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Abstract: There are hundreds of various sensors used for online Prognosis and Health Management
(PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight
control purposes in LRE, it is practical to optimal placement of redundant sensors for improving the
diagnosability and economics of PHM systems. To strike a balance between sensor cost, real-time
performance and diagnosability of the fault diagnosis algorithm in LRE, this paper proposes a novel
Optimal Sensor Placement (OSP) method. Firstly, a Kernel Extreme Learning Machine-based (KELM)
two-stage diagnosis algorithm is developed based on a system-level failure simulation model of LRE.
Secondly, hierarchical diagnosability metrics are constructed to formulate the OSP problem in this
paper. Thirdly, a Hierarchy Ranking Evolutionary Algorithm-based (HREA) two-stage OSP method
is developed, achieving further optimization of Pareto solutions by the improved hypervolume
indicator. Finally, the proposed method is validated using failure simulation datasets and hot-
fire test-run experiment datasets. Additionally, four classical binary multi-objective optimization
algorithms are introduced for comparison. The testing results demonstrate that the HREA-based
OSP method outperforms other classical methods in effectively balancing the sensor cost, real-time
performance and diagnosability of the diagnosis algorithm. The proposed method in this paper
implements system-level OSP for LRE fault diagnosis and exhibits the potential for application in the
development of reusable LREs.

Keywords: liquid rocket engine; optimal sensor placement; diagnosability; binary multi-objective
optimization; hierarchy ranking evolutionary algorithm

1. Introduction

Future space transportation systems are expected to be constructed towards the goal
of regular launches like airplane flights, in which the reusable launch vehicles served as the
main used vehicle of the space transportation system, have put forward higher requirements
for their service life, economy, reliability, maintainability, safety and dispatchability. The
reusable Liquid Rocket Engine (LRE) is a decisive subsystem for the reliability, economy
and dispatchability of a reusable launch vehicle. The Prognosis and Health Management
(PHM) technologies based on in situ sensor measurements are useful tools for realizing
the increasing reliability requirements of reusable LREs [1]. Meanwhile, data-driven fault
diagnosis algorithms are currently the hottest research area in the PHM community, which
develops fault diagnosis algorithms using sensor measurements data from multi-physics
modeling, hot-fire test-run experiments or actual launch telemetry data. The more sensors
are equipped, the more precise the diagnosis will be. Nevertheless, the inclusion of more
redundant sensors in an actual LRE reduces its reliability, which is vital in space vehicles [2].
The above analysis shows that the placement of sensors can greatly affect the online fault
diagnosis performance of LREs. Maul et al. [3] proposed that there are four requirements
of Optimal Sensor Placement (OSP) in aerospace systems: fault observability, reliability,
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fault detectability, and sensor cost. This paper focuses on the optimization of LREs system-
level fault detectability under the constraint of sensor cost, which is also referred to as the
diagnosability of PHM systems. The key issue of the OSP technique in this paper lies in
how to correctly construct the metrics for diagnosability, how to perform the multi-objective
optimization and how to choose the optimal solution with non-inferior solutions.

Since decades ago, there have been massive statistic-based online fault diagnosis
algorithms developed by researchers for solving the real-time fault diagnosis of LREs, such
as the red line method, Adaptive Threshold Algorithm (ATA), autoregressive moving aver-
age model, etc. [4]. In recent years, the data-driven model-assisted online fault diagnosis
algorithms have achieved further progress thanks to the vigorous development of machine
leaning and time series analysis. Ma et al. [5,6] reported a Deep Coupling Autoencoder
(DCAE) model that handles the multimodal sensory signals for fault diagnosis and a
Convolution-based Long Short-Term Memory (C-LSTM) network to predict the Remaining
Useful Life (RUL) of rotating machineries mining the in situ vibration data. Chen et al. [7]
proposed a degradation consistency recurrent neural network for RUL prediction by inte-
grating the natural degradation knowledge of components. Wang et al. [8] presented a fault
diagnosis algorithm for planetary gearbox using a Transferable Deep Q Network (TDQN)
that merges Deep Reinforcement Learning (DRL) and Transfer Learning (TL). Lee et al. [9]
proposed a Kalman filter and a fault-factor-based fault diagnosis method for an open-cycle
LRE in a steady state of full thrust level. Kawatsu et al. [10,11] developed a fault diagnosis
method based on Dynamic Time Warping (DTW) algorithm and hierarchical clustering
technique, and demonstrated the possibility of fault diagnosis for electromechanical ac-
tuators in an LRE with fault injection experiment data. Tsutsumi et al. [12] proposed a
data-driven fault detection method using a bivariate time-series analysis, and the static
firing tests of a reusable liquid-propellant rocket engine developed by Japan demonstrated
its effectiveness of fault detection and robustness. Deng et al. [13] proposed a fault de-
tection and diagnosis method for a LOX/kerosene LRE based on LSTM and Generative
Adversarial Networks (GANs) and shows its effectiveness of fault detection during startup
and steady-state processes. Zhang et al. [14] proposed a fault diagnosis method based on a
one-dimensional Convolutional Neural Network (1D-CNN) and interpretable bidirectional
LSTM (bi-LSTM) for LREs. Similarly, Jana et al. [15] proposed a real-time sensor fault
detection, localization, and correction framework, in which a CNN is used to detect and
locate the sensor faults well as a suite of individually trained Convolutional Autoencoder
(CAE) networks corresponding to each type of fault are employed for reconstruction. Park
and Ahn [16] proposed a two-stage method for fault detection and diagnosis during the
startup transient of LRE, in which LSTM is employed for fault detection and CNN-LSTM is
utilized for fault diagnosis. Wang et al. [17] proposed a dynamic model-assisted transfer-
able network for LRE fault diagnosis using limited fault samples. Sun et al. [18] proposed a
rocket engine anomaly detection method based on convex optimization and the adaptive
Exponentially Weighted Moving Average–cumulative sum (EWMA-CUSUM) algorithm
to achieve higher detection accuracy and lower detection time. In conclusion, there is a
degree of inherent contradiction between real-time performance and diagnosis accuracy of
the existing methods.

