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Abstract: Given the randomness inherent in fluid dynamics problems and limitations in human cogni-
tion, Computational Fluid Dynamics (CFD) modeling and simulation are afflicted with non-negligible
uncertainties, casting doubts on the credibility of CFD. Scientifically and rigorously quantifying the
uncertainty of CFD is paramount for assessing its credibility and informing engineering decisions. In
order to quantify the uncertainty of multidimensional flow field responses stemming from uncertain
model parameters, this paper proposes a method based on Gappy Proper Orthogonal Decomposition
(POD) for supplementing high-fidelity flow field data within a framework that leverages POD and
surrogate models. This approach enables the generation of corresponding high-fidelity flow fields
from low-fidelity ones, significantly reducing the cost of high-fidelity flow field computation in
uncertainty propagation modeling. Through an analysis of the impact of uncertainty in the coeffi-
cients of the Spalart–Allmaras (SA) turbulence model on the distribution of wall friction coefficients
for the NACA0012 airfoil and pressure coefficients for the M6 wing, the proposed multi-fidelity
modeling approach is demonstrated to offer significant advancements in both accuracy and efficiency
compared to single-fidelity methods, providing a robust and efficient prediction model for large-scale
random sampling.

Keywords: uncertainty quantification; multi-fidelity model; multidimensional correlated responses;
machine learning; flow field reduction

1. Introduction

With the continuous advancements in mathematical models, numerical algorithms,
mesh technologies, and high-performance computing, CFD has emerged as a pivotal tool
in numerous critical engineering fields, including aerospace, energy and power, transporta-
tion, and beyond. Nevertheless, the credibility of CFD has been a subject of contention due
to the non-negligible uncertainties inherent in its models, parameters, and numerical solu-
tions [1]. A comprehensive and rigorous quantification of these uncertainties is imperative
for assessing and enhancing the credibility of CFD.

Parameters serve as a significant source of uncertainty in CFD. Due to limitations
in human cognition or the inherent randomness in fluid problems, model parameters or
inflow conditions may possess a certain degree of uncertainty. To quantify the uncertainty
introduced by parameters, scholars have developed various methods, such as Monte Carlo-
type random sampling and polynomial chaos [2]. While Monte Carlo-type methods are
straightforward, they require a large number of samples to obtain stable and accurate sta-
tistical results. Polynomial chaos methods rely on orthogonal polynomial expansions, with
coefficients obtained through numerical integration or regression analysis. However, as the
dimension of input parameters and the order of expansion increase, the number of samples
required for polynomial chaos methods grows drastically, leading to the “curse of dimen-
sionality”. For complex engineering problems, each CFD simulation is computationally
expensive, limiting the practical application of these methods due to high computational
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costs. In recent years, scholars have attempted to introduce machine learning algorithms
into the field of numerical simulation uncertainty quantification, using surrogate models
to replace complex simulation systems and combining experimental design methods to
reduce the demand for sample data [3–6]. This represents a successful amalgamation of
intelligent learning algorithms and uncertainty quantification (UQ) research.

The accuracy of using surrogate models for UQ analysis heavily relies on the accuracy
of the surrogate model itself, while the efficiency is determined by the time taken to train
and run the surrogate model. Factors such as the size and quality of the training data,
feature selection, and the design and training of machine learning algorithms can all affect
the accuracy and efficiency of surrogate models. To further improve these aspects, scholars
have proposed multi-fidelity modeling methods that leverage the respective strengths of
high/low-fidelity analysis models. These methods use a larger number of low-fidelity
samples to reduce computational complexity, while also incorporating a smaller number of
high-fidelity samples to ensure the predictive performance of the multi-fidelity approximate
model. This effectively balances the trade-off between the predictive performance of the
approximate model and modeling costs. Commonly used multi-fidelity models include co-
Kriging models [7–9] and multi-fidelity neural networks [10,11], which have demonstrated
great potential in complex equipment optimization design and provide new ideas for
quantifying parameter uncertainty propagation in CFD.

However, most existing multi-fidelity models are only applicable to single-output
scenarios. In CFD, the outputs of interest not only include individual variables but may also
involve flow field variables that vary with time or space, such as wall pressure coefficient
distributions and the unsteady aerodynamic forces of aircraft. There may exist potential
correlations among flow field variables at different locations or times, and the dimen-
sionality of the output can reach hundreds or even thousands. Moreover, the response
dimensions under different fidelities may differ, such as flow fields under different grid
scales or unsteady aerodynamic forces under different time steps. Developing multi-fidelity
models suitable for uncertainty propagation modeling remains a challenging problem that
urgently needs to be solved.

