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Abstract: This article proposes a near-optimal control strategy based on reinforcement learning, which
is applied to the six-degree-of-freedom (6-DoF) attitude control of dual-control aircraft. In order to
solve the problem that the existing reinforcement learning is difficult to apply to the high-dimensional
multiple-input multiple-output (MIMO) systems, the Long Short-Term Memory (LSTM) neural
network is introduced to replace the polynomial network in the adaptive dynamic programming
(ADP) technique. Meanwhile, based on the Lyapunov method, a novel online adaptive updating
law of LSTM neural network weights is given, and the stability of the system is verified. In the
simulation process, the algorithm proposed in this article is applied to the six-degree-of-freedom
attitude control problem of dual-control aircraft with system uncertainty. The simulation results show
that the algorithm can achieve near-optimal control.

Keywords: reinforcement learning; near-optimal control; long short-term memory neural network;
online training; dual-control nonlinear system; six-degree-of-freedom aircraft attitude control

1. Introduction

Aircraft attitude control is an important part of the design of aircraft autopilot. With
the increase in aircraft flying altitude and speed, pure aerodynamic control has been unable
to meet the tracking requirements of attitude control commands. Therefore, some scholars
have proposed a dual-control strategy of direct force and aerodynamic force. When the
aerodynamic force cannot meet the required overload, direct force is provided by the
reaction jet to assist the aircraft in establishing the required attitude and improve system
dynamic response performance [1–6].

In general, the aerodynamic force is generated by the attitude angle and tail fins of
the aircraft, and the direct force is generated by the reaction jet. Due to the limitations of
aircraft layout, the volume of the attitude control engine is generally small, and the fuel
carried is also limited (the disposable solid fuel rocket is usually used). During the flight
process of the aircraft, it is always accompanied by attitude adjustment. How to reduce
the fuel consumption of the attitude control engine is the key problem in the design of the
controller. Once the fuel is exhausted in advance, the dynamic response of the aircraft will
decline, and even the controller will diverge. That is to say, how to ensure the optimality of
control input is a key point of aircraft attitude control.

Since the optimal control theory was proposed in the 1950s, it has been widely used
in the field of aircraft control. For linear systems, the most common method is to design a
quadratic cost function and solve the linear Riccati equation to obtain the optimal control
law. However, for nonlinear systems, solving the nonlinear partial differential Hamilton–
Jacobi–Bellman (HJB) equation is a very complex problem, especially when considering
external interference and system uncertainty, which make it more difficult to solve the
equation and limit the practical application of the optimal control theory to a certain extent.
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With the development of neural network techniques, reinforcement learning is a
recently emerging near-optimal control method. Reinforcement learning algorithms are
mainly divided into model-dependent and model-independent. Adaptive dynamic pro-
gramming (ADP) is widely used as a model-based reinforcement learning algorithm. This
method was first proposed by Werbos [7]. Its basic logic is to use a neural network to
approximate the optimal cost function, so as to avoid the “disaster of dimensionality”
problem in dynamic programming calculation and provide a convenient and effective
solution for the optimal control problem of high-dimensional nonlinear systems. This
method combines modern control theory with an intelligent control algorithm, which is
not a complete “black box” strategy, ensuring the credibility of the algorithm. Consid-
ering that the offline iterative ADP algorithm has difficulty in ensuring stability when
the system structure changes or there is external interference, the online iterative ADP
algorithm is gradually recognized by scholars and has been widely developed and ap-
plied [8–12]. Pang [13] used the ADP algorithm to solve the optimal control problem of
continuous-time linear periodic systems. Rizvi [14] used the ADP algorithm to solve linear
zero-sum differential game problems, obtained complete system measurement values by
introducing an observer, and proposed two ADP algorithms, namely the policy iteration
and value iteration algorithms. For linear time-varying systems, Xie [15] proposed an ADP
algorithm that introduced a virtual system to replace the original system, thus avoiding the
integration problem in iterative operation. In the article [16], Jia designed a data-driven
ADP algorithm to suppress the Pogo vibration of liquid rockets. Nie [17] designed an ADP
algorithm based on a model-free single-network adaptive critic method for non-affine sys-
tems such as solid-rocket-powered vehicles, which can achieve optimal control of trajectory
tracking for solid-rocket-powered vehicles. In the article [18], Xue designed a novel integral
ADP scheme for input-saturated continuous-time nonlinear systems, and through event-
triggered control law, the computational burden and communication cost were reduced. In
the articles [19,20], the ADP scheme was applied to aircraft guidance law design. However,
in the existing ADP algorithm, how to deal with the MIMO system is a problem to be
solved. In the articles [21–26], the ADP technique was applied to the application control
system, such as attitude control of hypersonic aircraft [21], satellite control allocation [22],
multi-target cooperative control [23], formation of quadrotor UAVs [24], attitude control of
morphing aircraft [25], and air-breathing hypersonic vehicle tracking control [26]. In these
articles, although the processing system was a high-dimensional system, without exception,
they all used a single control input, that is, a single-input multiple-output (SIMO) system.
At present, the ADP algorithm for the MIMO system rarely appears. In the process of the
author’s reproduction of the existing ADP algorithm, the MIMO system will cause the
polynomial neural network to easily fall into saturation, and the convergence speed is very
slow, even unable to converge. In this context, how to improve the network depth is an
important problem to be solved to promote the application of the ADP algorithm.

To solve this problem, some scholars proposed to use other more complex neural
networks instead of polynomial neural networks to improve the fitting ability of the ADP
algorithm, such as RBF neural networks. In the article [27], Zhang designed an ADP
algorithm based on a sliding mode surface for nonlinear switched systems. The algorithm
uses the integral sliding mode term to combat the disturbance of the system and ensure the
stability of the system during the switching process and uses the ADP algorithm to ensure
the optimality of the control input. In the ADP algorithm, the RBF neural network is used
instead of the polynomial network to realize the optimal control of the MIMO-switched
system. The simulation process uses a dual-inverted pendulum system instead of the actual
application system.

In fact, there is no essential difference between the chained neural network and the
polynomial neural network, but the activation function is replaced, so the fitting ability of
the network is slightly increased. In the existing article, the ADP algorithm based on the
chained neural network has not been applied to the actual MIMO system. Considering the
shortcomings of chained neural networks, this paper introduces a kind of recurrent network



Aerospace 2024, 11, 281 3 of 27

with gating units, namely the LSTM neural network [28–30] instead of the polynomial
network. As a complex network, the LSTM neural network has a strong fitting ability, which
can effectively solve the problem of insufficient fitting ability of multinomial networks. An
additional term is introduced into the optimal control law to ensure the boundedness of
the closed-loop system.

