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Abstract: This study investigated combustion characteristics of composite fuel grains designed based
on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure
with nine acrylonitrile–butadiene–styrene helical blades. A paraffin-based fuel was embedded
between adjacent blades. Two modifications of the helical structure framework were researched. One
mirrored the helical blades, and the other periodically extended the helical blades by perforation. A
laboratory-scale hybrid rocket engine was used to investigate combustion characteristics of the fuel
grains at an oxygen mass flux of 2.1–6.0 g/(s·cm2). Compared with the composite fuel grain with
periodically extended helical blades, the modified composite fuel grains exhibited higher regression
rates and a faster rise of regression rates as the oxygen mass flux increased. At an oxygen mass flux of
6.0 g/(s·cm2), the regression rate of the composite fuel grains with perforation and mirrored helical
blades increased by 8.0% and 14.1%, respectively. The oxygen-to-fuel distribution of the composite
fuel grain with mirrored helical blades was more concentrated, and its combustion efficiency was
stable. Flame structure characteristics in the combustion chamber were visualized using a radiation
imaging technique. A rapid increase in flame thickness of the composite fuel grains based on the
modular unit was observed, which was consistent with their high regression rates. A simplified
numerical simulation was carried out to elucidate the mechanism of the modified modular units on
performance enhancement of the composite hybrid rocket grains.

Keywords: modular unit; modification; regression rate; combustion efficiency; hybrid rocket engine

1. Introduction

The hybrid rocket engine (HRE) is progressively emerging as a compelling propulsion
system with significant potential for development and commercial viability [1–5]. In
comparison with conventional liquid or solid rocket engines, the HRE offers the benefits of
adjustable thrust, enhanced safety protocols, environmental friendliness, ease of repeated
ignition, and low manufacturing cost [6–9]. However, the following issues with HRE
are still unresolved: the different phases of the propellants and the diffuse combustion
characteristics result in the low combustion efficiency of fuel grains [10–13]. Both low
regression rates and oxygen-to-fuel ratio shift will affect engine performance, and proper
regression rates can reduce oxygen-to-fuel ratio shift [14]. Therefore, research has focused
on improving the regression rates. The use of complex single-port structures and multi-
port fuel grains have proven effective in increasing regression rates of fuel grains [15–20].
At a constant oxygen mass flow rate, there is an antagonism between the rise rate of
regression and enhancement of flux enhancement, which often involves employing multi-
port structures to augment the burning surface. This carries certain risks, such as the
collapse of adjacent ports caused by the increased volumetric load [12,21]. For this reason,
it is more attractive to use a modified single port to improve the fuel grains and resulting
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turbulence to increase the regression rate [22]. Typically, the work of Kumar et al. [23,24]
showed that the use of protrusion and bluff bodies in the single port fuel grain significantly
improved the combustion efficiency and regression rate of the engine.

In recent years, three-dimensional (3D) printing technology has become sufficiently de-
veloped and successfully applied to the manufacturing of hybrid rocket fuel grains [25–32].
This technique allows for direct integral molding of polymeric fuel grains with a complex
single port, which is difficult to accomplish using traditional manufacturing methods [25].
Representative work was published by Whitmore et al. [26,27], who printed a spiral single-
port acrylonitrile–butadiene–styrene (ABS) fuel grain in one piece. Centrifugal swirl flow,
induced by the helical port, promoted convective heat transfer and increased the regression
rates. Another strategy for applying 3D printing to fuel grains has been to embed the
printed skeleton reinforcement structure in paraffin-based fuels. Paraffin-based fuels have
gained significant attention due to their high regression rates, despite their poor mechanical
properties. Embedding 3D printed skeletons, such as the “armored grain” proposed by
Bisin et al. [28,29], enhanced the mechanical properties of the paraffin-based grains at the
expense of regression rate. In the work of our group, both mechanical properties as well as
the regression rate of paraffin-based fuels with embedded ABS helical structure framework
proposed by Wang et al. [30] were significantly improved. Varying regression rates of fuels
generate groove structures that facilitate oxidant vortex flow to improve turbulence and
combustion efficiency. Lin et al. [31,32] subsequently modified the helical structure frame-
work by perforation and used metallic materials to strengthen the mechanical properties
and combustion characteristics of the fuel grains. These studies validated the potential of
embedded skeletal reinforcement.