The OSP problem has garnered attention across various fields for an extended period,
as rapid data sampling, analysis, and decision-making for complex systems can be archived
with limited measurements. There are tremendous OSP methods developed for structural
health monitoring systems [19–21], intelligent manufacturing systems [22], fluid control
systems [23,24], wireless sensor networks [25], building monitoring systems [26], pipeline
systems [27], hydraulic control systems [28], environmental monitoring systems, thermal
systems [29], Internet of Things (IoT) systems [30], condition monitoring systems [31,32],
etc., and most of these methods are based on high-dimensional data decomposition methods
or heuristic optimization algorithms. The data-driven decomposition methods have elegant
mathematical expressions, but they are mostly applicable to component-level OSP problems.
Meanwhile, the main drawbacks of heuristic optimization methods include the tendency



Aerospace 2024, 11, 239 3 of 24

to fall into the local optimal solution, and repeated iterations may result in varied solutions.
In addition, there are several OSP methods using the information content in measured data
as the evaluating metric, such as Papadimitriou and Costas [33], who presented an OSP
method for parameter estimation in structural dynamics based on information entropy,
Udwadia [34], who provided an OSP method for parameter identification in dynamic
systems based on the Fisher Information Matrix (FIM) and Jana et al. [35], who proposed
an FIM-based approach to determine optimal locations of input forces for experimental
modal analysis. However, the calculation of information-theory-based metrics requires
comprehensive modeling of the system’s state space, which is nearly impossible to achieve
for an extremely complex system like LRE. Specific to aerospace systems, there are also
some related works. Omata et al. [36] employed a greedy approach utilizing the detection
performance score from multivariate supervised analysis for sensor placement optimization
to identify propellant leaks in an LRE. Yang et al. [37] reported a two-step strategy of
non-probabilistic multi-objective optimization for load-dependent sensor placement with
interval uncertainties to determine the final sensor configuration from a Pareto solution,
and the accuracy of the proposed method was verified using an example involving space
docking module in Space Power Satellites (SPSs). Li et al. [38] introduced a data-driven
OSP method based on sparse learning applied to classify the pattern of a hypersonic aircraft
engine inlet, and the effectiveness of the proposed method has been validated through
simulations and a real engineering example. The literature referred to in this paragraph
shares a common opinion that the development of OSP methods is an effective means for
the trade-off between the functionality of a given system and the given constrains, such as
the sensor cost and so on.

The above literature review indicates that few works have focused on balancing the
relationship between the real-time performance of the diagnosis algorithm, diagnosis accu-
racy and the cost of sensors within the reusable LRE online PHM system. Simultaneously,
the aforementioned literature also offers us some insights. Selective execution of the task
that divides fault detection and diagnosis into two stages can effectively enhance the real-
time performance of the algorithm. The on-board sensors of the LREs are designed with
redundancy, and optimizing these redundant sensors can often yield advantages in both
real-time performance and cost. Furthermore, the selection of critical sensors also provides
some assurance of diagnostic accuracy. It is essential to make decisions intelligently on
Pareto solutions to obtain the final optimal sensor configuration, which can be directly
applied to engineering practice. Hence, this paper aims to optimize the diagnosability of the
LRE online PHM system in hierarchical diagnosability metrics. Based on this goal, a two-
stage diagnosis algorithm and a two-stage OSP method based on Kernel Extreme Learning
Machine (KELM) and Hierarchy Ranking Evolutionary Algorithm (HREA) are proposed.
For the proposed OSP method validation, LRE failure simulation and hot-fire test-run
experiments are conducted. The contribution of this paper is summarized as follows:

1. A two-stage diagnosis algorithm is proposed for constructing hierarchical diagnos-
ability metrics achieving multi-scale optimization of diagnosability of the LRE online
PHM system;

2. A two-stage OSP method is proposed to solve the intelligent optimal decision-making
problem in the Pareto Solutions (PSs);

3. The proposed diagnosability metrics can be computed for different sensor placements
without retraining the classifier model while optimizing, and the superiority of the
proposed method is verified by retraining the classifier model based on the optimal
sensor configuration selected from PSs;

4. The proposed method in this paper implements system-level Optimal Sensor Place-
ment for LRE fault diagnosis, and the effectiveness of the proposed method was
verified by LRE system-level simulation and ground hot-fire test-run experiments.
The results show the proposed method has the potential to be used for the developing
of reusable LREs.
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The remaining sections of this paper are structured as follows. In Section 2, the
methodology of this paper is introduced. Firstly, the theoretical basis of a system-level
failure simulation model of LRE is briefly described. Subsequently, the KELM-based
two-stage fault diagnosis method is presented along with the construction of hierarchical
diagnosability metrics. Then, the OSP problem of this paper is analyzed. Finally, a two-
stage OSP method based on HREA is illustrated. LRE failure simulations and ground
hot-fire test-run experiments are conducted to verify the effectiveness and feasibility of
the proposed method in Section 3. Section 4 shows the algorithm test results, followed by
comprehensive discussions based on these results. Concluding remarks and future works
are drawn in Section 5.

2. Methodology

In this section, the methodology of LRE system-level modeling, LRE diagnosability
modeling and the proposed OSP methods are described in turn. The overall procedure of
the proposed OSP method is shown in Figure 1.

Sensor data

acquisition
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Figure 1. The overall procedure of the proposed OSP method.
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2.1. System-Level Failure Simulation Model of LRE

As shown in Figure 2, this paper presents system-level failure modeling of a classic
reusable LOX/H2 cryogenic LRE, which is also known as the Space Shuttle Main Engine
(SSME). Furthermore, there are four typical failure modes modeled in this section.