When the neural network is replaced, the following problem is how to design the
weight update law. In the existing ADP algorithm, the design method of weight update law
is to take the value of the Hamilton function as the error and perform a partial derivative
operation on the network weights, respectively, so as to obtain the gradient of weight
decreasing along the error, and then obtain the update law of each weight of the network.
This method is intuitive and effective, but when the complexity of the network increases,
the calculation of the gradient becomes very complex, resulting in the gradient descent
method no longer being applicable. At this time, a new design method of network weight
update law is needed to replace the gradient descent method.

In this paper, an adaptive dynamic programming algorithm based on the LSTM neural
network (ADP-LSTM) is proposed to solve the optimal 6-DoF attitude control problem of
dual-control aircraft. The main contributions of this paper are as follows:

(1) A reinforcement learning near-optimal control method based on the LSTM neural
network is proposed, which is applied to the 6-DoF attitude control of dual-control
aircraft. Different from the existing algorithms, this algorithm does not need to
decouple the nonlinear aircraft attitude dynamics model, and retains the internal
characteristics of the system as much as possible. The algorithm can effectively solve
the optimal control problem of the MIMO nonlinear control system.

(2) Based on the nonlinear optimal control theory, an additional term based on output
feedback is introduced to ensure that the closed-loop system with disturbance is
bounded and converges in the small neighborhood of the control command.

(3) Based on the Lyapunov method, the online adaptive updating law of LSTM neural
network weights is given. All the updating laws are analytical, which avoids the
excessive burden of system operation caused by large-scale real-time operation and
proves the stability of the system.

(4) In the simulation analysis, it is verified that the algorithm can effectively solve the
optimal 6-DoF attitude control problem of dual-control aircraft.

The rest of this paper is arranged as follows: In the Section 2, the 6-DoF attitude
dynamics model of dual-control aircraft is established. In the Section 3, based on the
nonlinear optimal control theory, the nonlinear partial differential HJB equation is designed,
and the optimal controller is designed. In the Section 4, the design method of a near-optimal
controller based on the ADP-LSTM technique is given, the novel online update law of LSTM
neural network weights is designed based on the Lyapunov method, and the stability of the
system is proved. In the Section 5, the ADP-LSTM is applied to the 6-DoF attitude control
problem of dual-control aircraft, and the simulation process is analyzed. The Section 6 is
the conclusion.

2. Attitude Dynamics Model of Dual-Control Aircraft

As shown in Figure 1, dual-control aircraft’s pitch and yaw channels have two control
inputs, i.e., tail fins and reaction jets. Since the direct force is perpendicular to the axis
of the aircraft, it will not affect the rolling channel, so there is only one control input in
the roll channel, i.e., tail fins. Among them, the aircraft has four tail fins in a cross layout.
Two vertical fins provide δy, two horizontal fins provide δz, and δx is generated by the
differential between horizontal fins and vertical fins.
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Figure 1. Dual-control aircraft.

The missile body coordinate system ox1y1z1 and the missile velocity coordinate sys-
tem ox3y3z3 are defined in Figure 1. The axis ox1 is the longitudinal axis of the missile
and the axis ox3 is along V, the velocity of the missile. The axis oy1 is in the plane of
symmetry of the missile. The relationship between the two coordinate systems is de-
termined by two angles, i.e., the angle of attack α and the sideslip angle β. Let ωz de-
note the pitch rotational rate. We define the aerodynamic parameters in the elevation
loop of the dual-control system as a1 = −Mωz

z /Jz, a2(α) = −Mα
z (α)/Jz, a3 = −Mδz

z /Jz,
a4 = Yα/(mV), a5 = Yδz /(mV), a6 = −(Jx − Jy)/Jz, b1 = −M

ωy
y /Jy, b2 = −Mβ

y /Jy,

b3 = −M
δy
y /Jy, b4 = −Zβ/(mV), b5 = −Zδy /(mV), b6 = −(Jz − Jx)/Jy, c1 = −Mωx

x /Jx,
c3 = −Mδx

x /Jx, ky = 1/(mV), kz = −1/(mV), ly = l/Jy, lz = −l/Jz.
Where Mωz

z is the partial derivative of the pitching moment Mz with respect to the
pitch rate ωz, Mα

z is the partial derivative of the pitching moment Mz with respect to the
angle of attack α, Mδz

z is the partial derivative of the pitching moment Mz with respect to
the rudder deflection angle δz, M

ωy
y is the partial derivative of the yaw moment My with

respect to the yaw rate ωy, Mβ
y is the partial derivative of the yaw moment My with respect

to the sideslip angle β, M
δy
y is the partial derivative of the yaw moment My with respect to

the rudder deflection angle δy, Mωx
x is the partial derivative of the roll moment Mx with

respect to the roll rate ωx, Mδx
x is the partial derivative of the roll moment Mx with respect

to the rudder deflection angle δx, Jx, Jy and Jz are the component of moment of inertia on
axis ox1, oy1 and oz1 respectively, and l is the distance from the point of the lateral thrust to
the mass center of the missile.
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Considering entering the terminal guidance stage, the main engine of the aircraft is
shut down, the aircraft mass and velocity are constant, and the attitude dynamics model of
the dual-control aircraft is established through the above aerodynamic parameters.

.
α = ωz − ωxβ − a4α − a5δz − kyFTy (1)
.
β = ωy + ωxα − b4β − b5δy − kzFTz (2)

.
ωx = −c1ωx − c3δx (3)

.
ωy = −b1ωy − b2β − b3δy − b6ωzωx − lyFTz (4)
.

ωz = −a1ωz − a2α − a3δz − a6ωxωy − lzFTy (5)

The external forces on the missile are gravity, aerodynamic force, and direct force, so
the missile overload dynamic model of the pitch channel can be written as

ny =
V
g

a4α +
V
g

a5δz +
V
g

kyFz (6)

The derivative of Equation (6) is

.
ny =

V
g

a4
.
α +

V
g

a5
.
δz +

V
g

ky
.
Fz (7)

By substituting Equations (1) and (3) into Equation (7), we can obtain

.
ny =

V
g

a4(ωz − ωxβ − a4α − a5δz − kyFTy) +
V
g

a5
.
δz +

V
g

ky
.
Fz (8)

With further simplification, we obtain

.
ny =

V
g

a4ωz −
V
g

a4β − a4

(
V
g

a4α +
V
g

a5δz +
V
g

kyFz

)
+

V
g

a5
.
δz +

V
g

ky
.
Fz (9)

.
ny =

V
g

a4ωz −
V
g

a4ωxβ − a4ny +
V
g

a5
.
δz +

V
g

ky
.
Fz (10)