To address the uncertainty quantification problem in multidimensional and correlated
flow fields, we developed a modeling method for uncertainty propagation based on Proper
Orthogonal Decomposition (POD) and surrogate models. By employing POD, several key
basis functions representing flow structures are identified, reducing the multidimensional
flow field responses, which span hundreds or even thousands of dimensions, to a reduced-
dimensional representation of approximately ten dimensions, which is composed of basis
function coefficients. Subsequently, a prediction model is established between the uncertain
model parameters and the basis function coefficients. Since POD provides a bidirectional
representation between flow field variables and basis function coefficients, it enables the
prediction of flow fields under arbitrary model parameters, providing a reliable prediction
model for Monte Carlo and other random sampling methods. However, previous studies
have primarily relied on data from a single fidelity level. To fully leverage CFD calculation
data from different fidelities, this paper presents a high-fidelity data completion method
based on Gappy POD, further reducing the sample requirements of existing methods for
high-fidelity data.

The paper is organized as follows. The second section introduces the implementation
framework and main theoretical methods of the entire approach, including POD, Gappy
POD, and Kriging models. The third section presents the cases studied: the low-speed
flow around an NACA0012 airfoil and the transonic flow around an M6 wing. The fourth
section contains the analysis results of the cases, including the prediction accuracy analysis
of Gappy POD and the entire method, the statistical information of the flow field, and
the parameter sensitivity results. Finally, the conclusion and future directions for further
research are discussed.



Aerospace 2024, 11, 263 3 of 21

2. Uncertainty Propagation Model Framework and Key Algorithms

In the field of CFD, using different grid densities, time step sizes, etc., can generate
computational data of varying fidelities. To reduce the overall modeling cost of the un-
certainty propagation model, this study adopts a multi-fidelity modeling framework that
combines flow field reduction and surrogate modeling. The overall implementation process
is shown in Figure 1. The left part of the figure represents the main algorithms used in each
stage, and the right part is the model training process. Below, we focus on introducing the
model training process.
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2.1. Model Training Process

The entire model training process can be implemented using the following six steps:

(1) In the input parameter space, Latin hypercube sampling is employed to generate the
inputs for the ntrain training samples.

(2) Based on the inputs of the training samples, the exchange algorithm [12] based on the
Morris–Mitchell criterion [13] is used to divide the ntrain training samples into two
parts: M complete samples and ntrain m incomplete samples.

(3) For the M complete samples, their corresponding high- and low-fidelity outputs are
obtained through CFD calculations. For the ntrain m incomplete samples, only their
corresponding low-fidelity outputs are obtained through CFD calculations, while their
high-fidelity outputs are considered unknown. Of course, we also obtain the high-
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fidelity outputs of ntrain m incomplete samples through CFD calculations. However,
these data are not used for model training but only for testing the prediction ability of
the Gappy POD method described below.

(4) Using the Gappy POD method [14,15], the high-fidelity outputs of ntrain m incomplete
samples are predicted. At this point, the high-fidelity output results for all ntrain
training samples can be obtained. The low-fidelity output results of these samples
will no longer be used hereinafter.

(5) POD [16,17] is performed on the high-fidelity outputs of the ntrain training samples
to obtain an orthogonal basis function space. Through projection, the basis func-
tion coefficients for each training sample are obtained, which are considered the
new outputs.

(6) Based on the ntrain training samples, a Kriging model [18,19] is constructed between
the input parameters and the basis function coefficients. Since the orthogonal basis
functions obtained through POD are mutually orthogonal, an individual model can
be constructed for each basis function coefficient. When given new input parameters,
the corresponding basis function coefficients can be predicted based on the models,
and the complete flow field response can be reconstructed using the bidirectional
expression of POD.

2.2. Model Testing Process

In the input parameter space, Latin hypercube sampling is again employed to obtain
the inputs for the ntest training samples. The CFD program is run to obtain high-fidelity
sample outputs, which are used to evaluate the prediction accuracy of the overall model.

2.3. Exchange Algorithm

After obtaining ntrain training samples, we select M samples from them to perform
complete high- and low-fidelity simulations using CFD. Theoretically, the M samples
should ideally have good space-filling property in the parameter space. Here, the criterion
proposed by Morris and Mitchell [13] is adopted to measure the space-filling property
of the sample set, i.e., a good space-filling design should maximize the minimum inter-
site distance:

max : min
1≤i<j≤n

dij

where dij is the Euclidean distance between the two samples xi and xj, and n represents the
number of samples in the sample set.