Figure 2. Schematic of system-level failure simulation model of LRE [14]. The full name of all
the abbreviations are as follows: Liquid Hydrogen (LH2), Low-pressure Fuel Pump (LPFP), High-
pressure Fuel Pump (HPFP), Fuel Pump Turbine (FPT), High-pressure Fuel Turbine (HPFT), Main
Fuel Valve (MFV), Chamber Coolant Valve (CCV), Fuel Pre-burner (FPB), Fuel Pre-burner Oxidizer
Valve (FPOV), Main Combustion Chamber (MCC), Liquid Propellant Nozzle (LPN), Oxidizer Pre-
burner Oxidizer Valve (OPOV), Oxidizer Pre-burner (FPB), Main Oxidizer Valve (MOV), Oxidizer
Pump Turbine (OPT), High-pressure Oxidizer Turbine (HPFT), Low-pressure Oxidizer Pump (LPOP),
High-pressure Oxidizer Pump (HPOP), Liquid Oxygen (LO2).

The 1st failure mode is the efficiency decrease in turbine components, which is caused
by other failures that occur in turbine components such as rotor rubbing, centrifugal pump
cavitation, etc. An efficiency factor is introduced to simulate a decrease in power leading to
a decrease in rotational speed and a decrease in the work conducted by centrifugal pumps
for fault simulation, which can be modeled as (1).

pt = f · ηt · Q · dp = nt · T (1)

In Equation (1), power is denoted by pt, f is the efficiency factor, ηt is the efficiency
of turbines, Q is the volumetric flow rate, dp represents the pressure difference across
turbines, T is the torque and nt is the rotational speed of turbine and centrifugal pump.

The 2nd failure mode is valve opening failure. It is modeled by adjusting the timing
and response speed of five main valves, namely the main oxidizer valve (MOV), main fuel
valve (MFV), oxidizer pre-burner oxidizer valve (OPOV), fuel pre-burner oxidizer valve
(FPOV) and chamber coolant valve (CCV). As shown in (2), the degree of valve opening
failure can be controlled by manipulating the control function.

ṁ = cq Aτ
√

2ρ∆p (2)
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where the control function is denoted by τ, represents the mass flow rate, cq is the flow
coefficient, A is the maximum flow area, ρ is the average density of fluid, and ∆p is the
pressure difference before and after the valve.

The 3rd failure mode is flow leakage, which commonly occurs in hydraulic systems.
When fluid leaks into the pump or outside of pipelines, it equates to two additional flow
paths. Thus, a valve with a maximum flow area of A is virtually added to each flow path,
and the valve opening degree is controlled by an external signal to simulate the different
levels of leakage. It can be expressed by Equation (3).

ṁ1 = ṁ2 + ṁ3 (3)

where ṁ1 and ṁ3 denote the mass flow rate of two main flows, respectively, and ṁ2 is the
leakage flow in the pipeline, which controlled by Equation (2).

The 4th failure mode is cooling jacket leakage, which can easily lead to high-pressure
hydrogen gas leakage into the combustion chamber to participate in combustion for LREs
using regenerative cooling. The cooling jacket leakage can be modeled as adding an
alternate flow path to the combustion chamber, and it is similar to the failure simulation of
flow leakage. Consequently, the failure simulation model of cooling jacket leakage can be
substituted by flow leakage.

2.2. Diagnosability Modeling of LRE

It is noteworthy that the occurrence of LRE failures is sparse in the time dimension,
which suggests the possibility of using a two-stage diagnosis method to increase the
computing resource usage rate of LREs inflight hardware for diagnosis and the real-time
performance of fault detection by dividing the overall process into two consecutive stages:
fault detection and subsequent diagnosis. The main idea of the two-stage diagnosis method
proposed in this paper can be concluded as follows.

Fault detection is initially conducted to ascertain whether the system state is normal,
abnormal, or faulty. In the event of a fault, a shutdown command is issued to the main
control loop. Simultaneously, fault diagnosis is carried out to locate the fault from the
moment it occurs. The localized fault is then relayed to the LRE control system for isolation
and reconfiguration. If the faults are amenable to isolation or reconfiguration, the LRE will
be restarted. The time to issue a shutdown command can ideally be reduced to half or even
less compared to a typical one-stage diagnosis algorithm.

KELM [39] is a forward neural network with a single hidden layer, which requires
fewer parameters for tuning and exhibits faster convergence and good generalization
performance. In addition, KELM exclusively involves the inner product operation in
feature space, which is independent of the dimension of the features. It is suitable for
processing multisensory signals in LRE online condition monitoring.

Meanwhile, the LRE hardware platform for prognosis is a streaming data processing
platform, enabling the dynamic update of prognostic data through the sliding window
processing of streaming data. Incremental learning as an effective approach to solving the
problem of model catastrophic forgetting, which is achieved by learning new knowledge
while retaining the judgment of old knowledge and even optimizing the understanding
of the latter. LRE online fault diagnosis algorithms urgently require the integration of
incremental learning to enhance online diagnosis accuracy. Since KELM eliminates the
need to train backpropagation of hidden layer weights, it facilitates the implementation of
online incremental learning on platforms with limited hardware resources, which is also
one of the future research directions for LRE online fault diagnosis methods. Consequently,
KELM is employed as the classifier model in the two-stage fault diagnosis algorithm
proposed in this paper.

The objective function of the KELM training process can be expressed as Equation (4).

min
1
2
||β||2 + 1

2
c

n

∑
i=1

||ei||2, s.t. h(xi)β = yT
i − eT

i , i = 1, · · · , n (4)
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where β denotes the connection weights vector between the hidden layer of k neurons and
output layer of n neurons, c is regularization factor, ei represents the training error, h(x)
is the hidden layer feature mapping function, xi denotes the d-dimensional input vector
of the ith sample and yi corresponds to the classified label of the ith sample. The output
matrix H of the hidden layer is defined as Equation (5).

H =

 h(x1)
· · ·

h(xn)

 =

 h1(x1) · · · hk(x1)
· · · · · ·

h1(xn) · · · hk(xn)


n×k

(5)

Then β can be expressed as Equation (6), where Y denotes the training label vector
and I is an eye matrix.