The dynamic response of the controller actuator is considered as the inertial system, i.e.,

.
δz = − 1

τ1
δz +

1
τ1

δzc (11)

.
Fz = − 1

τ2
Fz +

1
τ2

Fzc (12)

where τ1 and τ2 are the mechanical constants of the actuator, respectively.
By substituting Equation (6) into Equation (5), we obtain

.
ωz = −a1ωz − a2

(
g

Va4
ny − a5

a4
δz −

ky
a4

Fz

)
− a6ωxωy − a3δz − lzFz

= −a1ωz − a2g
Va4

ny +
a2a5
a4

δz +
a2ky
a4

Fz − a6ωxωy − a3δz − lzFz

= −a1ωz − a2g
Va4

ny − a6ωxωy +
(

a2a5
a4

− a3

)
δz +

(
a2ky
a4

− lz
)

Fz

(13)

Similarly, we can obtain the dynamic model of the yaw channel as

.
nz =

V
g

b4ωy −
V
g

b4ωxα − b4nz +
V
g

b5
.
δy +

V
g

kz
.
Fy (14)

.
ωy = −b1ωy −

b2g
Vb4

nz − b6ωxωz +

(
b2b5

b4
− b3

)
δy +

(
b2kz

b4
− ly

)
Fy (15)
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The attitude dynamics model of rolling channel considering three-channel coupling is

.
γ = ωx − tan ϑ

(
ωy cos γ − ωz sin γ

)
(16)

.
ωx = −c1ωx − c3δx (17)

Finally, the aircraft attitude dynamics model is obtained as

.
X =



ωx − tan ϑ
(
ωy cos γ − ωz sin γ

)
−c1ωx − c3δx

−b1ωy − b2g
Vb4

nz − b6ωxωz +
(

b2b5
b4

− b3

)
δy +

(
b2kz
b4

− ly
)

Fy

−a1ωz − a2g
Va4

ny − a6ωxωy +
(

a2a5
a4

− a3

)
δz +

(
a2ky
a4

− lz
)

Fz

V
g a4ωz − V

g a4ωxβ − a4ny +
V
g a5

(
− 1

τ1
δz +

1
τ1

δzc

)
+ V

g ky

(
− 1

τ2
Fz +

1
τ2

Fzc

)
V
g b4ωy − V

g b4ωxα − b4nz +
V
g b5

(
− 1

τ1
δy +

1
τ1

δyc

)
+ V

g kz

(
− 1

τ2
Fy +

1
τ2

Fyc

)
− 1

τ1
δx +

1
τ1

δxc

− 1
τ1

δy +
1
τ1

δyc

− 1
τ1

δz +
1
τ1

δzc

− 1
τ2

Fz +
1
τ2

Fzc

− 1
τ2

Fy +
1
τ2

Fyc



(18)

We define X =
[

γ ωx ωy ωz ny nz δx δy δz Fz Fy
]T as the state vec-

tor, where u =
[
δxc δyc δzc Fzc Fyc

]T is the control vector, then Equation (18) can be
written as the following state space model:

.
X = f(X) + g(X)u + d (19)

where

f(X) =



ωx − tan ϑ
(
ωy cos γ − ωz sin γ

)
−c1ωx − c2β − c3δx

−b1ωy − b2g
Vb4

nz − b6ωxωz +
(

b2b5
b4

− b3

)
δy +

(
b2kz
b4

− ly
)

Fy

−a1ωz − a2g
Va4

ny − a6ωxωy +
(

a2a5
a4

− a3

)
δz +

(
a2ky
a4

− lz
)

Fz
V
g a4ωz − V

g a4ωxβ − a4ny − V
gτ1

a5δz − V
gτ2

kyFz
V
g b4ωy − V

g b4ωxα − b4nz − V
gτ1

b5δy − V
gτ2

kzFy

− 1
τ1

δx

− 1
τ1

δy

− 1
τ1

δz

− 1
τ2

Fz

− 1
τ2

Fy



,
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g(X) =



0 0 0 0 0
−c3 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 V

gτ1
a5

V
gτ2

ky 0
0 V

gτ1
b5 0 0 V

gτ2
kz

1
τ1

0 0 0 0
0 1

τ1
0 0 0

0 0 1
τ1

0 0
0 0 0 1

τ2
0

0 0 0 0 1
τ2



,

where d is the external disturbance.

3. Design of Optimal Control Law Based on HJB Equation

Consider continuous affine nonlinear systems with a class of uncertainties

.
X(t) = f(X) + g(X)(u(t) + d(t)) (20)

where X(t) ∈ Rn is the state vector of the system, u(t) ∈ Rm is the control input vector,
and f(X) ∈ Rn and g(X) ∈ Rn×m are the system function and control matrix, respectively.

Assumption 1. The nonlinear function f(X) satisfies the local Lipschitz condition in the set
containing the origin and f(0) = 0. The control matrix g(X) is bounded.

Consider reference systems without uncertainties

.
X(t) = f(X) + g(X)u(t) (21)

Assumption 2. There is a symmetric positive definite matrix R ∈ Rm×m such that the sys-

tem uncertainty satisfies d(t) = R0.5
¯
d(t) and the system uncertainty d(t) is bounded, that

is, ∥d(t)∥ ≤ de.

Based on the above assumptions, the control system cost function is defined as

J(X) =
∫ ∞

0

[
Q(X) + uT(t)Ru(t)

]
dt (22)

where Q(X) = eTQ1e + d2
e , Q1 ∈ Rn×n is a symmetric positive definite matrix, and

e = X − Xd is defined as the tracking error.

Remark 1. The minimum value of the cost function is achieved by searching for the optimal control
term u∗(t). When designing the cost function, the tracking error of the system and the upper bound
of the uncertainty of the system are described, and it can be seen from the definition that ∀X ̸= 0,
Q(X) > 0. Therefore, when the minimum cost function is obtained, the closed-loop system state
can converge to a sufficiently small neighborhood of the control command, and the interference of
uncertainty is considered to achieve the effect of interference suppression.