To achieve a better space-filling property, the exchange algorithm proposed by Cook
and Nachtsheim [12] is employed. Specifically, M samples are randomly selected from the
training sample set as the complete sample set Xe, with the remaining samples forming
the incomplete sample set Xr. The minimum inter-site distance of Xe is calculated. We
then exchange the first sample in Xe (denoted as x(1)e ) with each of the samples in Xr and
retain the exchange that maximizes the minimum inter-site distance of Xe. The process is
repeated for each sample in Xe (x(2)e , · · · , x(M)

e ).
It should be emphasized that the exchange algorithm involves a degree of randomness,

necessitating multiple repeated trials to verify its reliability and stability.

2.4. POD

POD is a powerful mathematical technique used for analyzing and reducing the
complexity of high-dimensional systems. This method is widely applied in various fields
such as fluid dynamics, structural dynamics, and signal processing, enabling the efficient
extraction of important characteristics, the reduction in computational costs, and the
enhancement of simulation efficiency. POD provides a valuable tool for the analysis and
optimization of complex systems.

The POD method was proposed by Lumley [16], and its basic principle is to identify a
new set of bases for the space spanned by a group of vectors in high-dimensional space,
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such that the projection of the original vectors onto the set of basis functions is as large as
possible. It involves projecting data onto a set of orthogonal basis functions, allowing for
the extraction of dominant modes and features.

In this paper, the input and output of the k-th sample are denoted as θk and sk separately.
The output of M samples, {sk}M

k=1, constitutes a snapshot set. The average value and
fluctuation part of the sample are defined as:

s = 1
M

M
∑

k=1
sk

s′k = sk − s
(1)

The POD algorithm finds a set of optimal orthogonal bases {φi|i = 1, 2, · · · N}, such
that the projection error of the fluctuation part of sample set

{
s′k
}M

k=1 in the space spanned

by Φ = [φ1,φ2, · · · ,φn] is minimized; that is to say, Q = 1
M

M
∑

k=1

(∥∥∥s′k − Φαk
∥∥∥) is minimized.

Here, αk is the vector composed of orthogonal polynomial expansion coefficients.
To improve the efficiency and accuracy of POD, Sirovich [17] proposed the snapshot

method for the efficient extraction of orthogonal basis vectors. This method assumes that
the basis functions are linear combinations of sample snapshots, i.e.:

φi =
M

∑
k=1

ai
ks′k

Constructing the snapshot covariance matrix C with element Cij is the inner product
of s′i and s′j, that is:

Cij =
1
M

(
s′i, s′j

)
, 1 ≤ i, j ≤ M

Solving its eigenvalues and eigenvectors, M non-negative eigenvalues, λi(i = 1, 2, · · · M),
λ1 ≥ λ2 ≥ · · · λM, and corresponding eigenvectors, bi(i = 1, 2, · · · M), are obtained. The

optimal orthogonal base φi can be expressed by φi =
M
∑

k=1
bi

ks′k.

In the context of POD analysis, the significance of a basis mode is gauged by the mag-
nitude of its eigenvalue. The generalized energy of the first l basis modes is formulated as:

El =

(
l

∑
k=1

λk

)
/

(
M

∑
k=1

λk

)
(2)

The generalized energy criterion is commonly used to retain the prevailing basis
modes, specifically considering the first l basis modes whose generalized energy just
exceeds a predefined threshold as the dominant basis modes. Upon determining the
dominant basis modes and truncating the basis function space, any given sample snapshot
can be approximated as a linear combination of these prevailing basis modes, expressed as:

sk ≈ s +
l

∑
i=1

αk
i φi (3)

where αk =
(

αk
1, αk

2, · · · αk
n

)T
is obtained through least-squares method, which means:

αk =
(

ΦTΦ
)−1

ΦT(sk − s)

Through POD, the original high-dimensional response is reduced to an l-dimensional
response, effectively alleviating the challenge of constructing a surrogate model. In sub-
sequent surrogate modeling, the output is no longer the original response sk, but a low-
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dimensional vector
→
α composed of basis mode coefficients. It is noteworthy that Formula (3)

facilitates a bidirectional process, enabling not only the dimensionality reduction in the
known sk to obtain

→
α but also the utilization of

→
α to reconstruct the original output re-

sponse sk.

2.5. Gappy POD

The Gappy POD method enables the generation of corresponding high-fidelity flow
fields from low-fidelity ones, avoiding time-consuming high-fidelity CFD calculations.

Regarding the i-th sample in the complete sample set, we denote its model input pa-

rameters as θi, its low-fidelity output vector as sL
i =

(
sL

1,i, sL
2,i, · · · , sL

nL ,i

)T
with a dimension

of nL, and its high-fidelity output vector as sH
i =

(
sH

1,i, sH
2,i, · · · , sH

nH ,i

)T
with a dimension of

nH. The high- and low-fidelity outputs are combined into a multi-fidelity sample snapshot

denoted as si =

(
sL

i
sH

i

)
with a dimension of nL + nH.

