 of
ALM simulation of constant circulation rectangular wing.

In Figure 10a, we can observe the relationship between the actuator line model and the
lifting line theory by varying ϵ. The results show that the relationship between ϵ and the
radius rc of the tip vortex core can be expressed approximately as rc = 0.4ϵ. In addition, we
fixed ϵ = 0.5c, and the downwash distribution corresponding to the corrected velocity can
still be obtained by using the improved tip loss correction proposed in Section 2.3. It should
be noted that the results in Figure 10a are obtained directly from the flow field, while in
Figure 10b, the downwash results can only be obtained after correction but not directly
from the flow field. The downwash velocity to be corrected is sampled from the flow field,
while the corrected downwash velocity is only used to obtain the correct downwash angle
for the corresponding control point, without directly affecting the flow field. The indirect
effect is that the corrected downwash angle is large, resulting in less lift at that point, which
is reflected in the flow field as a lower downwash velocity compared with the precorrection
flow field. The downwash velocity from the tip correction can only be used to assess the
load at that point and cannot correct the flow field around the tip, which is an unavoidable
limitation of the tip correction method.
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Figure 10. Downwash distribution: (a) results of the flow field along quarter chord length position of
the wing with different ϵ; (b) results of corrected sampled velocity of the actuator line model with the
same ϵ.

3.2.2. Elliptically Loaded Wing

Similar to the previous case of the rectangular wing, this case was used to investigate
the relationship between the actuation line model and the lifting line theory of an elliptically
loaded wing and validate the improved tip loss correction. The computational mesh for
this case is the same as shown in Figure 9, with a free stream Ma = 0.2. According to
analytical solutions for an elliptically loaded wing based on the lifting line theory, a constant
downwash velocity along the span is represented by the following:

αdw = − Γ0

2bu∞
,

Γ0 =
1
2

u∞c0CL.
(28)

In this work, c0 = 1/8, the chord length distribution is as follows:

c = c0

√
1−

(
2z
b

)2
, (29)

where the wingspan b = 1, and the lift coefficient of the airfoil is CL = 2πα. The downwash
angle can be computed by the following:

αdw = − arctan
(

uy

u∞

)
. (30)

To obtain the theoretical solution, an angle of attack α = 1
2π , and the angle of attack of

the incoming flow α∞ = 1
32 + 1

2π . Thus, a fixed lift coefficient CL = 1 can be achieved.
In this case, by comparing the results of both ϵ/c = 0.25 and ϵ/c0 = 0.25 in

Figure 11a, we can see that the chord-based ϵ gave the result closer to the theoretical so-
lution, which is consistent with the findings in [11]. However, the chord length narrows
to zero near the tip, and to preserve the numerical stability, ϵmin = ∆grid was limited. The
challenge will be more serious when the mesh is coarser. ϵ/c0 = 0.25 is more friendly to
coarse meshes, but it underestimated downwash around tips. We alleviated this problem
by employing tip loss correction; i.e., we used a constant ϵPRO = 0.25c0 for the projec-
tion of body force and corrected the downwash distribution with ϵOPT = 0.25c to avoid
overestimating the lift near the tip, as shown in Figure 11b. Moreover, the improved tip
loss correction presented in this article yielded a more continuous result when contrasted
with the original correction in [18], which still underestimated the downwash velocity for
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sections at the tip. On the other hand, ∆b = 2∆grid also contributed to the error near the
tips. Because of the elliptic distribution of chord lengths, the chord length around the wing
tips shrinks to a tiny value according to Equation (29), and it was clear that, in the ends of
the wing, ∆b≫ c, even with the tip loss correction, still did not solve the problem.
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Figure 11. Downwash distribution: (a) results of the flow field along quarter chord length position of the
wing with different ϵ; (b) results of corrected sampled velocity of the actuator line model with the same ϵ.

3.3. Hover Flight Rotor

In this paper, numerical simulations of blade loads and tip vortices for a Caradonna–Tung
rotor [34] were carried out for validation. According to the experiment whose device is shown
in Figure 12, the rotor maximum radius R = 1.143 m, and the aspect ratio AR = 6 with a
chord length of c = 0.191 m. The root cutting was 10%R. The rotor had two blades with a
NACA0012 airfoil. In the simulations, the tip Mach number Matip = 0.439, and the Reynolds
number Re = 1.92× 106. The simulations were performed for the collective pitch 8◦.