According to the optimal control theory of nonlinear systems, the Hamiltonian func-
tion of the design reference system is

H(X, u, ∆J(X)) = Q(X) + uTRu + ∆JT(X)(f(X) + g(X)u) (23)

where ∆J(X) ∈ Rn is the partial derivative of the cost function J(X) with respect to the
state of the system X, i.e., ∆J(X) = ∂J(X)/∂X.
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The optimal cost function J∗(X) can be obtained by solving the following Hamilton–
Jacobi–Bellman (HJB) Equation (24):

min
u

H(X, u, ∆J∗(X)) = 0 (24)

According to the necessary conditions ∂H/∂u = 0, the optimal control law is

u∗ = −1
2

R−1gT(X)∆J∗(X) (25)

By substituting Equation (25) into Equation (24), the HJB equation can be rewritten as

Q(X) + (∆J∗(X))Tf(X)− 1
4
(∆J∗(X))Tg(X)R−1gT(X)∆J∗(X) = 0 (26)

Remark 2. It can be seen that in order to obtain the optimal control law u∗, the above HJB
equation needs to be solved to obtain the optimal cost function J∗ and its partial derivative to the
system state ∆J∗(X). However, for nonlinear systems, it is very difficult to solve the HJB equation,
especially in the case of considering external disturbance, so the difficulty of solving the equation
further increases. On the other hand, if we can find the cost function to ensure the Hamiltonian
function H∗ = 0, we can obtain the optimal control law u∗. In other words, through this idea,
the optimal control problem can be transformed into the problem of how to obtain the optimal cost
function J∗. In the next section, a reinforcement learning algorithm based on the LSTM neural
network is proposed, which uses the LSTM neural network to fit the optimal cost function, so as to
achieve approximate optimal control.

4. Design of Approximate Optimal Control Law Based on Reinforcement Learning
4.1. LSTM Neural Network

The LSTM neural network shown in Figure 2 contains three parts, i.e., a forget gate,
an input gate, and an output gate. Except for the same hidden state ht as the RNNs, it also
introduces a cell state for keeping the long-term memory information. At the current time t,
the cell state is updated through the data from the forget gate and the input gate to achieve
a long-term memory update. Then, the cell state ct, the last step hidden state ht−1, and the
current step input xt are mixed via the output gate to obtain a network output. The details
of the LSTM neural network can be obtained from another article [29]. The LSTM neural
network is expressed as follows:

ot = σ(neto,t) (27)

neto,t = Wohht−1 + WoxXt + bo (28)

ft = σ(net f ,t) (29)

net f ,t = Wo f ht−1 + W f xXt + b f (30)
~
ct = tanh(neto,t) (31)

netc̃,t = Wchht−1 + WcxXt + bc (32)

it = σ(neti,t) (33)

neti,t = Wihht−1 + WixXt + bi (34)

ct = ft ⊙ ct−1 + it ⊙
~
ct (35)

ht = ot ⊙ tanh(ct) (36)

where ⊙ denotes the element-wise multiplication; ct ∈ Rns is the cell state vector; xt ∈ Rnx is
the input vector; and it, ft and ot are the input, forget, and output gates, respectively.
The sigmoid function σ(·) and the hyperbolic tangent function tanh(·) apply point-wise
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to the vector elements. Furthermore, Woh ∈ Rns×ns , Wox ∈ Rns×nx , W f h ∈ Rns×ns ,
W f x ∈ Rns×nx , Wch ∈ Rns×ns , Wcx ∈ Rns×nx , Wih ∈ Rns×ns , Wix ∈ Rns×nx , bo ∈ R1×ns ,
b f ∈ R1×ns , bc ∈ R1×ns , and bi ∈ R1×ns are the weighting matrices.
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Figure 2. LSTM neural network structure.

According to Equation (36), we can know that the dimension of the output value of
the LSTM neural network ht is related to the number of cell states. To obtain the output
dimension we need, the usual method is introducing a scaling matrix W, i.e., yt = Wht.
However, when the scale difference between the input and output of the network is large,
the value of each element in the scaling matrix W will be too large or too small, which will
affect the update of other weights of the network. Therefore, we introduce a full connection
layer as the scaling matrix of the network to increase the depth of the network and improve
the fitting accuracy of the network, i.e.,

yt = WLh (37)

Lh = σ(Uht + bh) (38)

4.2. Design of Near-Optimal Control Law Based on LSTM Neural Network and Output Feedback

The optimal output value of the neural network is defined as

∂J∗

∂X
= y∗ = W∗L∗

h + ε (39)

Assumption 3. There exist an optimal weight W∗, standard bias terms b∗i , b∗f , b∗c , b∗o , and opti-
mal network weights W∗

ih, W∗
ix, W∗

f h, W∗
f x, W∗

ch, W∗
cx, W∗

oh, W∗
ox in approximating the unknown

function y∗ = ∂J∗/∂X which can be expressed as y∗ = W∗L∗
h + ε, where L∗

h presents the optimal
output value of Lh, and ε is the mapping error uniformly bounded as ∥ε∥ ≤ εb, where εb is an
arbitrarily small positive constant. The terms of the optimal weight matrices are all constant.

The detailed structure of the ADP-LSTM algorithm can be seen in Figure 3.
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The difference between the estimated value and the optimal value of the Hamilton
function is defined as the training error of the LSTM neural network, i.e.,

ec = Ĥ
(

X,
^
u, ∆

^
J(X)

)
− H∗(X, u∗, ∆J∗(X)) (40)

As we know from the last section, H∗(X, u∗, ∆J∗(X)) = 0, and Equation (40) can be
rewritten as

ec =

(
^
y − y∗

)T
f(X)− 1

4

(
^
y − y∗

)T
χ

(
^
y − y∗

)
(41)

where χ = g(X)R−1gT(X) is a positive definite matrix.
The difference between the neural network output and the optimal value is

^
y − y∗ =

~
W

^
Lh +

^
W

~
Lh + ε0 =

~
y (42)

where
~

W = W∗ −
^

W. By substituting Equation (42) into Equation (41), Equation (41) can be
rewritten as

ec =
~
y

T
f (X)− 1

4
~
y

T
χ

~
y (43)

The time derivative of Equation (43) can be obtained as

.
ec =

.
~
y

T
f(X) +

~
y

T .
f(X)− 1

2
~
y

T
χ

.
~
y

=
.
~
y

T
f(X) +

~
y

T
∆f(X)

(
f(X) + g(X)

^
u
)
− 1

2
~
y

T
χ

.
~
y

(44)

where ∆f(X) =
∂f(X)

∂X .

Theorem 1. The following control law can ensure that the closed-loop system converges to a suffi-
ciently small neighborhood of the control command, and the control law is approximately optimal.

^
u =

^
u1 +

^
u2 (45)
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^
u1 = −1

2
R−1gT(X)

^
y (46)

^
u2 =

(
ec

~
y

T
∆f(X)g(X) + eT

¯
Qg(X)

)†

·(
−ec

~
y

T
∆f(X)f(X)− ec

.
^
y

T

f(X)− eT
¯
Q
(

f(X) +
.

Xd

)
− Kec

) (47)

where
¯
Q = 2Q.