Classical POD decomposition is performed for the multi-fidelity snapshots {si}M
i=1.

Based on the generalized energy criterion, truncation is performed to obtain an orthogonal
space Φ = [φ1,φ2, · · · ,φn], which is composed of n orthogonal basis functions. Therefore,
any multi-fidelity snapshot can be represented as:

s ≈ s +
n

∑
j=1

αjφj

where s = 1
M

M
∑

i=1
si. The basis mode coefficient vector

→
α = (α1, α2, · · · , αn)

T is obtained

using least-square methods.
For the j-th sample in the incomplete sample set, we denote its model input parameters

as θj and its multi-fidelity sample snapshot as sj =

(
sL

j

sH
j

)
. Here, its low-fidelity output

vector sL
j =

(
sL

1,j, sL
2,j, · · · , sL

nL ,j

)T
is obtained with CFD, while its high-fidelity output vector

sH
j is regarded as unknown and needs to be predicted.

The projection operator is defined as follows:

Γ =

(
InL 0
0 0

)
(nL+nH)×(nL+nH)

,

where InL is the unit matrix with dimension nL, and the expansion coefficient vector
→
β

of the incomplete sample snapshot in the orthogonal basis function space is obtained by
solving the following extremal problem:

J
(→

β

)∣∣∣∣∣∣∣∣ΓSj − ΓΦ
→
β

∣∣∣∣∣∣∣∣
After simple matrix operations, we can obtain:

→
β =

(
ΦTΓΦ

)−1
ΦTΓsj.

The (nL + 1)-th to (nL + nH)-th elements of the vector Φ
→
β are the prediction of sH

j .

2.6. Kriging Model

The Kriging model, a surrogate modeling approach widely used in academia and
industry, is founded on the theory of random processes. It assumes the presence of spatial
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correlation among the response values at different inputs and interpolates the response
value at prediction location using the existing observations.

The Kriging model can be expressed as the summation of a linear regression model
fT(x)β and a stochastic process Z(x), that is:

Y(x) = fT(x)β+ Z(x)

where f(x) = [ f1(x), f2(x), · · · , fk(x)]
T represents regression functions, andβ = [β1, β2, · · · , βk]

T

is the unknown regression parameters. fT(x)β contributes a global model, and Z(x)
accounts for local deviations.

It is usually assumed that Z(x) is a Gaussian random process with zero mean. The
covariance between Z(x) and Z(w) is denoted as:

Cov(z(w), z(x)) = σ2R(w, x)

For a given experimental design, denoted as S = [s1, · · · , sN ], the corresponding ob-
servation is denoted as ys = [y(s1), · · · , y(sN)]. The maximum likelihood estimates (MLEs)
of the unknown parameters β and σ2, derived from these sample data, are as follows:

β̂ =
(
FTR−1F

)−1FTR−1ys

σ̂2 = 1
N
(
ys − Fβ̂

)TR−1(ys − Fβ̂
)

where the regression design matrix F and the correlation function matrix R are, respectively,
defined as:

F = [f(s1), · · · , f(sN)]
T

R =
[
R(si, sj)

]
i,j, 1 ≤ i, j ≤ N .

The best linear unbiased predictor for the prediction location x is given by:

ŷ(x) = fT(x)β̂+ rT(x)α̂

where α̂ is defined as α̂ = R−1(ys −Fβ̂), and the correlation vector, denoted by r, represents
the correlation between the training samples S and the prediction sample x, that is:

r = [R(s1, x), · · · , R(sN , x)]T

3. Case Description

To assess the efficacy of the proposed approach, this paper examines the influence
of uncertainty in the coefficients of the SA turbulence model on the prediction of airfoil
aerodynamics. The SA model is extensively utilized in aerospace and related fields [20].
The computation presumes fully turbulent flow and disregards the transition term in the
original model, resulting in nine coefficients denoted as cb1, σ, cb2, κ, cw2, cw3, cv1, ct3, ct4. It is
assumed that the model coefficients are subject to epistemic uncertainty, which can be char-
acterized using probabilistic methods from a credibility perspective. The model parameters
are assumed to follow uniform distributions with the intervals specified in Table 1, with
parameter ranges referenced from the pertinent literature [21]. It is worth noting that the
mathematical representation of model uncertainty parameters, including distribution types
and parameters, necessitates thorough consultation with model developers. The present
study primarily focuses on the propagation of uncertainty given a mathematical description
of the uncertain parameters, rather than on the precise quantification of uncertainty for the
model parameters. Numerous investigations have been conducted on the quantification of
uncertainty in SA turbulence model parameters, primarily employing polynomial chaos
methods, with an emphasis on overall aerodynamic outputs such as airfoil or aircraft
forces [21,22].
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Table 1. Interval and standard value of SA model parameters.