β = HT
(

I
c
+ HT H

)−1
Y (6)

The key idea of KELM is constructing kernel matrix Ω to replace HT H, which can be
expressed as Equation (7).

Ωi,j = h(xi)h
(

xj
)
= K

(
xi, xj

)
(7)

where K
(

xi, xj
)

is the kernel function. The output of KELM can be obtained as Equation (8).

y = f (x) = h(x)HT
(

I
c
+ HT H

)−1
Y =

 K(x, x1)
· · ·

K(x, xn)

T(
I
c
+ Ω

)−1
Y (8)

The Radial Basis Function (RBF) kernel function used in this paper can be expressed
as Equation (9), where γ denotes the kernel parameter.

K(x, xi) = exp
(
−γ||x − xi||2

)
(9)

Considering the balance of real-time performance, precision and recall of the classifier
model, the diagnosability of fault diagnosis can be modeled as parameter fraction rates and
macro-average F1 scores, respectively. The hierarchical diagnosability metrics are defined
as Equations (10) and (11) in this paper.

g1(s) =
∥s∥0
∥s0∥0

(10)

g2(s) = 1
n

n
∑

i=1
F1i =

1
n

n
∑

i=1

2×Pi×Ri
Pi+Ri

,

g3(s) = 1
m

m
∑

j=1
F1j =

1
m

m
∑

j=1

2×Pj×Rj
Pj+Rj

,

where, Pi =
TPi

TPi+FPi
, Ri =

TPi
TPi+FNi

(11)

In Equations (10) and (11), l0-norm is denoted as ∥∥0, s denotes the current sensor
configuration and s0 denotes the configuration containing all sensors, g1(s), g2(s) and g3(s)
represent parameter fraction rates, macro-average F1 score of n-categorical fault detection
model and m-categorical fault diagnosis model, respectively. TP, FP and FN are true
positive, false positive and false negative classified samples, respectively.

The overall procedure of the two-stage fault diagnosis algorithm proposed in this
paper can be summarized in Figure 3.
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Figure 3. Flowchart of the two-stage fault diagnosis algorithm.

2.3. OSP Problem Analysis

There are hundreds of sensors used for online condition monitoring, but there are
only 21 sensors used for SSME inflight control, which shows the potential of OSP for
diagnosis purposes. The measurement system of LREs is equipped with valve position
sensors, pressure sensors, temperature sensors, rotational speed sensors, flowmeters and
accelerometers, while the sensor placement and redundancy are usually limited by physical
constraints and risk considerations. The rotary variable differential transformer (RVDT) and
linear variable differential transformer (LVDT) type of valve position sensors are typically
employed to measure rotational angles and linear motion. Piezoelectric and piezoresistive
pressure sensors are utilized for pipeline static pressure and dynamic pressure, chamber
pressure measuring. Thermocouples and resistance temperature devices (RTD) are used as
gas generators and preburner combustion temperature sensors under high temperatures
and pressures. Rotational speed sensors are typically of the variable-reluctance type and
consist of a permanent magnet and an independent pole piece surrounded by a coil winding
made of thin-filament magnet wire. Volumetric flowmeters and mass flowmeters are used
for measuring flows through valves and chambers. Integrated electronics piezoelectric
(IEPE) accelerometers are usually placed on the turbopumps for vibration monitoring to
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diagnose faults in rotating components. The sensor configuration for diagnosis can be
formulated as (12).

s = [P, Q, T, N, V] (12)

where P = [P1, P2, . . . , Pp] denotes the p pressure sensors, Q = [Q1, Q2, . . . , Qq] denotes the
q flowmeters, T = [T1, T2, . . . , Tt] denotes the t temperature sensors, N = [N1, N2, . . . , Nn]
denotes the n rotational speed sensors, V = [V1, V2, . . . , Vv] denotes the v vibration sensors,
and the sensors numbers are encoded as the order of elements in the binary vector s. It is
critical to account for each kind of sensor to retain the diversity of information served
for diagnosis. The common OSP problem for diagnosis summarized in this paper can be
formulated as (13).

arg min
s


f1(s) = c×sT

∥c∥1
f2(s) = 1 − g2(s)

f3(s) = 1 − g2(s) · g3(s)
f4(s)=g1(s)

, s.t.


1 − ∥P∥1 ≤ 0
1 − ∥Q∥1 ≤ 0
1 − ∥T∥1 ≤ 0
1 − ∥N∥1 ≤ 0
1 − ∥V∥1 ≤ 0

(13)

where l1-norm is denoted as ∥∥1 and c is the price vector corresponding to s. It is worth
noting that there is some correlation between the two objective functions f1(s) and f4(s).

2.4. Two-Stage OSP Method

When the total number of sensors is b, the number of all possible sensor configurations
is 2b. This indicates that when b is relatively large, the search space of the decision variables
becomes too extensive, making it nearly impossible to employ exhaustive search methods
to solve the OSP problem described in this paper. Consequently, this section presents a two-
stage OSP method based on the Binary Multi-objective Optimization Algorithm (BMOA).

The OSP problem discussed in this paper exhibits a multimodal characteristic that
encompasses global and local Pareto Fronts (PFs). This implies that while one solution
is slightly inferior to another in terms of objective values, the solutions are significantly
distant in the decision space. To address this kind of issue, Li et al. [40] proposed HREA,
which can find both the global and the local PFs based on the preference settings. Therefore,
HREA serves as the first stage of the two-stage OSP method to obtain the PSs for further
evaluation. The main idea of this section is to construct evaluation metrics to solve the
intelligent optimal decision-making problem in PSs, which constitutes the second stage of
the two-stage OSP method. Hypervolume (HV) [41] is a unitary indicator used in multi-
objective optimization that acts as a quality metric to measure the space covered by a set of
non-dominated solutions in the objective space. However, the classical HV as defined in
Equation (14) is incapable of assessing the diversity of PSs.