Remark 3. The above control law is an improved form of the optimal control law (25) in the

previous section, in which
^
u1 ensures that the system control input is approximately optimal. As an

additional term,
^
u2 ensures that the tracking error of the closed-loop system finally converges to a

sufficiently small neighborhood of the control command. The stability analysis will be given in the
next section.

4.3. Design of Online Weight Update Law for LSTM Neural Networks

For brevity, we define κ = ∆f(X)f(X), and by substituting it into the control law, we
can obtain

.
ec =

~
y

T
κ − 1

2
~
y

T
χ

.
~
y − 1

2
~
y

T
∆f(X)χ

^
y − Kec (48)

According to the definition of
~
y and Assumption 3, we know that

.
~
y =

.
^
y, so

Equation (48) can be rewritten as

.
ec =

~
y

T
κ − 1

2
~
y

T
χ

.
^
y − 1

2
~
y

T
∆f(X)χ

^
y − Kec

=

(
~

W
^
Lh +

^
W

~
Lh

)T

κ − 1
2

(
~

W
^
Lh +

^
W

~
Lh

)T

χ

.
^
y − 1

2
~
y

T
∆f(X)χ

^
y − Kec

=
^
L

T

h
~

W
T

κ +
~
L

T

h
^

W
T

κ − 1
2

(
^
L

T

h
~

W
T
+

~
L

T

h
^

W
T
)

χ

.
^
y − 1

2
~
y

T
∆f(X)χ

^
y − Kec

=
^
L

T

h
~

W
T

κ +
~
L

T

h
^

W
T

κ − 1
2

^
L

T

h
~

W
T

χ

.
^
y − 1

2

~
L

T

h
^

W
T

χ

.
^
y − 1

2

(
^
L

T

h
~

W
T
+

~
L

T

h
^

W
T
)
·

∆f(X)χ
^
y − Kec

=
^
L

T

h
~

W
T
(κ − λ) +

~
L

T

h
^

W
T

(κ − λ)− 1
2

^
L

T

h
~

W
T

χ

.
^
y − 1

2

~
L

T

h
^

W
T

χ

.
^
y − Kec

(49)

Also for brevity, we define ω = 1
2 χ

.
^
y and λ = 1

2 ∆f(X)χ
^
y, where, by the difference

method, we can obtain .
^
y =

yt − yt−1
∆t

(50)

Thus, Equation (49) can be further simplified as

.
ec =

^
L

T

h
~

W
T
(κ − λ − ω) +

~
L

T

h
^

W
T

(κ − λ − ω)− Kec (51)

Consider that
^
Lh is the output of the LSTM neural network, which can be expressed as

^
Lh =

^
Lh

(
e,

^
W,

^
Wih,

^
Wix,

^
W f h,

^
W f x,

^
Wch,

^
Wcx,

^
Woh,

^
Wox,

^
bi,

^
b f ,

^
bc,

^
bo

)
(52)



Aerospace 2024, 11, 281 12 of 27

According to the Taylor expansion formula, we can obtain

~
Lh = ∂Lh

∂θ1

∣∣∣
θ1=

^
θ1

~
θ1 +

∂Lh
∂θ2

∣∣∣
θ2=

^
θ2

~
θ2 +

∂Lh
∂θ3

∣∣∣
θ3=

^
θ3

~
θ3 +

∂Lh
∂θ4

∣∣∣
θ4=

^
θ4

~
θ4

+ ∂Lh
∂θ5

∣∣∣
θ5=

^
θ5

~
θ5 +

∂Lh
∂θ6

∣∣∣
θ6=

^
θ6

~
θ6 +

∂Lh
∂θ7

∣∣∣
θ7=

^
θ7

~
θ7 +

∂Lh
∂θ8

∣∣∣
θ8=

^
θ8

~
θ9

+ ∂Lh
∂bi

∣∣∣
bi=

^
bi

~
bi +

∂Lh
∂b f

∣∣∣
b f =

^
b f

~
b f +

∂Lh
∂bc

∣∣∣
bc=

^
bc

~
bc +

∂Lh
∂bo

∣∣∣
bo=

^
bo

~
bo + Oh

(53)

where
~
θ = θ∗ −

^
θ,

~
b = b∗ −

^
b.

Proof of Theorem 1. To ensure that the tracking error of the Hamiltonian function can
converge to 0, the Lyapunov function is defined as follows:

V1 =
1
2

e2
c (54)

V2 = 1
2ηw

tr(
~

W
~

W
T
) + 1

2ηθ

~
θ

T

1
~
θ1 +

1
2ηθ

~
θ

T

2
~
θ2 +

1
2ηθ

~
θ

T

3
~
θ3 +

1
2ηθ

~
θ

T

4
~
θ4

+ 1
2ηθ

~
θ

T

5
~
θ5 +

1
2ηθ

~
θ

T

6
~
θ6 +

1
2ηθ

~
θ

T

7
~
θ7 +

1
2ηθ

~
θ

T

8
~
θ8

+ 1
2ηb

~
b

T

i
~
bi +

1
2ηb

~
b

T

f
~
b f +

1
2ηb

~
b

T

c
~
bc +

1
2ηb

~
b

T

o
~
bo

(55)

V3 = eTQe (56)

V = V1 + V2 + V3 (57)

The time derivative of Equations (54) and (55) can be obtained as

.
V1 = ec

.
ec

= ec

(
^
L

T

h
~

W
T
(κ − λ − ω) +

~
L

T

h
^

W
T

(κ − λ − ω)− Kec

)
(58)

.
V2 = 1

ηw
tr(

~
W

.
~

W
T

) + 1
ηθ

.
~
θ

T

1
~
θ1 +

1
ηθ

.
~
θ

T

2
~
θ2 +

1
ηθ

.
~
θ

T

3
~
θ3 +

1
ηθ

.
~
θ

T

4
~
θ4

+ 1
ηθ

.
~
θ

T

5
~
θ5 +

1
ηθ

.
~
θ

T

6
~
θ6 +

1
ηθ

.
~
θ

T

7
~
θ7 +

1
ηθ

.
~
θ

T

8
~
θ8

+ 1
ηb

.
~
b

T

i
~
bi +

1
ηb

.
~
b

T

f
~
b f +

1
ηb

.
~
b

T

c
~
bc +

1
ηb

.
~
b

T

o
~
bo

(59)

.
V3 = eT

¯
Q

.
e

= eT
¯
Q
(

f(X) + g(X)
^
u −

.
Xd

) (60)

To ensure that
.