Minimum Value Maximum Value Standard Value

cb1 0.12893 0.137 0.1355
σ 0.6 1.0 2/3

cb2 0.60983 0.6875 0.622
κ 0.38 0.42 0.41

cw2 0.055 0.3525 0.3
cw3 1.75 2.5 2.0
cv1 6.9 7.3 7.1
ct3 1.0 2.0 1.2
ct4 0.3 0.7 0.5

The two numerical examples investigated are the distribution of the wall friction
coefficient in the low-speed flow over an NACA0012 airfoil and the distribution of the wall
pressure coefficient in the transonic flow over an M6 wing. These two cases are presented
separately in the following subsections.

3.1. Low-Speed Flow around an NACA0012 Airfoil

The NACA0012 airfoil, with a symmetric profile and 12% thickness, is considered
under the computational condition of M∞ = 0.15, α = 5.0◦, T∞ = 288.15K, Re∞ = 6 × 106.
Two sets of grids with different densities, shown in Figure 2, are utilized for the generation
of high- and low-fidelity samples. The number of cells is 3584 and 57,344, respectively. The
coarse grid has a grid size that is one-sixteenth of the dense grid, and typically requires
fewer iteration steps to reach convergence. However, for the purpose of uniformly assessing
computational cost, it is assumed that the low-fidelity samples incur one-sixteenth of the
computational cost of the high-fidelity samples.
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The wall friction coefficient distribution obtained using standard parameters of the SA
model is presented in Figure 3. The high- and low-fidelity results exhibit similar trends,
characterized by local abrupt variations on the upper and lower surfaces of the airfoil
leading edge, followed by a gradual stabilization. However, significant differences in
magnitude are observed, particularly on the upper surface where the dense grid prediction
is notably higher. Accurately capturing these local abrupt variations in friction coefficients
poses a significant challenge and demands high accuracy from the prediction model.
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3.2. Transonic Flow around an M6 Wing

The transonic flow over the M6 wing serves as a benchmark test case for assessing
transonic flow solvers. The wing features a root chord of approximately 0.8 m and a
half-span of approximately 1.2 m, with a symmetric airfoil section. Two sets of grids
with different densities, shown in Figure 4, are utilized for the generation of low- and
high-fidelity samples. The number of cells is 990,360 and 3,594,863, respectively. Therefore,
it is assumed that the acquisition cost of one high-fidelity sample is 3.5 times that of one
low-fidelity sample. The output of this case constitutes a vector comprising the pressure
coefficients of all grid points covering the entire wing surface, with a dimensionality of
13,638 for the coarse grid and 29,684 for the dense grid.
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Figure 4. Computational grid for M6 wing.

The computational condition is set at M∞ = 0.8395, α = 3.06◦, T∞ = 255.56K,
Re∞ = 1.172× 107. Under this condition, a λ-shaped shock structure develops on the upper
surface of the wing, as shown in Figure 5, posing substantial challenges for the prediction
model. The pressure distributions obtained by using two sets of grids are consistent, but
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near the suction peak and shock wave on the upper surface, the dense grid results are in
better agreement with the reference experiment results shown in Figure 6.
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The sample data in this study are generated using the in-house unstructured grid
solver Flowstar [23], which is founded on a cell-centered finite volume methodology and is
adept at handling diverse element types, including hexahedra, tetrahedra, prisms, pyra-
mids, and other polyhedra generated via geometrical multigrid techniques. Second-order
accuracy in space is attained through linear reconstruction within cells. The vertex-based
Green–Gauss approach [24] is employed for gradient computations to uphold accuracy
and robustness. To mitigate oscillations in regions of high gradients, Venkatakrishnan’s
limiter [25] is utilized. The Roe scheme is engaged for inviscid flux computations. A first-
order backward Euler time-differencing scheme with local time stepping is implemented
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to approximate a steady state, facilitating convergence. The flux Jacobian is derived from
a first-order upwind scheme, with the divided convective flux Jacobian composed of the
convective flux Jacobian and its spectral radius. The viscous flux Jacobian is approximated
using its spectral radius.

In Kriging modeling, the regression function is a constant function, and the covariance
function, which determines the spatial correlation structure, is a Gaussian function. In the
POD method, the generalized energy criterion is set at 99.9%.