HV = δ(
⋃∥PFs∥1

i=1
vi) (14)

where δ() denotes the Lebesgue measure, vi denotes the hyperarea delimited below by ith
solution belonging to PF and above by the nadir point r, which is defined as Equation (15).
In (15), ∥∥−∞ denotes the l−∞ norm and sk represents the kth category sensors in s.

r = [∥nis∥1, 0, 0], nis =
[∥∥∥ f1

(
sP
)∥∥∥

−∞
,
∥∥∥ f1

(
sQ

)∥∥∥
−∞

,
∥∥∥ f1

(
sT
)∥∥∥

−∞
,
∥∥∥ f1

(
sN

)∥∥∥
−∞

]
(15)

The objective function f4 can be understood as a metric of PSs’ diversity in a sense.
Then, the HV indicator is redefined as Equation (16) in this paper.

HV = f4
−1 · δ(

⋃∥PFs( f1, f2, f3)∥1

i=1
vi) (16)

In this section, the procedure of the second stage method involves initially calculating
the HV values covered by each point on the PF, and ultimately selecting the solution
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associated with the highest HV as the preferred solution. The overall procedure of the
two-stage OSP method is demonstrated in Figure 4.
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Figure 4. Flowchart of the two-stage OSP method.

It can be found that we utilize the OSP method for KELM achieving an effect similar
to the channel-wise structured pruning of neural network. Based on the lottery tickets
hypothesis in the pruning method, an optimal sub-network can be found that can utilize a
smaller-scale network structure to achieve a prediction accuracy approximating that of a
full-scale neural network. In this paper, the lottery tickets hypothesis can be interpreted as
suggesting that a sensor configuration with fewer sensors can be found to approximate the
diagnosis accuracy of redundant sensor configuration.

3. Simulations and Experiments

To verify the effectiveness of the proposed OSP method, numerical simulations of
SSME and ground hot-fire test-run experiments of a LOX/Kerosene LRE are carried out for
creating datasets including operations under normal and abnormal states in this section.
The proposed OSP method is then applied to the simulation and experimental datasets,
respectively. Furthermore, various typical BMOAs based on evolutionary computing and
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crowd intelligence are applied to compare their effectiveness with the proposed method,
such as Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [42], Adaptive Geom-
etry Estimation based Multi-objective Evolutionary Algorithm-II (AGE-MOEA-II) [43],
Bi-criterion Evolution in Multi-objective Evolutionary Algorithm based on Decomposition
(BCE-MOEA/D) [44] and Competitive Mechanism-based Multi-objective Particle Swarm
Optimizer (CMMOPSO) [45,46].

3.1. LRE Failure Simulations

Leakage fault is the most frequent fault of SSME according to the statistical analysis of
the failure incidences data of SSME test firing, which leads to the main focus of this section
on the simulation of leakage fault. In this paper, the simulations of leakage at different
positions and levels of LRE are carried out.

The output of the simulation model is the measurements of 28 sensors, and the
correspondence between sensor number and sensor label is shown in Table 1. To create
the training and testing datasets, the embedding data quantity is configured as 10 with
employing a sampling rate of 1000 Hz, which means a fault will be detected in 10 ms
if a fault occurs. In total, five different leakage positions with two leakage levels are
simulated. The fault is emulated through varying the size of the fault factor, where the
leakage is located at pipelines of the fuel pump and oxidizer pump. The simulation dataset
is constructed using simulation data in the same proportion of normal state and 10 different
leakage states, with 3000 samples at each category. Furthermore, the dataset is randomly
divided into training and testing sets according to an 80/20% distribution.

Table 1. Sensors for diagnosis.

Sensor No. Sensor Label Price Per Sensor
(Chinese Yuan) Description

1 Pc 10,000 Main combustion chamber pressure
2 Tc 10,000 Main combustion chamber temperature
3 Qhoc 3750 Main combustion chamber fuel/oxidizer mixture flow
4 Qfc 6500 Main combustion chamber fuel flow
5 Qoc 7500 Main combustion chamber oxidizer flow
6 fpbPc 10,000 Fuel preburner pressure
7 fpbTc 3000 Fuel preburner temperature
8 fpbQfc 2000 Fuel preburner chamber fuel flow
9 fpbQoc 4000 Fuel preburner chamber oxidizer flow
10 opbPc 8000 Oxidizer preburner pressure
11 opbTc 7500 Oxidizer preburner temperature
12 opbQfc 7500 Oxidizer preburner chamber fuel flow
13 opbQoc 5000 Oxidizer preburner chamber oxidizer flow
14 lpftpPo 1750 Low-pressure fuel turbopump outlet pressure
15 lpftpN 1750 Low-pressure fuel turbopump speed
16 lpftpQ 6500 Low-pressure fuel turbopump outlet flow
17 hpftpPo 6500 High-pressure fuel turbopump outlet pressure
18 hpftpN 7500 High-pressure fuel turbopump speed
19 hpftpQ 5000 High-pressure fuel turbopump outlet flow
20 lpotpPo 1500 Low-pressure oxidizer turbopump outlet pressure
21 lpotpN 3000 Low-pressure oxidizer turbopump speed
22 lpotpQ 7000 Low-pressure oxidizer turbopump outlet flow
23 hpotpPo 7000 High-pressure oxidizer turbopump outlet pressure
24 hpotpN 6500 High-pressure oxidizer turbopump speed
25 hpotpQ 3000 High-pressure oxidizer turbopump outlet flow
26 cjP 1750 Cooling jacket pressure
27 ncP 10,000 Main combustion cooling pressure
28 pfsP 6500 Preburner fuel supply pressure



Aerospace 2024, 11, 239 12 of 24

The typical measurements during normal and leakage states are illustrated in
Figure 5a,b, respectively. As depicted in Figure 5, it is evident that following the onset of
leakage, the measurements undergo changes over time with varying trends. The inference
time of the proposed two-stage fault diagnosis method has been evaluated, the anomaly
detection time to complete a normal sample is 5.182 ms and the fault diagnosis time for a
faulty sample is 11.868 ms. The tests were conducted on a platform equipped with 12th
Gen Intel(R) Core(TM) i5-12400F processor, 16GB of RAM, and MATALAB R2023b.