Figure 12. Schematic diagram of Caradonna–Tung rotor experimental device [34].

Two sets of hybrid meshes with a different refinement shown in Figure 13 were used
for this simulation. The cells within the cylindrical computational domain with a radius of
0.7 R are prisms, and the other domain consists of hexahedral cells. Using the field swept by
the blade tips as a reference, the grid sizes in the axial, radial, and circumferential directions
are shown in Table 1. The distances between the upper, lower, and radial boundaries from
the rotor center were 3 R, 5 R, and 4 R. The boundary conditions of the computational
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domain were set to nonreflective boundary conditions, with the velocity obtained from
internal cells.

(a) (b)

Figure 13. The meshes used for the hover flight rotor simulation: (a) coarse mesh; (b) fine mesh.

Table 1. Grid sizes and cell numbers of the two sets of meshes.

∆grid,axi ∆grid,rad ∆grid,cir Hexa Prism Total

Coarse mesh 1.575% R 1.575% R 3.15% R 1,000,692 969,570 1,970,262

Fine mesh 1.05%R 1.05%R 2.1%R 2,928,744 2,993,172 5,921,916

To validate the ADM and ALM, two sets of tests were performed. The first set of tests
was used to compare different ADMs to simulate the hover flight rotor with the coarse
mesh, and the second set of tests was the calculations using the ALM with coarse and fine
meshes, respectively. According to the kinetic energy conservation approach in [35] and the
experimental results, the radius of a tip vortex core is 0.02 m for CT = 0.0046. Based on
the relationship between ϵ and rc obtained in the previous section, the optimal Gaussian
length scale ϵ ≈ 0.25 c. For all the tests, the Gaussian length scale ϵ = 0.25 c and the actuator
points spacing ∆b = 0.05 R was set. For the ADM cases, NLines = 70 was set. As a result of
time-averaging the rotor, the steady-state time-stepping method can be used to accelerate
convergence, and the convergence history of the rotor thrust coefficient is shown in Figure 14a.
We used a 64-core processor, and the computational time required was only about 0.6 h for
1000 iteration steps. On the other hand, the calculations were carried out for 20 full revolutions,
and the convergence history of the rotor thrust coefficient is shown in Figure 14b. In order
to prevent numerical instability, the time step sizes need to be small enough to ensure that
the blade tips move no more than one cell with adjacent time steps. As a result, the physical
time steps were set equivalent to ∆ψ = 1.8◦ for the coarse mesh and ∆ψ = 1.25◦ for the fine
mesh with 20 inner iterations.
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Figure 14. Thrust coefficient convergence history of the hover flight rotor simulation: (a) results of
ADM3; (b) results of ALM.

As shown in Table 2, the ADM without tip loss correction led to an overestimation
of the rotor thrust coefficient. Since the ADM time-averaged the blade loads, the vortex
strength near the blade tips was insufficient, thus underestimating the downwash velocity
and overestimating the lift coefficient near the tips. Although the calculated rotor thrust
coefficient matching the experimental value can be obtained with both of the two types
of correction, as shown in Figure 15a, the sectional life coefficients were unstable near the
blade tips with the original correction presented in [18], and the improved correction gave
the desired results. ϵPRO = c and ϵOPT = 0.25c were adopted in the procedure of both
of the tip loss corrections. On the other hand, the tip loss correction is not necessary for
the ALM because the tip vortex can be captured efficiently with optimal ϵ as proposed
in [13], and the results in Figure 10 proved the same. The results of the ALM in Table 2
and Figure 15b illustrate that the influence of the blade tip vortex was obtained and the tip
loads were predicted correctly, especially with the fine mesh.

Table 2. Comparison between experimental and calculation results.

Experiment
ADM

without
Correction

ADM with
Origin

Correction

ADM with
Improved
Correction

ALM with
Coarse
Mesh

ALM with
Fine Mesh

CT 0.0046 0.0053 0.00457 0.00463 0.0048 0.00465
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Figure 15. Sectional life coefficient distributions of the blade: (a) ADM results; (b) ALM results.
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In addition, calculations with the ALM of the second-order solver were carried out.
Figure 16 shows the vorticity contours at the isosurface Q = 0.05, and Figure 17 shows
the vorticity contours perpendicular to the rotor disk plane. The distinct vortex structures
captured by the second-order solver only develops about a 90◦ vortex age angle with the
coarse mesh and about a 150◦ vortex age angle with the fine mesh. The large numerical
dissipation discouraged the observation of evolution progress of the expected tip vortex
structures. By contrast, the ages of a vortex evolution with the third-order solver shown in
Figures 18 and 19 were much longer than those of the second-order counterpart.