Single-port stepped fuel grains with adjustable internal ballistics were recently in-
vestigated by Glaser et al. [33,34]. Their design is similar to the stacking of multiple fuel
grains, each of which is a separate single-port paraffin-based grain. Flexible modification
of multiple single-port paraffin-based grains, and controlling their inner diameter and
length to obtain the desired ballistic design within the fuel grains, improves engine perfor-
mance. However, the stacking may cause interface instability and requires a complicated
manufacturing process. Owing to the above-mentioned issues, integrally molded skele-
ton reinforcement structures produced by 3D printing could be expected to simplify the
manufacturing process of fuel grains and enable targeted improvements in HRE.

This study proposed a modular fuel design strategy that can modify the engine com-
bustion. A periodic helical structure framework is the smallest unit of the modular unit.
The modular fuel unit comprises a periodical helical structure framework that can be
flexibly regulated and integrated by 3D printing. A paraffin-based fuel was embedded in
the framework. Two modifications of the helical structure framework were investigated.
One was mirroring the helical structure (MS grain); the other was the periodic extension
of the helical structure with perforations (PS grain). A fuel grain with periodically ex-
tended helical structure (HS grain) and paraffin-based grain (PP grain) were tested for
comparison. In the tests, the mass flow rate of oxygen was 9.5–28.1 g/s, corresponding to
a mass flux of 2.1–6.0 g/(s·cm2). The combustion chamber pressure, oxygen-to-fuel ratio
(O/F) distribution, regression rate, and combustion efficiency of the engines were studied.
Radiation imaging was used to analyze the characteristic flame structure in the combustion
chamber during the experiments. Simplified 3D simulations were carried out to reveal the
mechanism of the modified modular units on performance enhancement of the HRE.

2. Materials and Methods
2.1. Modular Unit Framework

A nested framework is an important support part of the modular fuel unit. As shown
in Figure 1, a periodic helical structure framework is the smallest unit of the modular
framework that can be flexibly regulated and integrated by 3D printing. The modular unit
framework was periodically extended from the helical structural of the smallest unit and
consisted of nine 1.5-mm-thick blades with axial helical extension and a 2-mm-thick outer
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wall. The helical pitch of the blades was 100 mm with 0.5 turns. The length of the modular
fuel unit was 50 mm, which was half the length of the manufactured fuel grain. Its outer
and inner diameters were 60 mm and 20 mm, respectively. The blades and outer wall were
integrally manufactured.
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Three composite fuel grains based on the modular unit were studied. The structure
of the HS grain was a periodically extended modular unit framework with one periodic
expansion. The PS grain improved the helical blades based on the HS grain. There were
numerous pores spread over the helical blades of the PS grain, which enhanced adhesion
of the paraffin-based fuel to the helical blades. The perforations were carried out along the
path of a screw thread rotating in the opposite direction to that of the helical blades, with a
pitch of 25 mm. The pores had a diameter of 1 mm and were spaced 2 mm apart. The MS
grain design adjusted the helical direction of the helical blades. The structure of the MS
grain was obtained by mirroring the helical blades along one end face of the modular unit
framework. This particular mirror structure is used to explore the impact of the modular
unit design strategy.

Manufacturing of the composite fuel grains comprised two main steps. The first was
to print out the designed structure using a commercially available 3D printer (Raiser 3D,
Pro2 Plus, Bakersfield, CA, USA). The second was embedding the paraffin-based fuel by
means of centrifugal casting technology. Details of the fabrication of the composite columns
can be found in previous studies [30].