4. Results and Discussion

The prediction accuracy of the model can be assessed through the prediction error of
the high-fidelity output vector sH . For incomplete samples within the training dataset, the
error vector is defined as

→
ε = sH

∣∣
Gappy POD − sH

∣∣
CFD, serving as a metric for evaluating

the accuracy of the Gappy POD method. For the testing sample, the error vector is defined
as

→
ε = sH

∣∣
model − sH

∣∣
CFD, serving to evaluate the accuracy of the overall model.

For each sample, we define dimensionless errors based on the 1-norm, 2-norm, and
infinity norm of the error vector:

ε1 =

∥∥∥→ε ∥∥∥
1

nH · ref
, ε2 =

∥∥∥→ε ∥∥∥
2√

nH · ref
, εinf =

∥∥∥→ε ∥∥∥
inf

ref

where ref is the range of the sample response, ref = max( sH
∣∣
CFD)− min( sH

∣∣
CFD).

4.1. Low-Speed Flow around an NACA0012 Airfoil

In this case, we fix ntrain = 32 and ntest = 49 and assign M values of 11, 13, 15, and 17.
This configuration facilitates the analysis of the cost and accuracy trade-offs of the overall
model in this paper relative to modeling with high-fidelity samples only. Specifically,
the computational cost of 32 low-fidelity samples is deemed equivalent to that of 2 high-
fidelity samples.

(1) Accuracy analysis of Gappy POD method
Given that high-fidelity sample data serve as the basis for subsequent POD and

Kriging modeling, it is crucial to first analyze the accuracy of the Gappy POD method
in reconstructing the corresponding high-fidelity output from low-fidelity output. In the
analysis, M is set to 11, with similar results observed for M values of 13, 15, and 17.

Randomly selecting an incomplete sample from the training dataset, Figure 7 presents
a comparison between the wall friction coefficient distribution predicted using the Gappy
POD method and high-fidelity CFD computation. Visually, the disparity between the two
is minimal.

To further evaluate the accuracy of the Gappy POD method, the prediction error
was computed for all incomplete samples; the resulting error distribution is depicted in
Figure 8. Across all incomplete samples, it can be noted that ε1 remains below 0.25%, ε2
remains below 0.6%, and εinf remains below 2.5%. Considering the randomness of the
Latin hypercube sampling and exchange algorithm, steps (a) through (d) in the training
process were repeated a total of 10 times. Figure 9 presents the statistical analysis of errors
for all incomplete samples, revealing median values of 0.0007, 0.0015, and 0.0070 for ε1, ε2,
and εinf, respectively. The results demonstrate that the Gappy POD approach is capable of
reconstructing high-fidelity outputs using a limited amount of complete sample data and
low-fidelity outputs, effectively substituting for computationally expensive high-fidelity
CFD calculations and significantly reducing computational costs.
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(2) Accuracy analysis of overall model
Given that this study employs the Monte Carlo method to perform extensive ran-

dom sampling on the overall model, it is imperative to validate the predictive capability
of the model. Figure 10 presents a comparison between the wall friction coefficient dis-
tribution predicted by the overall model and the high-fidelity CFD computation for a
randomly selected sample from the test dataset with M = 11. Visually, the two exhibit
excellent agreement.
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The prediction error was computed for all testing samples, and the resulting error
distribution is depicted in Figure 11. Across all testing samples, it can be noted that ε1
remains below 0.25%, ε2 remains below 0.5%, and εinf remains below 2.5%. The results
strongly validate the predictive capability of the proposed model in accurately estimating
the wall friction coefficient distribution for new samples, thus providing robust support for
large-scale random sampling processes.
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(3) Analysis of the influence of sample size
In the context of multidimensional correlated responses, while the multi-fidelity mod-

eling approach presented in this study is applicable, an alternative approach could involve
utilizing solely high-fidelity data for POD decomposition and surrogate model construction.
Given that low-fidelity samples, despite their lower acquisition costs, still require CFD
computations, a rigorous examination is warranted to determine the precise impact of
incorporating additional low-fidelity calculations on the overall modeling accuracy.
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To this end, we analyzed the prediction error performance of the model using both
the overall model developed in this paper and the approach of using only high-fidelity
data for modeling. The results are shown in Figures 12–14. To eliminate the randomness
of the sampling algorithm, all processes were repeated 10 times. The settings for the POD
and the Kriging model were consistent in the comparison. The vertical axis in the three
graphs represents the statistical error, while the horizontal axis indicates the models and
sample size. Specifically, “11High” represents a single-fidelity model using 11 high-fidelity
samples, and “11High32Low” represents a multi-fidelity model using 11 high-fidelity
samples and 32 low-fidelity samples. The vertical green solid line divides the horizontal
space into several regions, with computational costs in the same region roughly considered
equivalent. The figures reveal that as the number of high-fidelity samples used in the multi-
fidelity modeling increases from 11 to 17, the overall prediction error remains relatively
stable and low, indicating the robustness of the multi-fidelity model. For the model using
11 high-fidelity samples and 32 low-fidelity samples, the median values for ε1, ε2, and εinf
are 0.0012, 0.0018, and 0.0065, respectively, all maintaining a very low error level. For the
single-fidelity model, the error decreases significantly as the sample size increases, and
it still shows a downward trend even when using 17 high-fidelity samples, indicating
that it has not yet stabilized. Furthermore, even when the computational cost is higher
than that of the multi-fidelity modeling, the prediction error remains larger. The statistical
results fully demonstrate the efficiency and accuracy advantages of the multi-fidelity
modeling approach.
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(4) Statistical results analysis
Latin hypercube sampling was employed again within the nine-dimensional input