V is negative, we set the ec
^
L

T

h
~

W
T
(κ − λ − ω) + 1

ηw
tr(

~
W

T
.
~

W) = 0
According to matrix operation rules, we can obtain

1
ηw

tr(
~

W
T

.
~

W) =
1

ηw
(

~
W

T

l1

.
~

Wl1 +
~

W
T

l2

.
~

Wl2 + · · ·+
~

W
T

ln

.
~

Wln) (61)

where
~

Wli is the i-th line of
~

W.
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Expand the terms on the right side of Equation (58) to obtain

ec
^
L

T

h
~

W
T
(κ − λ − ω) = ec


^
L

T

h
~

W
T

l1(κ1 − λ1 − ω1)+
^
L

T

h
~

W
T

l2(κ2 − λ2 − ω2) + · · ·

+
^
L

T

h
~

W
T

ln(κn − λn − ωn)

 (62)

where κi, λi and ωi are i-th elements of κ, λ and ω respectively.
By eliminating the corresponding term, the update law of the weight W’s i-th line is

obtained as
.
~

Wli = −
.
^

Wli = −ηwec(κi − λi − ωi)
^
L

T

h (63)

Similarly, in order to obtain the update law of other weights, set

ec
~
h

T ^
W

T

(κ − λ) + 1
ηθ

.
~
θ

T

1
~
θ1 +

1
ηθ

.
~
θ

T

2
~
θ2 +

1
ηθ

.
~
θ

T

3
~
θ3 +

1
ηθ

.
~
θ

T

4
~
θ4 +

1
ηθ

.
~
θ

T

5
~
θ5 +

1
ηθ

.
~
θ

T

6
~
θ6

+ 1
ηθ

.
~
θ

T

7
~
θ7 +

1
ηθ

.
~
θ

T

8
~
θ8 +

1
ηb

.
~
b

T

i
~
bi +

1
ηb

.
~
b

T

f
~
b f +

1
ηb

.
~
b

T

c
~
bc +

1
ηb

.
~
b

T

o
~
bo = 0

(64)

We can obtain

.
~
θi = −

.
^
θi = −ηθec

(
∂Lh
∂θi

)T ^
W

T

(κ − λ − ω) i = 1, 2, . . . , 8 (65)

.
~
bi = −

.
^
bi = −ηbec

(
∂Lh
∂bi

)T ^
W

T

(κ − λ − ω) (66)

.
~
b f = −

.
^
b f = −ηbec

(
∂Lh
∂b f

)T
^

W
T

(κ − λ − ω) (67)

.
~
bc = −

.
^
bc = −ηbec

(
∂Lh
∂bc

)T ^
W

T

(κ − λ − ω) (68)

.
~
bo = −

.
^
bo = −ηbec

(
∂Lh
∂bo

)T ^
W

T

(κ − λ − ω) (69)

□

Remark 4. By substituting the weight update law (63), (65)~(69), and the control law (45)
into Equation (57), it can be obtained that

.
V = −Ke2

c . K is a positive constant, so
.

V ≤ 0; obvi-
ously, V is positive, and according to the Lyapunov stability theory, closed-loop systems are bounded
and lim

t→∞
ec → 0 . According to the optimal control theory, when ec → 0 , Ĥ → H∗ and Ĵ → J∗ ;

at this point, the cost function is optimal. According to the definition of the cost function in
Section 3, the system tracking error and control input are both considered; that is to say, the optimal
performance cost function can ensure system tracking error lim

t→∞
e →0, and the closed-loop control

system is bounded and can converge to the small neighborhood of the control command.

Remark 5. In this article, ADP-LSTM is described as a model-based reinforcement learning
algorithm, rather than a data-based form. During the process of updating the weights of the LSTM
neural networks, the algorithm does not rely on training data and loss functions, such as common
stochastic gradient descent algorithms. Instead, it is based on the Lyapunov method, which directly
provides an analytical solution for the network weight update law (63) and (65)~(69). In other
words, ADP-LSTM does not require training data and loss functions. This direct update law
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eliminates a large number of iterative operations in the network training process, significantly
reducing the system’s computational burden and single-step computation time.

5. Simulation Analysis

In the simulation process, the 6-DoF attitude dynamics model of the dual-control aircraft
mentioned in the Section 2 is applied to verify the performance of the control law which is pre-
sented in this paper. The command signal is Xd =

[
γd nzd nyd δxd δyd δzd Fzd Fyd

]T,
and all aerodynamic parameters are designed based on an aircraft flying altitude of 30 km.

When the aircraft flies at an altitude of 30 km, the thin atmospheric density results in a
decrease in aerodynamic force. At this time, relying on pure aerodynamic control will seri-
ously reduce the dynamic characteristics and control quality of the control system. Usually,
the dual-control strategy is used to design the aircraft autopilot, because the direct force is
generated by the reaction jet, which is not affected by the flight altitude, and can effectively
compensate for the lack of control input caused by insufficient aerodynamic force.

Due to the volume limitation of the aircraft, it is impossible to place the orbit control
engine with a large volume and weight. Therefore, the attitude control engine is used
in this simulation, which only affects the attitude and has a very small direct impact on
the overload. Therefore, the overload establishment of the aircraft still depends on the
aerodynamic force; that is to say, in order to obtain enough overload, the aircraft will
make a large angle of attack or sideslip angle maneuver. At this time, the assumption
that the aerodynamic parameters are considered as constant or slow time variables is no
longer tenable. Therefore, taking the aerodynamic parameters a2 and b2 as examples, we
consider a2 and b2 as functions of the AOA and sideslip angle, i.e.,

a2 = a20 + ka2 α (70)

b2 = b20 + kb2 β (71)

We consider other aerodynamic parameters as perturbation parameters, i.e.,

a1 = a10 + k1 ∗ sin(ω1t)
a3 = a30 + k2 ∗ sin(ω2t)
a4 = a40 + k3 ∗ sin(ω3t)
a5 = a50 + k4 ∗ sin(ω4t)

(72)

b1 = b10 + k1 ∗ sin(ω1t)
b3 = b30 + k2 ∗ sin(ω2t)
b4 = b40 + k3 ∗ sin(ω3t)
b5 = b50 + k4 ∗ sin(ω4t)

(73)

As the roll angle and roll rate are both small, we consider c1 and c3 as constants. We
consider that the external disturbance vector d is Gaussian white noise.