2.2. Laboratory-Scale Hybrid Rocket Engine

A schematic of the laboratory-scale HRE is shown in Figure 2. The engine consisted
of two combustion chambers at the head and tail of the engine, and a main combustion
chamber and a laval nozzle with 5 mm throat diameter. The pre- and post-combustion
chambers had lengths of 30 mm and 50 mm, respectively, and shared the same diameter
of 50 mm. The dimensions of the main combustion chamber correspond to that of the
fuel grains. Interfaces were provided in the combustion chambers to connect pressure
sensors. Further details can be found in our previous studies [30,35]. The engine was
ignited by a torch-type igniter activated by gaseous methane and oxygen. Oxygen from



Aerospace 2024, 11, 262 4 of 18

the combustion chamber entered through the annular port of the coaxial injector at an
average oxygen mass flow rate of 9.5 to 28.1 g/s. A mass flow controller (Bronkhorst,
model F-203AV, Ruurslo, The Netherlands) was used to regulate the oxygen mass flow rate.
The coaxial core section of the injector was a fiber optic viewport, which was connected via
fiber optics to a high-speed camera (iX Cameras, i-Speed 220, London, UK) and acted as a
carrier of radiation luminescence. The frame rate of the camera was 1 kHz and its exposure
time was 0.28 ms. A narrowband filter was used to eliminate optical signal clutter. The
narrowband filter had a center wavelength of 430 nm and a bandwidth of 10 nm. A digital
delay generator (Stanford Research Systems, DG645, Sunnyvale, CA, USA) was connected
between the high-speed camera and host computer to provide precise signal pulses and
stable trigger times for the camera.
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3. Results and Discussion

Table 1 lists the recorded results of fifty experiments, pertaining to average oxygen
mass flow rate,

.
mo, average oxygen mass flux, Gox, average chamber pressure, P, regression

rate,
.
r, and O/F. These values were calculated as weight averages.

Table 1. Test results of fuel grains.

No. Grain
.

mo (g/s) Gox g/(s·cm2) ¯
P (MPa)

.
r (mm/s) O/F

1

HS grain

10.06 2.34 1.02 0.76 1.95
2 12.03 2.73 1.11 0.88 1.95
3 13.76 3.11 1.28 0.88 2.22
4 15.33 3.44 1.49 0.94 2.29
5 18.37 3.98 1.74 1.1 2.22
6 18.25 4.01 1.77 1.04 2.45
7 18.50 4.01 1.83 1.11 2.29
8 19.09 4.16 1.81 1.05 2.44
9 20.71 4.47 1.97 1.12 2.51

10 22.36 4.74 2.08 1.21 2.44
11 24.11 5.08 2.23 1.26 2.50
12 24.40 5.28 2.13 1.16 2.81
13 26.27 5.55 2.39 1.27 2.73
14 28.09 5.98 2.45 1.23 3.01
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Table 1. Cont.

No. Grain
.

mo (g/s) Gox g/(s·cm2) ¯
P (MPa)

.
r (mm/s) O/F

15

PS grain

9.61 2.18 0.95 0.84 1.65
16 11.60 2.64 1.10 0.86 1.95
17 12.11 2.70 1.14 0.94 1.81
18 13.79 3.04 1.33 0.99 1.95
19 16.75 3.64 1.59 1.07 2.14
20 17.45 3.78 1.74 1.08 2.20
21 18.47 3.95 1.82 1.15 2.16
22 18.59 4.01 1.80 1.14 2.23
23 20.87 4.44 1.97 1.23 2.26
24 22.40 4.76 2.11 1.22 2.44
25 23.73 4.93 2.27 1.34 2.27
26 24.06 5.06 2.22 1.26 2.50
27 24.66 5.21 2.40 1.28 2.57
28 25.70 5.37 2.41 1.35 2.51