space to generate 106 samples, which were sequentially passed to the overall model to
derive the corresponding distribution of wall friction coefficients. The statistical analysis of
the sample data yielded the mean value and 99% confidence interval of the wall friction
coefficient, as depicted in Figure 15. The results indicate significant uncertainty in the
friction coefficient across the entire airfoil.
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The relative significance of the nine model parameters on the distribution of the friction
coefficients can be ascertained through the sensitivity analysis approach, as presented
in Table 2. A global sensitivity analysis approach proposed by Gamboa et al., which
decomposes the covariance of multi-output variables [26], is utilized. As shown, κ emerges
as the most influential parameter, which can be expected from a physical standpoint. In the
constant Reynolds stress layer of plane shear turbulence, the eddy viscosity coefficient is
directly proportional to κ, i.e., νt = κuτd. The eddy viscosity coefficient characterizes the
relationship between Reynolds stress and mean flow, serving a role analogous to molecular
viscosity in RANS simulations. Hence, κ is intimately linked with the viscosity of the flow,
and the friction coefficient is directly correlated with the flow viscosity.
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Table 2. Sobol indicators of SA model parameters.

Main Effect Total Effect

cb1 0.0061 0.0073
σ 0.1223 0.1270

cb2 0.0001 0.0004
κ 0.7945 0.7991

cw2 0.0482 0.0504
cw3 0.0001 0.0001
cv1 0.0200 0.0210
ct3 0.0001 0.0008
ct4 0.0001 0.0004

4.2. Transonic Flow around an M6 Wing

(1) Accuracy analysis of Gappy POD method
In the analysis, ntrain is set to 21 and M is 6. Randomly selecting an incomplete sample

from the training dataset, Figure 16 presents a comparison between the pressure coefficient
distribution predicted by the Gappy POD method and the high-fidelity CFD computation.
Visually, the disparity between the two is minimal.

To further evaluate the accuracy of the Gappy POD method, the prediction error was
computed for all incomplete samples, and the resulting error distribution is depicted in
Figure 17. Across all incomplete samples, it can be noted that ε1 remains below 0.0035%, ε2
remains below 0.03%, and εinf remains below 1.5%. The results demonstrate that the Gappy
POD approach is capable of reconstructing high-fidelity outputs using a limited amount of
complete sample data and low-fidelity outputs, effectively substituting for computationally
expensive high-fidelity CFD calculations and significantly reducing computational costs.

(2) Accuracy analysis of overall model
The overall model was constructed using ntrain high-fidelity responses, of which M

responses were calculated using CFD simulations, and the rest were reconstructed using
the Gappy POD algorithm from its low-fidelity responses. Figure 18 presents a comparison
between the pressure coefficient predicted by the overall model and the high-fidelity CFD
computation for a randomly selected sample from the test dataset. Visually, the two exhibit
excellent agreement.
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The prediction error was computed for all testing samples, and the resulting error
distribution is depicted in Figure 19. Across all testing samples, it can be noted that ε1
remains below 0.009%, ε2 remains below 0.035%, and εinf remains below 2%. The results
strongly validate the predictive capability of the proposed model in accurately estimating
the pressure coefficient distribution for new samples, thus providing robust support for
large-scale random sampling processes.

Aerospace 2024, 11, x FOR PEER REVIEW 20 of 23 
 

 

   

Figure 19. Error analysis of overall model for predictions on testing samples for the M6 case.  

(3) Analysis of the influence of sample size 
To demonstrate the advantages of the proposed multi-fidelity model over the single-

fidelity model using only high-fidelity samples, we analyzed the prediction performance 
of the two approaches. The computational cost of the low-fidelity sample is converted into 
the equivalent cost of the high-fidelity sample, with a ratio of 1 to 3.5. The mean prediction 
error of the two approaches is shown in Figure 20, demonstrating that with the inclusion 
of low-fidelity samples, the multi-fidelity model can achieve a much lower prediction er-
ror with approximately the same computational cost compared with the single-fidelity 
model. 