The initial weights of the LSTM neural network are randomly selected in the closed
interval [−0.2, 0.2]. According to the practical application, the tail fin angle and the
magnitude of the direct force are subject to saturation constraints, i.e., |δxc| ≤ 30 deg,∣∣δyc

∣∣ ≤ 30 deg, |δzc| ≤ 30 deg, |Fz| ≤ 3000 N, and
∣∣Fy
∣∣ ≤ 3000 N. The initial state of the

system is X =
[
3/57.3 0 0 0 0 0 0 0

]T .
To verify the optimality of ADP-LSTM, the adaptive sliding mode control method

(SMC-RNN) proposed in reference [31] was applied to the attitude control model during
the simulation process and compared with ADP-LSTM. The algorithm in reference [31]
combines sliding mode control and Recurrent Neural Networks (RNN), using RNNs to fit
system terms and external disturbances to achieve adaptive control of the system model and
external disturbances. However, it is important to note that the algorithm in reference [31]
did not consider energy optimization during its design process. Therefore, comparing it
with ADP-LSTM can effectively reflect the energy-optimal control effect of ADP-LSTM.
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The LSTM neural networks used in ADP-LSTM have eight input nodes, eight output
nodes, and 10 cell states, making the system state X the input vector of the network. The
RNNs also have eight input nodes, eight output nodes, and 10 hidden states; the structure
of RNNs can be found in the article [31].

To verify the control effectiveness of ADP-LSTM, two simulation scenarios are de-
signed: tracking a fixed overload command and tracking a time-varying overload command.
Both scenarios represent common target maneuver forms and can demonstrate the general
applicability of the algorithm presented in this paper.

The aircraft parameters of the pitch channel can be seen in Table 1. Considering that
the aircraft has an axisymmetric shape, the pitch channel parameters are consistent with
the yaw channel parameters.

Table 1. Aircraft parameters.

V m a10 a20 a30 a40 a50 c1 c3 l

1200 m/s 500 kg 0.048 1.500 12.101 0.166 0.004 0.024 0.604 1 m

5.1. Scenario 1: Tracking a Fixed Overload Command

The curve of the angle of attack, sideslip angle, and roll angle are shown in Figure 4.
According to the previous introduction, the overload of the aircraft is established by the
aerodynamic force, so in order to track the overload command as soon as possible, the
angle of attack and sideslip angle of the aircraft need to respond quickly. In Figure 4a,b, we
can see that the angle of attack and sideslip angle both enter the steady state quickly. Like
other STT aircraft, the controller designed in this paper ensures that the aircraft body axis
does not roll; that is, the roll angle command is 0 deg. To verify the effect of the controller,
the initial roll angle is set to 3 degrees. As can be seen from Figure 4c, the controller can
ensure that the roll angle converges to 0 deg. Both ADP-LSTM and SMC-RNN can achieve
control of roll angle, among which ADP-LSTM has a faster convergence speed but some
overshoot, while SCM-RNN, although it has no overshoot, has a slower convergence speed.

The curve of roll rate, yaw rate, and pitch rate are shown in Figure 5. This state
intuitively reflects the attitude agility of the aircraft. It can be seen from Figure 5 that
the aircraft has strong agility and fast attitude response speed under the effect of the
dual-control strategy.

The overload curves of the two controllers are shown in Figure 6. It can be seen from
Figure 6 that the aircraft overload can track the command signal by ADP-LSTM, but it
has to be admitted that the convergence rate is slow for two reasons. First, according
to the nonlinear system optimal control theory, when the Hamilton function tends to
zero, the optimal control input u∗ obtained at this time can only ensure that the tracking
error e converges to 0 in infinite time, i.e., lim

t→∞
e(t) →0. Second, there are coupling terms

between the pitch, yaw, and roll channels of the aircraft, which reduce the control quality.
Usually, when designing the autopilot, it is completed after decoupling the three channels.
However, this will ignore some characteristics of the system, and obviously, this will reduce
the robustness of the algorithm in practical applications. The advantage of the ADP-LSTM
in this paper is that it does not need three-channel decoupling, retains the characteristics of
the system, and does not need the necessary assumptions when decoupling, which widens
the application scope of the algorithm and is more general. Meanwhile, we can observe that
the control effect of SMC-RNN is better than that of ADP-LSTM. This is an unavoidable
trade-off. In order to achieve optimal energy consumption for the system, some sacrifice in
control effectiveness is inevitable. However, the control effectiveness of ADP-LSTM has
not significantly decreased and still maintains steady-state error, with only a slight increase
in convergence time.
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Figure 4. Steady-state responses of angle of attack, sideslip angle, and roll angle in Scenario 1.
(a) Curve of angle of attack α. (b) Curve of sideslip angle β. (c) Curve of roll angle γ.

The control inputs of pitch, yaw, and roll channels of ADP-LSTM and SMC-RNN are
shown in Figure 7. And low-pass filters were introduced to better display the specific
details of the curve. It can be seen from Figure 7a,c,e that when the system enters the steady
state, the control input of the tail fins has a chattering phenomenon, which is caused by
external disturbance, and the control input shows a sinusoidal trend, which is caused by the
perturbation of aerodynamic parameters. The direct force input will tend to a fixed value,
and this value is very small. Intuitively, this avoids the waste of control energy. However,
it is still impossible to determine whether the control input is optimal from the results of
this figure alone. It is necessary to refer to whether the Hamiltonian function Ĥ converges
to zero. In Figure 7b,d,f, we can see that the control input of SMC-RNN is higher than that
of ADP-LSTM, especially for direct force control input. The chattering phenomenon in the
control input is more severe, and it does not significantly weaken after passing through the
low-pass filter. This is due to the inherent defect of sliding mode control. Controlling the
input chattering phenomenon can cause serious energy waste, and it is also very unfriendly
to the actuator.

The outputs of the LSTM neural network are shown in Figure 8. In this paper, the
LSTM neural network is aimed to fit the partial derivative of the cost function J(X) with
respect to the state of the system X, i.e., ∆J. According to the definition of the system,
we know that ∆J ∈ R8, and there are eight output values of the LSTM neural network,
i.e., Y1 ∼ Y8. It can be seen from Figure 7 that after a short dynamic process, the output
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value of the neural network is nearly stable, which shows that under the effect of the

adaptive weight update law, the output value
^
y gradually tends to the optimal value y∗.
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Figure 5. Steady-state responses of three-channel attitude angular rate in Scenario 1. (a) Curve of roll
rate ωx. (b) Curve of yaw rate ωy. (c) Curve of pitch rate ωz.
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Figure 7. Control input of the three channels in Scenario 1. (a) Control input of the pitch channel
of ADP-LSTM. (b) Control input of the pitch channel of SMC-RNN. (c) Control input of the yaw
channel of ADP-LSTM. (d) Control input of the yaw channel of SMC-RNN. (e) Control input of the
roll channel of ADP-LSTM. (f) Control input of the roll channel of SMC-RNN.