29

MS grain

9.49 2.24 0.92 0.71 1.98
30 12.12 2.76 1.20 0.86 2.01
31 13.34 2.96 1.36 0.96 1.93
32 14.73 3.23 1.49 1.02 1.96
33 16.96 3.74 1.66 1.04 2.21
34 18.43 3.95 1.80 1.16 2.13
35 21.18 4.53 2.03 1.19 2.34
36 23.51 4.87 2.33 1.36 2.21
37 25.69 5.42 2.48 1.32 2.43
38 27.02 5.63 2.62 1.37 2.54

39

PP grain

9.77 2.32 0.89 0.68 2.15
40 11.42 2.66 1.00 0.75 2.22
41 13.90 3.19 1.17 0.79 2.52
42 17.46 4.03 1.46 0.82 3.08
43 18.74 4.27 1.56 0.88 3.03
44 18.92 4.28 1.69 0.91 2.93
45 19.60 4.38 1.66 0.88 3.13
46 19.17 4.38 1.65 0.96 2.84
47 20.58 4.54 1.78 1.00 2.84
48 21.42 4.81 1.92 0.95 3.21
49 24.64 5.44 2.00 1.02 3.34
50 25.87 5.68 2.23 1.03 3.46

3.1. Combustion Chamber Pressure

The chamber pressure can reflect the operating status of the engine [36]. Figure 3
provides the histories of the chamber pressure and oxygen mass flow rate with time for the
four fuel grain designs under three average oxygen mass fluxes, and the distribution of
the average chamber pressures at different oxygen mass fluxes. The ignition time of the
engine was defined as the zero point. Differences in ignition times between fuel grains are
due to valve switching delays. The entire ignition process lasted approximately 6 s. As
the pressure stabilized, the oxygen flow rate stabilized. The variation in chamber pressure
was similar for all fuel grains. The chamber pressure of the composite fuel grains was
significantly higher than that of the pure paraffin-based grain, which is consistent with the
previous conclusions of our group [31]. The pressure in the combustion chamber increased
when composite fuel grains consisted of regulated modular units. The combustion chamber
pressures of the MS and PS grains were higher than the chamber pressures of the HS grain.
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3.2. Regression Rate and Combustion Efficiency

As an important parameter for HRE, regression rate is generally determined by mea-
suring the mass of the grain before and after testing, using the following expression:

.
r =

d f − d0

2t
=

√
d2

0 +
4(m0−m f )

πρL − d0

2t
(1)

where d f , d0 refer to the inner diameter of the fuel grains before and after combustion,
respectively. m f , m0 refer to the mass of the fuel grains before and after combustion. ρ
refers to the density of fuel, L refers to the length of fuel grains, and t refers to the actual
time of engine operation. This value

.
r can be represented as a function of GOX :

.
r = aGn

OX (2)

where
.
r denotes the regression of composite grains, Gox refers to the mass flux of the

oxidizer, and a and n refer to the constants obtained by fitting.
Figure 4 illustrates the distribution of regression rates and their fitting results. Modified

composite grains exhibited higher regression rates compared to paraffin-based fuel. The
different modifications of the helical structure also different degrees of increase in the
regression rates. At the lowest oxygen mass flux, the regression rate of the PS grain was
significantly higher than that of the HS grain, while those of the HS and MS grains were
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similar. However, as the oxygen mass flux increased, the regression rate of the MS grain
with the modified modular fuel unit significantly increased, and the rise rate was higher
than that of the conventional HS grain. At an average oxygen mass flux of 6.0 g/(s·cm2),
the regression rate of the PS grain was consistently 8.0% and 30.7% higher than that of
the HS and PP grains, respectively. Similarly, at corresponding positions, the MS grain
was 14.1% and 38.1% higher than those of the HS and PP grains, respectively. The high
regression rates of two modified composite grains may be due to turbulence enhancement
resulting from the designs of the helical structure frameworks.
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Characteristic velocity is another key parameter of HRE. Combustion efficiency is
expressed by:

η =

(
C∗

e
C∗

t

)
(3)

where C∗
t denotes the theoretical characteristic velocity of pure paraffin calculated by the

Chemical Equilibrium with Applications software (CEA) [37]. C∗
e denotes the experimen-

tally obtained characteristic velocity:

C∗
e =

PA
m f + mg

(4)

where P denotes the average value of the chamber pressure, A denotes the throat area of
the nozzle, which is considered to be constant due to small variations, and m f , mg denote
the average mass flow rates of the oxidizer and fuel, respectively.

Figure 5 shows the characteristic velocity distributions of the four fuel grains and their
O/F as a function of average oxygen mass flux. The combustion efficiency was significantly
improved by the modular design and modifications of the helical structure. The combustion
efficiencies of the modified fuels were more concentrated than the paraffin-based grain.
The MS grain exhibited higher characteristic velocities and combustion efficiencies, and
demonstrated smaller fluctuations of these values across a wide range of average oxygen
mass fluxes, compared with the HS grain. The characteristic velocity of the PS grains did
not exhibit a notable increase, possibly attributed to the significant increase in regression
rate, which reduced the corresponding O/F value. In practical applications, over-dispersion
of the O/F will increase the launching cost of the rocket [38]. Figure 5b shows that the O/F
of the MS grain changed less compared with other fuel grains for the same average oxygen
mass flux. Combined with the above analysis of regression rates, these results show that
the increase in regression rate can inhibit changes in the O/F ratio.
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3.3. Radiation Luminescence

Figure 6 plots the radiation luminescence intensity curves of the different fuel grains
and corresponding pressure changes. The average mass flow rate of the oxidant was
18.5 g/s. The radiative intensity used in this study was based on the average pixel value of
each frame from the visual area of initial grayscale images, arranged in chronological order
according to the capture time. Following ignition, the combustion chamber pressures and
radiation intensities of all engines rose at the same time. The combustion chamber pressure
reached a steady state first. The upward trend of radiation intensity did not weaken, which
may be caused by flame propagation to the pre-combustion chamber, resulting in a larger
flame area in the field of view, until the supply of oxidizer was stopped, at which point
both the combustion chamber pressure and radiation intensity were reduced to zero. These
experiments showed that the composite fuel grains with the modified modular fuel units
had higher radiative intensity than the paraffin-based grain.

Figure 7 shows the four grains of Figure 6 before and after firing. Prior to combustion,
the inner surfaces of all grains were smooth and flat. However, after combustion, a distinct
difference can be observed. While the surface of the paraffin-based grain remains flat,
the inner surfaces of the other composite grains exhibit prominent grooves. These helical
grooves played a crucial role during the combustion process by continuously inducing
oxidizer swirl. The presence of these grooves post-combustion highlights their significance
in optimizing the performance of composite fuel grains.

Images capturing the flame within the chamber were obtained to examine alterations in
the flame behavior. Values of t1–t6 correspond to 0.5–5.5 s after engine ignition in Figure 6
with an interval of 1 s. Twenty-five images before and after the six times values were
selected in turn, and the average gray values of the pixels were determined. Pseudo-color
processing results after overall averaging are shown in Figure 8.