(a) (b)

Figure 5. Simulated results of parameters under (a) normal state and (b) leakage state.

The proposed OSP method is employed for the OSP of SSME with simulated data.
The OSP problem with 4 objectives and 28 variables in this section can be expressed as
Equation (17).

arg min
s


f1(s) = c×sT

∥c∥1
f2(s) = 1 − g2(s)

f3(s) = 1 − g2(s) · g3(s)
f4(s)=g1(s)

, s.t.


1 − ∥P∥1 ≤ 0
1 − ∥Q∥1 ≤ 0
1 − ∥T∥1 ≤ 0
1 − ∥N∥1 ≤ 0

(17)

where c denotes the price vector corresponding to binary sensor vector s, g1(s), g2(s)
and g3(s) denotes parameter fraction rates, macro-average F1 score of n-categorical fault
detection model and m-categorical fault diagnosis model, respectively.

In addition, the sensor price used in this section is an assumed price based on an
integrated assessment of the components price from Alibaba and installation cost.

As we can see in Figure 6, the objective functions f1, f2 and f3 are significantly affected
by the number of sensors with different sensor configurations which is another form of f4.
It turns out that objective functions f2 and f3 exhibit a strong nonlinear property under
nonlinear constrains, which can hardly be addressed by non-convex algorithms.

The parameters of the proposed two-stage diagnosis algorithm include the regulariza-
tion factor c and the kernel parameter γ, which are specialized as 0.5 and 10 by utilizing
the grid search method for fine tuning, respectively. Subsequently, the parameters of the
two-stage OSP method include maximum generations MaxGen, population size N and the
acceptable local PF gap ϵ, which are specialized as 5600, 1000 and 0.3, respectively. The
parameters of other BMOAs used for the comparison are shown in Table 2.
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Figure 6. Evaluation result of objective function (a) f1, (b) f2, and (c) f3.

Table 2. Parameters of BMOAs.

Algorithms Parameters

NSGA-II Population size is 1000, maximum generations are 5600, crossover fraction is
0.5, migration fraction is 0.2 and Pareto fraction is 0.1.

AGE-MOEA-II Population size is 1000, maximum generations are 5600, crossover fraction is
0.5 and uniform mutation fraction rate is 0.01.

BCE-MOEA/D Population size is 1000, maximum generations are 5600, the size of neighbor-
hood is 100, the probability of parent individuals selected from the neighbor-
hood is 0.9 and the maximum number of replaced individuals is 10.

CMMOPSO Population size is 1000, maximum generations are 5600 and parameter γ is 10.

3.2. Hot-Fire Test-Run Experiments

Hot-fire test-run experiments of a LOX/Kerosene LRE were carried out to further
verify the effectiveness of the proposed method. The structure of the LOX/Kerosene LRE is
shown in Figure 7. More than 100 sensors were deployed in various components to monitor
the health condition of the LRE during hot-fire test-run experiments. A failure mode of
leakage was detected after a hot-fire test-run experiment. There were 48 pressure sensors
employed for leakage diagnosis, and the details of the sensors are listed in Table 3. Sensors
are categorized into expensive and cheap types with different assumed prices. In the fourth
column of Table 3, an entry labeled ’unknown’ indicates that the corresponding sensor
is cheap, and other entries indicate that the corresponding sensors are both important
and expensive.
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Figure 7. The structure of a LOX/Kerosene LRE [13]. The description of numbered items is as follows:
1—fuel pre-pressure turbine pump; 2—oxidizer pre-pressure turbine pump; 3—gas generator; 4—
main turbine; 5—oxidizer pump; 6—fuel primary pump; 7—fuel secondary pump; 8—combustion
chamber; 9—throttle valve; 10—flow regulator; 11—starting box; 12—ignition duct.

Table 3. Sensors for diagnosis of a LOX/Kerosene LRE.

Sensor No. Sensor Label Price Per Sensor
(Chinese Yuan) Description

1 P1 1750 Unknown
2 P2 10,000 Oxidizer inlet pressure
3 P3 1750 Unknown
4 P4 10,000 Fuel solenoid valve outlet pressure
5 P5 10,000 Fuel pressure before generator injector
6 P6 1750 Unknown
7 P7 1750 Unknown
8 P8 1750 Unknown
9 P9 10,000 Fuel primary pump outlet pressure 2
10 P10 1750 Unknown
11 P11 10,000 Fuel pressure before Main combustion chamber injector
12 P12 1750 Unknown
13 P13 1750 Unknown
14 P14 1750 Unknown
15 P15 1750 Unknown
16 P16 1750 Unknown
17 P17 10,000 Fuel primary pump outlet pressure 1
18 P18 1750 Unknown
19 P19 1750 Unknown
20 P20 1750 Unknown
21 P21 1750 Unknown
22 P22 1750 Unknown
23 P23 10,000 Oxidizer pump inlet pressure
24 P24 1750 Unknown
25 P25 1750 Unknown
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Table 3. Cont.

Sensor No. Sensor Label Price Per Sensor
(Chinese Yuan) Description

26 P26 1750 Unknown
27 P27 1750 Unknown
28 S1 1750 Unknown
29 S2 1750 Unknown
30 S3 1750 Unknown
31 P28 10,000 Oxidizer pre-compressed pump gas mixing chamber pressure 2
32 P29 1750 Unknown
33 P30 1750 Unknown
34 P31 1750 Unknown

35 P32 10,000 Oxidizer pre-compressed pump oxygen mixing
chamber pressure

36 P33 1750 Unknown
37 P34 1750 Unknown
38 P35 1750 Unknown
39 P36 1750 Unknown
40 P37 1750 Unknown
41 P38 1750 Unknown
42 P39 1750 Unknown
43 P40 10,000 Oxidizer pump outlet pressure
44 P41 1750 Unknown
45 P42 1750 Unknown
46 P43 10,000 Oxidizer pre-compressed pump gas mixing chamber pressure 1
47 P44 10,000 Oxidizer pump cooling bearing reflux tube pressure
48 P45 10,000 Oxidizer pump cooling bearing reflux tube pressure 1

As depicted in Figure 8, the signals at the initial and final stages were categorized
as normal and faulty due to the uncertainty surrounding the precise moment of the leak-
age fault.