The training process is shown in Figure 9. It can be seen from the figure that under
the effect of the adaptive weight update law, most neural network weights converge in 1 s,
which shows that the training efficiency is very high. Because the updated law of network
weights is derived from the Lyapunov function, the training trend of network weights is
very clear, which must have obvious advantages over the stochastic gradient descent (SDG)
method, and there are no problems such as local optimization in the training process.
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The curve of the Hamiltonian function is shown in Figure 10. According to the
nonlinear system optimal theory mentioned in Section 3, the necessary condition for the
optimal control input is that the Hamiltonian function tends to zero, i.e., ec → 0 and
then Ĥ → H∗ → 0 It can be seen from the figure that under the action of the LSTM neural
network, the Hamiltonian function converges to 0 quickly, indicating that Ĵ → J∗ and

∆
^
J → ∆J∗ , and at this time,

^
u → u∗ .
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Figure 10. Curve of Hamiltonian function ec in Scenario 1.

The energy consumption of the two control algorithms is shown in Figure 11. To quan-
tify energy consumption, the energy consumption indicator is defined as Qe =

∫ t
0 u2(t)dt.

Figure 7a illustrates the energy consumption of the tail fins, while Figure 7b shows the
energy consumption of the direct force. It is important to note that the values after low-pass
filtering were used when calculating energy consumption. From Figure 7, it is evident
that the energy consumption of both the tail fins and direct force using ADP-LSTM is
superior to that of SMC-RNN. Particularly in the case of direct force energy consumption,
ADP-LSTM demonstrates clear advantages, effectively avoiding energy waste. While
ADP-LSTM may be slightly inferior to SMC-RNN in terms of control effectiveness, it holds
significant advantages in energy consumption. As previously introduced, the energy of
direct force is limited, and the aircraft will encounter multiple attitude adjustments and
overload command tracking in a complete working environment. Without limiting energy
consumption, early depletion of aircraft fuel can occur, leading to a loss of partial tracking
ability. Therefore, this article focuses on studying the optimal control of aircraft attitude.
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Figure 11. Control input consumption of ADP-LSTM and SMC-RNN in Scenario 1. (a) Tail fin consump-
tion. (b) Direct force consumption.
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The average single-step time of the two algorithms is ADP-LSTM 1.105 ms, and
SMC-RNN 0.751 ms (simulation environment: Intel 12th i7-12700).

5.2. Scenario 2: Tracking a Time-Varying Overload Command

The simulation results for Scenario 2 are shown in Figures 12–19. Similar to Scenario 1,
both ADP-LSTM and SMC-RNN can track time-varying overload commands. However,
the control effectiveness of ADP-LSTM is slightly weaker than that of SMC-RNN. This can
be attributed to two reasons: 1. The convergence speed of the LSTM neural network is
slightly slower than that of a traditional RNN, especially under time-varying commands,
which becomes more apparent. 2. To achieve energy-optimal control, it is necessary to
sacrifice some control effectiveness, especially in terms of command tracking speed. From
Figure 14, it can be observed that although ADP-LSTM has a slightly slower convergence
speed than SMC-RNN, there is no significant difference in their tracking accuracy, which is
consistent with the performance in Scenario 1.
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Figure 14. Steady-state responses of overload in Scenario 2. (a) Curve of pitch overload ny. (b) Curve
of yaw overload nz.
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Figure 16. Output of LSTM neural network in Scenario 2. (a,b): y1 ∼ y8.
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Figure 17. Weight update of LSTM neural network in Scenario 2. (a) Wih, W f h, Wch. (b) Woh, Wix, W f x.
(c) Wcx, Wox, W.
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Figure 15 illustrates the control inputs of the two control algorithms. It is evident from
the figure that SMC-RNN’s control input exhibits significant oscillations, similar to Scenario
1. This is unfriendly to the control execution mechanism and results in a significant waste
of energy. In contrast, ADP-LSTM does not exhibit such oscillations. Furthermore, from
Figure 19, it can be seen that the energy consumption of ADP-LSTM is significantly lower
than that of SMC-RNN (after the filtering of SMC-RNN’s control input). This demonstrates
the significant advantage of ADP-LSTM in energy-optimal control.

Through the above two simulation scenarios, it is evident that ADP-LSTM can handle
common aircraft overload commands and has a certain degree of generality.

6. Conclusions

This article presents a reinforcement learning near-optimal control algorithm based on
an LSTM neural network, which can be applied to solve the 6-DoF attitude control problem
of dual-control aircraft. For the first time, the reinforcement learning-based near-optimal
control algorithm is applied to the complex MIMO system.

Compared with the existing reinforcement learning algorithm, this algorithm has an
obvious advantage:
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(1) It can deal with high-dimensional MIMO systems, rather than ideal simple systems
such as inverted pendulum, slider car, spring damper, and other SIMO or SISO
systems, which benefit from the strong fitting ability of LSTM neural network;

(2) The ADP-LSTM does not need to decouple the nonlinear aircraft 6-DoF attitude
dynamics model, and it retains the internal characteristics of the system as much
as possible and the assumptions of necessity when system decoupling is no longer
needed, making the algorithm more universal.

(3) Based on the Lyapunov method, the novel adaptive online update law of LSTM neural
network weights is given. Compared with the stochastic gradient descent method,
this method has higher training efficiency and can ensure that the closed-loop system
is uniformly asymptotically stable.

(4) During the simulation process, we designed two kinds of scenarios to prove the
commonality of ADP-LSTM, which was compared with SMC-RNN in terms of control
effectiveness and energy consumption. The comparison results revealed that ADP-
LSTM had a significant advantage in energy consumption, albeit at the expense of
sacrificing some control effectiveness. This reflects the overall advantage of ADP-
LSTM over algorithms that do not consider energy optimization.

As for the future research direction, I think the main direction in the near future is how
to solve the optimal control problem when the control input is saturated, and a longer-term
goal is how to realize the finite-time convergence of the system.
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Abbreviations

α Angle of attack
β Sideslip angle
γ Roll angle
Jx Moment of inertia about the ox1 axis
Jy Moment of inertia about the oy1 axis
Jz Moment of inertia about the oz1 axis
ωx Roll rate
ωy Yaw rate
ωz Pitch rate
Mx Rolling moment
My Yaw moment
Mz Pitch moment
ny Projection of overload vector on oy1 axis
nz Projection of overload vector on oz1 axis
δx Rudder deflection angle of rolling channel
δy Rudder deflection angle of yaw channel
δz Rudder deflection angle of pitch channel
Fy Projection of direct force on oy1 axis
Fz Projection of direct force on oz1 axis
l Distance from the point of the lateral thrust to the mass center of the aircraft
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m Aircraft mass
V Aircraft speed
g Gravitational acceleration
Y Lift
Z Lateral force
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