The average images of the various fuel grains at different reaction times exhibit
similar characteristics. During the initial stage of the reaction (t2, t3), the flame primarily
accumulated in the center of the image. As the burning surface increased, flame diffusion
and propagation were further enhanced until the flame penetrated the entire combustion
chamber and occupied the entire sight window. At t5 and t6, when the combustion chamber
pressure had stabilized, the images indicate that the flames in the combustion chamber
continued to develop. This observation is consistent with the analysis of radiation intensity.
The PP grain exhibited a slower rate of flame development and smaller flame coverage
area compared with the composite fuel grains. Additionally, the composite fuel grains
produced an obvious filamentous flame structure that was caused by swirling during the
combustion process. The average flame images indicate that the composite fuel grains
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with modified helical structures facilitated flame development. The MS grain exhibited
the fastest flame development and thickest flame due to turbulence enhancement. The
periodically extended helical structure with perforations increased the swirling flow of the
flame and the flame distribution of the PS grain was more concentrated.
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The pulsation characteristics of the flame in the combustion chamber were analyzed
using proper orthogonal decomposition (POD) [39]. This process of POD is used to trans-
form a sequence of image datasets into a set of linearly uncorrelated variables (modes)
to classify the dominant modes of the flame and provide characterization of the flame
dynamics and associated imaging time series. Flame images can be linearly superimposed
by multiple orthogonal modalities, the formular for which is as follows:

ϕ(ξ, t)− q0 =
M

∑
i=1

αi(t)ϕi(ξ) (5)

where ξ is a spatial coordinate (in units of pixels and each image has a fixed number of
pixels 200 × 200), t is the time sequence, q0 is the mean value of the images, αi is the time
coefficient of the temporal mode, ϕi is the spatial distribution characteristic of the mode,
and M is the total number of modes.

The method of decomposition used in this paper is the singular value decomposition
(SVD) [40,41]. The images can then be expressed as an m × n of data matrix Am×n, where n
is the total number of images, the value of m is obtained by multiplying the pixels in each
row of the image by the pixels in each column. The matrix can be decomposed into the
product of three matrices via SVD:

Am×n = Um×mSm×nVT
n×n (6)

where U, S, and V represent the orthogonal modes of the flame series and their correspond-
ing mode energy and time coefficients, T is the transpose of a matrix.

λ = S2 (7)

where λ represents the eigenvalue.

Ei =
λi

∑M
j λj

(8)

where E represents the normalized energy ratio of each mode. Summing the normalized
energy ratio of each mode can obtain the cumulative energy distribution of all modes as
shown in Figure 9a.
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Figure 9a demonstrates the cumulative energy distributions of the modes. Energy
accumulations of the MS and PS grains were greater than those of the HS and PP grains.
Figure 9b shows the first six modes of the combustion chamber flame, with the red and
blue colors indicating areas where the gas-phase reaction dramatically changed. They are
listed in order of decreasing energy. The first modality of the three composite fuel grains is
similar due to their common modular unit. The composite fuel grains based on modular
units had significantly more layers and obvious swirling characteristics in the flame change
region compared with the pure paraffin-based grain. A significant change in the number of
flame layers indicates a change in intensity of the reaction; more layers indicate stronger
flame oscillation characteristics and a more intense combustion [37]. These phenomena
indicate that the helical structure of the modified modular units increased turbulent flow in
the combustion chamber and improving regression rates of modified fuel grains.

4. Combustion Simulation
4.1. Model Description and Precision Estimates

An evaluation of the simplified flow field within the combustion chamber was con-
ducted based on ANSYS Fluent software (ANSYS 2022 R1). This is a simplified steady-state
combustion simulation designed to elucidate the phenomena observed in the experiment.
The regression rates of fuel grains are not taken into account. This study performed com-
bustion simulations on simplified versions of three different engine models by solving the
Navier–Stokes equations, while also enabling energy transfer and species transport. The
development of turbulence was taken into account by setting the turbulence model to SST
k–ω. Ethylene(C2H4) was used instead of a paraffin-based fuel [17] and a 10-step C2H4
reaction mechanism was adopted [42], which is shown in Table 2. Oxygen was employed as
the oxidizing agent. The computational fluid domains for the three fuel models are shown
in Figure 10. The walls of the fuel grains and the engine in the fluid domain were adiabatic
and non-slippery. The nozzle outlet was a pressurized outlet, and the wall surface of the
fuel grains and oxygen inlet section were set as mass flow inlets. The oxidizer and fuel
mass flow rates were set to 18.59 g/s and 8.33 g/s, respectively. The PS grain model was
modified to simplify calculations. The porous model at the groove was reduced to half of
the actual pore cross-section (with a radius of 0.5 mm), and the groove surface was modeled
with a single layer of porosity. The inner diameter and groove depth of the grain model
were set at 26 mm and 1 mm, respectively, aligning with the inner cavities of the engines.