Time

A
m

p
li

tu
d

e

Simulated 

multisensory signals 

Leakage 

occurrence
Normal

Fault

Samples

Td

Online 

detection

Figure 8. The process of dataset construction and online fault detection.

The normalized signals from a hot-fire test-run experiment with a leakage fault are
shown in Figure 9. Then, the inference time of the proposed two-stage fault diagnosis
method was evaluated, the anomaly detection time to complete a sample is 5.822 ms.
Combined with the results of inference time evaluation in simulation data, the proposed
two-stage fault diagnosis method has demonstrated its capability for online prognosis.

Subsequently, the proposed OSP method is utilized for OSP with experimental data.
The OSP problem with 3 objectives and 48 variables in this section can be formulated
as (18).

arg min
s


f1(s) = c×sT

∥c∥1
f2(s) = 1 − g2(s)

f4(s)=g1(s)
, s.t.

{
1 − ∥se∥1 ≤ 0
1 − ∥sc∥1 ≤ 0

(18)

where s = [se, sc], se and sc denotes the vector of expensive and cheap sensors, respectively.
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which is severely affected by leakage

Time (second)

Figure 9. The normalized signals.

As depicted in Figure 10, the objective function f1 and f2 are very sensitive to changes
in the number of sensors and reflect the multimodal characteristic. This implies that even
minor changes in the number or configuration of sensors can lead to significant alterations
in the objective function. In addition, the parameters of algorithms used in this section
remain consistent with those detailed in Section 3.1 except the maximum generations are
9600 and the population size is 2000.

(a) (b)

Figure 10. Evaluation result of objective function (a) f1 and (b) f2.

4. Results and Discussions
4.1. Results on the Simulated Datasets

The PF and the corresponding HV values are shown in Figures 11 and 12, respectively.
The number of unique PSs in the decision space of the five algorithms are 12, 12, 14,
48 and 74, respectively, indicating that HREA has the highest number of unique PSs.
Compared to other algorithms, the PSs of HREA show better diversity in the decision space.
In Figure 12, we have found that HREA outperforms other BMOAs in the diversity and
absolute numerical value of the HV indicator.
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1 
 

 
  
Figure 11. PF in (a) x-y-z view, (b) u-x-y view, (c) x-y view, (d) y-z view, (e) x-z view and (f) x-u view
in the simulated datasets.
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Figure 12. HV values of PSs in the simulated datasets.

The selected sensor configurations are listed in Table 4, while they are applied for vali-
dating the effectiveness of the proposed OSP method by means of retraining the diagnosis
models and testing them on the testing datasets. Analyzing the frequency of selection for
each sensor in various configurations reveals that sensors numbered 1, 2, and 15 (referred to
as Pc, Tc, and lpftpN, respectively) play a crucial role in diagnosing leakage faults in LRE.

Table 4. OSP results of the simulated datasets.

Methods Sensors Number Sensor Configuration

NSGA-II 4 1, 2, 15, 25
AGE-MOEA-II 10 1, 2, 3, 8, 14, 15, 19, 21, 23, 26
BCE-MOEA/D 8 1, 2, 7, 9, 15, 21, 26, 28
CMOPSO 9 2, 5, 12, 15, 16, 18, 22, 25, 26
HREA 9 1, 2, 3, 9, 10, 15, 19, 22, 23

Based on the test results shown in Figure 13, each algorithm’s performance on each
metric is scored. The scoring system assigns a score of 5 to the best metric achieved
and a score of 1 to the worst metric. Notably, a score of 0 is assigned when the value
exceeds 0.4, with higher scores indicating better performance. Following these scoring
rules, the final scores achieved by each algorithm are 14, 9, 8, 11 and 14, respectively.
However, the presence of zero-score items in NSGA-II and BCE-MOEA/D is considered
unacceptable. The above analysis highlights that the comprehensive performance of the
HREA-based OSP method outperforms the other methods. Many enlightening results can
be found by comparing the evaluation metrics. The sensor configuration obtained using the
NSGA-II-based method can compress the sensor cost better while ignoring the guarantee
of diagnosability. The AGE-MOEA-II-based and BCE-MOEA/D-based methods tend to
choose cheaper sensors to reduce sensor costs, disregarding the necessity of ensuring real-
time performance and diagnosability of the diagnosis algorithm. The CMOPSO-based and
HREA-based methods strike a good balance between sensor cost, real-time performance
and diagnosability of the diagnosis algorithm. However, the CMOPSO-based method
is slightly more optimized in terms of sensor cost and real-time performance, while the
HREA-based method offers the best trade-off between the three.
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Figure 13. The test results of the simulated datasets.

4.2. Results on the Experimental Datasets

Figures 14 and 15 depict the PF and the corresponding HV values, respectively.
The number of unique PSs in the decision space of the five algorithms are 3, 6, 3, 174
and 10, respectively, indicating that HREA has the highest number of unique PSs except
CMOPSO. It is evident from Figure 14 that CMOPSO faces challenges in converging to the
true PF, while the PSs derived from HREA demonstrate notable diversity within the deci-
sion space. Consequently, the results based on CMOPSO are not further analyzed below. 

2 

 
  

 

3 

 

 
Figure 14. PF in (a) u-x-y view, (b) x-y view, (c) x-u view and (d) y-u view on the experimental datasets.
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Figure 15. HV values of PSs on the experimental datasets.