(a) (b)

Figure 16. Vorticity contours at isosurface Q = 0.05 of the second-order solver: (a) result with the
coarse mesh; (b) result with the fine mesh.

(a) (b)

Figure 17. Vorticity contours of the second-order solver: (a) result with the coarse mesh; (b) result
with the fine mesh.
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(a) (b)

Figure 18. Vorticity contours at isosurface Q = 0.05 of the third-order solver: (a) result with the
coarse mesh; (b) result with the fine mesh.

(a) (b)

Figure 19. Vorticity contours of the third-order solver: (a) result with the coarse mesh; (b) result with
the fine mesh.

Figure 20 shows comparisons of the ALM results of blade tip vortex evolution in
vertical and radial directions, where z/R and r/R represent the vertical position and the
radial position. The full CFD results of the simulation with the RANS method based on a
fifth-order WENO–Roe scheme [36] were adopted as a reference for comparison. It can be
found that the ALM with the third-order solver (ALM3), due to lower numerical dissipation,
predicts a better agreement with the experimental results for the vortex age up to 360◦.
However, the ALM with the second-order solver (ALM2) cannot predict expected vortex
core positions, and the errors mainly occur when the vortex angle exceeds 180◦. With the
increase in vortex age, the vortex strength decreases. The decrease in vortex strength is
caused by both physical and numerical dissipation, and the numerical dissipation plays
a leading role in the simulation. Compared with the error of the radial position, a larger
error can be seen in the results of the vertical position.
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Figure 20. Comparisons of positions of the vortex core: (a) radial position; (b) axial position.

Comparisons of velocity profiles at the vortex age of 90◦ and 180◦ are given in Figure 21.
It is clearly seen that the velocity distribution predicted by ALM3 is more reasonable using
the full CFD results as a reference. With both of the coarse and fine meshes, ALM3 obtained
a velocity profile much closer to the full CFD result compared with ALM2. ALM2 predicted
smaller velocity peaks and a larger vortex core radius, which meant its inability to capture
enough vortex strength, and refinement of a mesh cannot improve this problem effectively.
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Figure 21. Comparisons of velocity profiles: (a) velocity profiles at vortex age of 90◦; (b) velocity
profiles at vortex age of 180◦.

Table 3 shows the computational cost of ALM simulation. The core hours of simulation
based on the third-order solver were about four times that of the second-order solver
for the same mesh. The differentiation of reconstruction and flux calculations were the
main reasons for the higher computation. However, if we consider the previous result
comparisons together, ALM3 can still give better results with a coarse mesh, especially for
focusing on the blade tip vortex evolution. Therefore, adopting the third-order solver is a
more efficient way to capture blade tip vertices compared with the traditional second-order
solver using mesh refinement.
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Table 3. Computational cost of the ALM simulation for the hover flight rotor.

Time Step
Size (◦) CPU Cores

Computational
Time per

Revolution (h)

Core Hours
per

Revolution (h)

ALM2 with coarse mesh 1.8 128 0.06 7.78

ALM3 with coarse mesh 1.8 128 0.22 28.22

ALM2 with fine mesh 1.25 320 0.11 34.84

ALM3 with fine mesh 1.25 320 0.39 125.5

3.4. Forward Flight Rotor

In the rotor–fuselage aerodynamic interaction experiment conducted at the Georgia
Institute of Technology (GIT) [37], the position and tilt angle of the rotor are described in
the schematic diagram of the experimental model shown in Figure 22. The rotor consisted
of two rectangular blades with a radius R = 0.4572 m, and the root cutting was 2.7% R.
The hub was removed to simplify the model, and the simulation was performed for the
collective pitch 10◦. The blades used a NACA0015 airfoil, and the chord length c = 0.086 m.
The cylinder diameter of the fuselage was 0.134 m. The tip Mach number of the rotor was
0.29, and the free stream Ma∞ = 0.029 with the advance ratio µ = 0.1. The simulations
were performed using two sets of meshes with different refinements, as shown in Figure 23,
and the mesh information is shown in Table 4. The slip boundary conditions were set to
both the wall of the tunnel and the fuselage.

Figure 22. Schematic diagram of the GIT experimental device [37].