Different grids with a total number of grids of 2 million, 3 million, and 4.5 million were
used for the three composite fuel grains during simulation to eliminate the effect of grid
size during the numerical simulation. As shown in Figure 11a, the combustion chamber
pressures under different grids were very similar for the same grain, with a maximum
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relative error of 8.6%. Experimental values of the chamber pressure are compared with the
numerical simulation results, as presented in Figure 11b. Error estimates of the chamber
pressure range from 6.21% to 8.33%. The final model utilized a mesh count of 3 million.

Table 2. Global reaction mechanism for ethylene.

No. Reaction

1 O2 + C2H4 ↔2CO + 2H2
2 O + CO(+M)↔ CO2 (+M)
3 OH + CO ↔ H + CO2
4 O2 + H2↔ OH + OH
5 O2 + H ↔ OH + O
6 OH + H2 ↔ H + H2O
7 O + H2 + M ↔ H2O + M
8 2H+ ↔ H2 + M
9 C2H4 ↔ C2H2 + H2
10 C2H2 + 2OH ↔2H2 + 2CO
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4.2. Flow Characteristics

Figure 12 illustrates the surface streamlines at different locations of the HRE. As shown
in Figure 12a, the cross-sectional velocity distribution of the HRE indicates that oxygen flow
in the MS grain was faster in the post-chamber region compared with that of the HS and PS
grains. Figure 12b shows that the swirl flow field mainly occurred at the near wall of the
three composite grains. In particular, at a distance of 25 mm from the front surfaces of the
three fuel grains, streamlines in the near wall were significantly disordered. This disorder
may be attributed to turbulent flow induced by the reactive force of the blades on the
oxygen, with high initial resultant velocity. Additionally, curved streamlines re-emerged
at the 75 mm position from the front face of the MS grain. This phenomenon seems to
resemble the superposition of two vortex flows moving in opposite directions.
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Figure 12. (a) Surface velocity distributions of hybrid rocket engine and (b) streamline diagrams at
25 mm axially equidistant positions for the three composite fuel grains.

To further investigate surface streamline variations and the swirl flow on the burning
effect of the MS grain, the tangential velocity was analyzed. The distribution of the surface
tangential velocity vectors is shown in Figure 13a. The red and blue colors indicate areas of
strong swirl flow. The color bars of tangential velocities in Figure 13b are scalar, and the
arrows on the surface visualize the change in swirl direction.