Table 5 lists the selected sensor configurations. The most frequently selected sensors
are numbers 5, 12, 17, 32, and 33, which are not consistent with the conclusion made in
Section 4.1. Given that the sensor configurations in this section are sparse and introduce
significant randomness through low counts, the conclusions drawn based on the analysis
of the number of times a sensor is selected are considered unreliable.

Table 5. OSP results of the experimental datasets.

Methods Sensors Number Sensor Configuration

NSGA-II 2 31, 32
AGE-MOEA-II 2 5, 12
BCE-MOEA/D 3 10, 31, 32
CMOPSO 17 2, 3, 5, 7, 11, 12, 15, 17, 21, 22, 24, 38, 39, 42, 43, 47, 48
HREA 2 17, 33

The testing datasets and an anomaly detection dataset with a precise anomaly occur-
rence time log are used for validating the effectiveness of the proposed OSP method via
testing at the retrained classifier model which is trained according to the optimal sensor
configurations. The test results in Figure 16 show the superiority of the HREA-based OSP
method proposed in this paper. The significant comparison of high diagnosis accuracy is
obtained through CMOPSO-based and HREA-based methods using more and fewer sen-
sors, respectively, which further demonstrates that the method presented herein is effective
in finding critical sensors for diagnosis purposes. The sensor configurations obtained based
on HREA, NSGA-II, and BCE-MOEA/D achieve equivalent results in terms of real-time
performance and sensor cost, whereas the HREA-based method achieves better diagnos-
ability. The AGE-MOEA-II-based method fails to seek out an effective sensor configuration,
while the NSGA-II-based and BCE-MOEA/D-based methods only yield suboptimal results.

Moreover, the fourth evaluation metric f5 used in this section is the normalized
anomaly detection time. It is defined as the difference between the anomaly detection
time and the actual anomaly occurrence time (22.38 s) divided by the maximum acceptable
anomaly detection time (0.5 s in this paper). The test results in this section obviously
illustrate the ability of the OSP method for diagnosis algorithm to optimize the detection
time while assuring accuracy, which is also referred to as optimal diagnosability.
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Figure 16. The test results of the experimental datasets.

5. Conclusions Remarks and Future Works

In summary, an OSP method is proposed to optimize the diagnosability of online
diagnosis algorithm in inflight PHM systems for LREs based on hierarchical diagnosability
metrics and comprehensive evaluation metrics for PSs. Firstly, a two-stage diagnosis
algorithm based on KELMs is proposed for online application and the diagnosability is
modeled in hierarchical views while some of the metrics exhibit nonlinear characteristics
approaching chaos. Subsequently, we proposed an HREA-based two-stage OSP method
which achieved further optimization of PSs by the improved HV indicator. With the help
of the channel-wise pruning KELM model, the diagnosability metrics can be calculated for
different sensor configurations without retraining the classifier model while optimizing.
Finally, the proposed HREA-based OSP method is applied to an LRE failure simulation
dataset and a hot-fire test-run experiment dataset while introducing NSGA-II, AGE-MOEA-
II, BCE-MOEA/D and CMMOPSO as BMOA to proposed two-stage OSP framework in the
sake of comparing. The algorithm testing results show that the HREA-based OSP method
outperforms other methods. In a sense of the specificity of the OSP problem described
in this paper, HREA considers the multimodal property to achieve better performance
in terms of PS diversity. Moreover, the proposed OSP method can balance well the cost
of the sensors, real-time performance and diagnosability of the diagnosis method. The
proposed method implements system-level OSP for LRE fault diagnosis and shows the
potential of using it for developing reusable LREs. Notably, the proposed OSP framework
provides a universal approach that is scalable and adaptable to aero-engines or other
complex industrial systems by considering system-specific complexities and constraints.

Future works will be conducted as follows. The parameters of the diagnosis algorithm
and MOAs in this paper are manually set, which can be subsequently optimized by intro-
ducing a crowd intelligence algorithm. Sensor failures can affect the robustness of the fault
diagnosis methods, and it is feasible to construct the robustness metric of the diagnostic al-
gorithm through the probability of sensor failures. Ensuring the robustness of inflight fault
diagnosis methods for LREs is critical, and it will be followed by further research on the
OSP method in conjunction with the robustness of the diagnostic algorithm. Measurement
signals acquired from expensive sensors usually have a higher Signal-to-Noise Ratio (SNR),
and the effect of the OSP method in combination with the SNR of measurement signals will
be considered in our future studies. Different nonlinear constraints in the OSP problem
significantly influence the final sensor configuration obtained, and subsequent efforts will
focus on incorporating more practical constraints related to the installation of sensors in
LREs into the analysis of the OSP problem.
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Abbreviations
The following abbreviations are used in this manuscript:

LRE Liquid Rocket Engine
PHM Prognosis and Health Management
OSP Optimal Sensor Placement
ATA Adaptive Threshold Algorithm
DTW Dynamic Time Warping
LSTM Long Short-Term Memory
RUL Remaining Useful Life
TDQN transferable deep Q network
DRL Deep Reinforcement Learning
TL Transfer Learning
CAE Convolutional Autoencoder
FIM Fisher Information Matrix
GANs Generative Adversarial Networks
1D-CNN one-dimension Convolutional Neural Network
KELM Kernel Extreme Learning Machine
HREA Hierarchy Ranking Evolutionary Algorithm
PSs Pareto Solutions
SSME Space Shuttle Main Engine
RBF Radial Basis Function
BMOA Binary Multi-objective Optimization Algorithm
PFs Pareto Fronts
HV Hypervolume
NSGA-II Non-Dominated Sorting Genetic Algorithm-II
AGE-MOEA-II Adaptive Geometry Estimation based Multi-objective Evolutionary Algorithm-II
BCE-MOEA/D Bi-criterion Evolution in MOEA based on Decomposition
CMMOPSO Competitive Mechanism based Multi-objective Particle Swarm Optimizer
SNR Signal-to-Noise Ratio
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