(a) (b)

Figure 23. The meshes used for forward flight rotor: (a) coarse mesh; (b) fine mesh.
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Table 4. Grid sizes and cell numbers of the forward flight rotor simulation.

∆grid,disk ∆grid,downwash ∆grid,farfield Tetra

Coarse mesh 2.187% R 3.28% R 21.87% R 3,065,054

Fine mesh 1.465% R 2.187% R 21.87% R 8,144,171

Cases were carried out with the coarse mesh to validate the ADM and ALM. The
Gaussian length scale ϵ = 0.25 c and actuator points spacing ∆b = 0.05 R were set for all
the cases. For the ADM cases, NLines = 100 was set. As a result of time-averaging the
rotor, the steady-state time-stepping method can be used to accelerate convergence. The
convergence history of the rotor thrust coefficient is shown in Figure 24. The CT of the
ADM with improved correction converged to 0.009, which agreed with the experimental
result of 0.0091. However, the result of the ADM without correction was 0.0105, which was
larger than the experimental result. The calculations of the ALM without correction were
carried out for 15 full revolutions, and the convergence history of the rotor thrust coefficient
is shown in Figure 24b. The physical time steps were set equivalent to ∆ψ = 1.◦ for the
coarse mesh and ∆ψ = 0.8◦ for the fine mesh with 20 inner iterations. The time-averaged
CT of the ALM was 0.0095, which was slightly larger than the experimental value.
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Figure 24. Thrust coefficient convergence history of the forward flight rotor simulation: (a) ADM
history; (b) ALM history.

Comparisons of the time-averaged downwash velocity of the last three revolutions
at different azimuth angles are shown in Figure 25. w is the velocity component directed
normal to the rotor disk, and it is positive along the outflow direction. U∞ is the free-stream
velocity. Similar to the situation in hover flight rotor simulation, both the ADM with
improved correction and the ALM can obtain solutions agreeing with the experimental
result, while the ADM without correction overestimated the downwash velocity.
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Figure 25. Time-averaged downwash velocity along radial lines located 12.7 mm below the rotor
disk: (a) 112.5◦ azimuth angle; (b) 277.5◦ azimuth angle.

Figure 26 shows the comparisons of the time-averaged pressure coefficient of the last
three revolutions on the top side (ϕ = 0◦) and retreating side (ϕ = 270◦) of the fuselage.
The full CFD results are gained from [38]. Both of the ADM and ALM results agreed well
with the experimental data in most of the regions. The primary error was produced on the
top surface of the fuselage near the nose where the rotor disk was very close to the fuselage.
The tiny distance between the blades and the fuselage led to local complex flow structures,
which cannot be described by the ALM and ADM.
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Figure 26. Comparisons of time-averaged pressure coefficient on the fuselage: (a) top side; (b)
retreating side.

In addition, similar to the comparison in the hover flight rotor cases, calculations of
the ALM with the second-order solver (ALM2) and the ALM with the third-order solver
(ALM3) were carried out on both coarse and fine meshes. It can be seen form the vorticity
contours at the isosurface Q = 0.2 in Figure 27 and the vorticity contours in Figure 28
that the vortex strength decreases fast in the results provided by ALM2 due to its larger
numerical dissipation. By contrast, vortex structures are presented clearly with ALM3
for both the coarse and fine meshes in Figures 29 and 30. The formation of the tip vortex
and the position of the tip vortex as it moves back to impact the fuselage can be observed
in the results of ALM3. The large-size wing tip vortex structure similar to a fixed wing
produced by the rotor can also be clearly captured. Under the influence of free stream and
downwash flows, the fuselage will produce a lateral velocity, and it makes the horseshoe
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system for greater spacing at the rear, especially at the advancing side. The features can
also be observed in the results of [20]. Due to the asymmetric flow structures of the rotor
blade relative to the free steam, the vortex structures on both sides of the fuselage also
show obvious asymmetric characteristics, which reflects that the downwash flow on the
retreating side is smaller than that on the advancing side.

(a)

(b)

Figure 27. Vorticity contours at isosurface Q = 0.2 of the second-order solver: (a) result with the
coarse mesh; (b) result with the fine mesh.

(a)

(b)

Figure 28. Instantaneous vorticity contours at the symmetric plane of ALM2: (a) result with the
coarse mesh; (b) result with the fine mesh.
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(a)

(b)

Figure 29. Vorticity contours at isosurface Q = 0.2 of the third-order solver: (a) result with the coarse
mesh; (b) result with the fine mesh.