A reflux area formed on the pre-chamber of the engines, which was opposite to the
direction of helical blades due to the high initial flow rate of oxygen. At a distance of 25 mm
from the front face on the near wall of the grains, the reflux area of the oxidizer overlapped
with the positive swirling flow directed by the blades, two streams of swirling flow with
opposite directions. Subsequently, under induction of the blade, the swirl direction of the
near walls of the PS and HS grains was mainly guided by the helical blades, and the area of
the recirculation zone continuously reduced. Interestingly, this single direction of swirling
flow did not persist within the MS grain model. Figure 13 shows that the central area of the
MS grain exhibited swirling flows with opposite directions due to the guiding effect of the
mirrored module blades and the inertia of oxygen flow. The vector diagram of tangential
velocity corroborates the earlier conjecture regarding the curvature of the streamlines. The
presence of two opposite vortices significantly fosters the development of turbulence, which
in turn facilitates the mixing of the fuel and combustion gases, consequently elevating the
combustion efficiency.
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An analysis of the swirling distribution on the near-wall surface of the three fuel grains
was conducted (refer to black dotted lines in cutaway views of fuel grains in Figure 9).
The resulting eddy swirling intensity distribution on the near-wall surface is presented
in Figure 14. It is evident that the swirling intensity at the wall of the MS grain was not
greatly weakened, which still promoted the shear effect on the inner surface of the grain.
The swirling intensity in the blade region of the PS fuel grain was no longer zero, and that
of the near wall was higher than for the HS grain. Swirling enhancement is thought to be
one reason for the high regression rate of the PS grain.
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Figure 15 illustrates the distribution of CO2 and H2O within the HRE and average
product mass fractions at the nozzle outlet. Complete combustion of ethylene produces
CO2 and H2O; thus, the mass fractions of these products can characterize adequacy of
combustion. The average mass fractions of CO2 and H2O in the HRE post-chambers of
the MS and PS grains were higher than those of the HS grain, which indicates that the
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composite fuel grains with a modified modular fuel unit can promote the mixing of the
oxidizer and fuel to improve combustion efficiency.
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Overall, the present results confirm that composite fuel grains based on a modular
fuel unit are capable of improving the combustion characteristics of HRE. The excellent
regression rate and combustion efficiency of the MS grain validate the potential of this
strategy. Future research in our group will focus on optimization and exploration of this
modular fuel design strategy, such as combining structural features of the MS and PS
grains. Research on combustion efficiency over time will also be discussed. In addition, a
reconstruction technique with time-resolved calculations will be introduced to analyze the
data in more detail in the future [43,44]. More complex turbulence modeling and numerical
calculations will be taken into account in subsequent studies.

5. Conclusions

A modular fuel strategy for a composite hybrid rocket grain is proposed. The com-
bustion characteristics of the composite fuel grain based on the modular fuel units with
modifications were experimentally and numerically studied. The parameters of the engines
with different fuel grains were analyzed for average mass flow fluxes of 9.5–28.1 g/s. The
mechanism of the performance enhancement of the composite fuel grains with the modi-
fied modular units was analyzed using radiation imaging technology and 3D numerical
simulation. The specific conclusions are as follows:

(1) Composite fuel grains with the modified modular units are more conducive to increas-
ing the regression rates. Under an oxygen mass flux of 6.0 g/(s·cm2), the regression
rates of the MS and PS grains increased by 8.0% and 14.1%, respectively, compared
with that of the HS grain.

(2) Experimental results show that the composite fuel grains have the advantage of
rapidly increasing the radiant intensity and flame thickness. The MS grain had
the most significant improvement on combustion performance. The centralized
O/F distribution and stable combustion efficiency further illustrated superiority in
combustion of the mirrored helical structure.

(3) Simulation results showed that the pores of the PS grain promoted the development of
swirl flow, which increased the regression rate. Two opposite swirling flows resulting
from the mirroring configuration significantly fostered the development of turbulence
in the MS grain, which improved the mixing of propellant and gas and thus promoted
combustion efficiency.
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Nomenclature

HRE hybrid rocket engine
ABS acrylonitrile–butadiene–styrene
MS/PS/HS grain composite fuel grains with mirrored/perforated/helical blades, respectively
PP grain paraffin-based grain
3D three-dimensional
POD proper orthogonal decomposition
O/F oxidizer to fuel ratio
.

mo average oxygen mass flow rate
Gox oxidizer mass flux
P average chamber pressure
.
r average regression rate
d0 the initial inner diameter of the fuel grain
df the inner diameter of the fuel grain after firing experiments
m0 initial mass of the fuel grain
m f the mass of the fuel grain after firing experiments
η combustion efficiency
C∗

t theoretical characteristic velocity
C∗

e experimentally obtained characteristic velocity
mg average mass flow rate of the oxidizer
dt throat diameter of the nozzle
t working time of the engine
U orthogonal modes of the flame series
S corresponding mode energy
V time coefficients
T transpose of a matrix
λ eigenvalue
E normalized energy ratio of each mode
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