 
Figure 20. Comparison of prediction error on testing samples between multi-fidelity and high-fidel-
ity models for the M6 case. 

(4) Statistical results analysis 
Latin hypercube sampling was employed again within the nine-dimensional input 

space to generate 106 samples. These inputs were sequentially fed into the fast prediction 
model to acquire the corresponding pressure coefficients. The statistical analysis of the 
sample data yielded the mean value and standard deviation of the wall pressure coeffi-
cient, as depicted in Figure 21. Notably, the uncertainty of the pressure coefficient is con-
centrated at the λ -shaped shock on the upper surface, whereas the uncertainty at other 
locations is minimal. This observation aligns with expectations, given that the prediction 
of shocks is highly sensitive to turbulence model parameters. 

Figure 19. Error analysis of overall model for predictions on testing samples for the M6 case.

(3) Analysis of the influence of sample size
To demonstrate the advantages of the proposed multi-fidelity model over the single-

fidelity model using only high-fidelity samples, we analyzed the prediction performance of
the two approaches. The computational cost of the low-fidelity sample is converted into
the equivalent cost of the high-fidelity sample, with a ratio of 1 to 3.5. The mean prediction
error of the two approaches is shown in Figure 20, demonstrating that with the inclusion of
low-fidelity samples, the multi-fidelity model can achieve a much lower prediction error
with approximately the same computational cost compared with the single-fidelity model.
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(4) Statistical results analysis
Latin hypercube sampling was employed again within the nine-dimensional input

space to generate 106 samples. These inputs were sequentially fed into the fast prediction
model to acquire the corresponding pressure coefficients. The statistical analysis of the
sample data yielded the mean value and standard deviation of the wall pressure coefficient,
as depicted in Figure 21. Notably, the uncertainty of the pressure coefficient is concentrated
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at the λ-shaped shock on the upper surface, whereas the uncertainty at other locations is
minimal. This observation aligns with expectations, given that the prediction of shocks is
highly sensitive to turbulence model parameters.
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Through the application of the multi-output global sensitivity analysis approach
grounded in covariance decomposition, the relative significance of model parameters on
the pressure coefficient distribution can be ascertained, as presented in Table 3. Again, κ
emerges as the most influential parameter. Following the same analysis as the first case, κ is
closely linked with the viscosity of the flow, which significantly impacts the kinetic energy
loss of fluid micro-groups within the boundary layer and the capacity to resist adverse
pressure gradients, ultimately influencing the prediction of shock wave positions.

Table 3. Sobol indicators of SA model parameters for M6 case.

Main Effect Total Effect

cb1 0.0625 0.0674
σ 0.2375 0.2550

cb2 0.0050 0.0050
κ 0.6079 0.6184

cw2 0.0338 0.0382
cw3 0.0016 0.0017
cv1 0.0340 0.0368
ct3 0.0035 0.0040
ct4 0.0012 0.0012

5. Conclusions

This study addresses the requirement for uncertainty quantification in multidimen-
sional correlated responses within flow fields. Building on the previously established
modeling framework, which utilizes Proper Orthogonal Decomposition for flow field
reduction and surrogate models, we introduce a multi-fidelity modeling framework that in-
tegrates high- and low-fidelity sample data. The findings of this investigation demonstrate
the following:

(1) The Gappy POD-based method for supplementing missing data in flow fields enables
the restoration of high-fidelity outputs from a limited amount of complete sample data,
utilizing the low-fidelity outputs of incomplete samples. This approach effectively
avoids the need for computationally expensive high-fidelity CFD calculations on a
large number of samples, significantly reducing computational costs.

(2) The multi-fidelity modeling approach demonstrates a marked improvement in predic-
tion accuracy and model stability compared to single-fidelity methods while incurring
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approximately the same computational cost for sample processing. This methodology
offers an efficient and robust prediction model for large-scale random sampling.

The cases investigated in this study demonstrate a relatively stable variation in the
flow field under differing turbulence model coefficients. In such cases, it is commonly
accepted that Proper Orthogonal Decomposition effectively captures the fundamental
modes of the flow field. However, if the flow field exhibits rapid changes in response to
model parameters, such as smooth flow fields under certain parameters and discontinuous
flow fields under others, further validation is required to ascertain the accuracy of the
developed model in predicting flow field variables. Autoencoder and deep neural network
approaches represent potential solutions to these challenges and will be the focus of
future investigations.
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