(a)

(b)

Figure 30. Instantaneous vorticity contours at the symmetric plane of ALM3: (a) result with the
coarse mesh; (b) result with the fine mesh.

Table 5 shows the computational cost of ALM simulation. In the cases, the third-order
solver provided a significant improvement in performance with about 2.4 times the com-
putational cost, compared with the second-order solver. To demonstrate the scalability of
ALM3, we performed a scaling test running on the high-performance computing platform.
Each computing node in the cluster comprises two Intel Xeon Gold 6240 processors, with
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a maximum of 32 cores per node and a maximum test core count of 512. Although the
computational cost of the ALM is not equal across processors, Figure 31 illustrates the
results with a parallel efficiency of 92% up to 15907 cells per core, which means that the
ALM does not significantly reduce parallel efficiency.

Table 5. Computational cost of the ALM simulation for the forward flight rotor.

Time Step
Size (◦) CPU Cores

Computational
Time per

Revolution (h)

Core Hours
per

Revolution (h)

ALM2 with coarse mesh 1.2 128 0.142 18.13

ALM3 with coarse mesh 1.2 128 0.35 44.8

ALM2 with fine mesh 0.8 512 0.175 89.6

ALM3 with fine mesh 0.8 512 0.417 213.6
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Figure 31. Parallel scaling efficiency of the third-order solver with the ALM on the fine mesh.

4. Conclusions

In this work, we developed a combination of the advanced ALM/ADM and a third-order
unstructured finite volume solver for helicopter rotors. The solver relies on implicit variational
reconstruction to achieve higher-order accuracy. Unlike other higher-order solvers that require
a large stencil for reconstruction, this solver only needs information from direct neighboring
cells due to its compactness. Combined with the ALM/ADM for the simulation of rotors, there
is no need to model a real geometric and dynamic grid, which is computationally expensive
to update at each time step. The comparison of the results of the infinite wingspan tests
shows that the third-order solver has better numerical convergence and smaller errors than
the second-order solver for induced velocity. With the results of the fixed-wing cases, we
discuss the relationship between the ALM and the lifting line theory, and validate that the
downwash velocity at the wing tips can be corrected by the improved tip loss correction to
obtain the theoretical solution. In the cases of the hover flight rotor and forward flight rotor,
we validate the ADM and ALM, and found that the tip loss correction can help the ADM
to obtain the desired downwash velocity and load around the tips through the calculation
results. The performance of the third-order solver is also compared with the second-order
solver on meshes with different refinements. The comparisons show that, for capturing vortex
structures, it is more efficient to use the third-order solver compared with the second-order
solver with mesh refinement. The results also demonstrate that the solver can be used on
unstructured meshes to have high parallel efficiency and excellent scalability. Therefore, the
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method assists researchers in calculating blade loads and rotor-induced downwash flow with
a relatively low computational cost for rotorcraft aerodynamics.
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Abbreviations
The following abbreviations are used in this manuscript:

ALM actuator line model
ADM actuator disk model
RANS Reynolds-averaged Navier–Stokes
SA Spalart–Allmaras
SGS symmetric Gauss–Seidel
Re Reynolds number
Ma Mach number
f body body force applied on control volumes
Fn,m blade force of the mth section of the nth blade
ηn,m projection weight of blade force of the mth section of the nth blade
ϵ Gaussian length scale
ϵPRO Gaussian length scale for projection
ϵOPT optimal Gaussian length scale
∆grid grid size
∆b spacing between actuator points
xp coordinate of control volume center
xn,m coordinate of actuator point of the mth section of the nth blade
xroot coordinate of blade root
xtip coordinate of blade tip
rp radial coordinate of control volume center
rn,m radial coordinate of actuator point of the mth section of the nth blade
rroot radial coordinate of blade root
rtip radial coordinate of blade tip
pn distance to the actuator line
ps radial distance over spacing between actuator points
βnorm

n,m volumetric normalization factor of the mth section of the nth blade
CL blade sectional lift coefficient
CD blade sectional drag coefficient
NBlades number of blades
NLines number of actuator lines
c local chord
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α relative angle of attack of a blade section
urel relative velocity
usampled sampled velocity
ũcorrected corrected velocity
Γ circulation
CT rotor thrust coefficient
µ advance ratio
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