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Abstract: Based on the orthogonal experimental method, a simulation case of the flow field of the
ejector nozzle was designed to investigate the influence of the structural parameters of the ejector
nozzle on the internal and external flow. This study explored the effects of throat area, outlet area,
throat position, and ejector nozzle length on the ejector flow rate ratio, thrust coefficient, and net
thrust coefficient. Subsequently, flow path geometry optimization was conducted to maximize the
thrust coefficient or net thrust coefficient. The results revealed that the throat area ratio and the
outlet area of the ejector nozzle are the primary factors affecting the aerodynamic performance.
Compared to the baseline ejector nozzle model, the optimal model for thrust coefficient exhibited a
16.333% improvement, while the optimal model for net thrust coefficient demonstrated a significant
enhancement of 46.674%.

Keywords: internal and external integrated flow; ejector nozzle; optimal design; thrust; afterbody
drag

1. Introduction

With the continuous development of aircraft, the integration of flight and engine has
become a major challenge that cannot be ignored, and a large number of related studies
have been conducted [1–5]. As a key component of the engine, the integrated design of
the nozzle and the aircraft afterbody has become the core focus of the research on the
integration of flight and engine. The interaction between the nozzle exhaust and the
external flow will change the pressure distribution at the rear end of the airframe, affect the
degree of gas expansion, and interfere with the airflow around the airframe, resulting in
increased flight resistance. Research has found that the afterbody resistance of the airframe
can account for 38% to 50% of the total resistance of the aircraft [6], of which about one-third
is related to the tail nozzle and the afterbody.

Through a simple structure, utilizing high-speed airflow to inject low-speed airflow,
there is a wealth of related research and experiments on ejector nozzles in aerospace
engineering and energy fields [7–10].

In the field of aviation, by effectively utilizing the overflow of the boundary layer from
the inlet, the ejector nozzle can enhance propulsion performance and provide cooling and
protection for the nozzle wall, as verified in engineering applications [11]. Additionally, the
ejector nozzle plays a role in reducing afterbody drag. There is evidence suggesting that
the use of adjustable ejector nozzles can decrease the afterbody angle, thereby reducing
afterbody drag [12].

Numerous scholars have conducted a series of studies on the flow field structure of
ejector nozzles. In ejector nozzles, the dynamic mixing of fluids is the primary mode of
momentum transfer [13,14]. The degree of mixing between these two streams of fluid
occurs in the free shear layer [15] and determines the performance of the ejector nozzle.

Levis E. Wallner and others [16,17] investigated the relationships between the suction
and thrust characteristics of ejector nozzles and the primary flow pressure ratio, diameter
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ratio, and spacing ratio. In the 1950s, NASA conducted extensive experimental research
on ejector nozzles [18–20], maintaining a constant primary-to-secondary pressure ratio,
to study the relationship between the geometric dimensions of ejector nozzles and their
suction and thrust characteristics.

Kumar et al. [21] explored the flow field structure in the vacuum ejector device and
further studied the vortex characteristics of the secondary flow backflow through experi-
ments. Karthick et al. [22] carried out a study on the mixing characteristics of the main and
secondary flow of a supersonic ejector in a rectangular ejector and used PLMS technology
to reveal the structure of the flow field, such as the shock node and mixing layer in the
ejector and the instability of the flow. Zohar Hoter [23] optimized a one-sided mixer–ejector
nozzle by numerical studies. It was found for ejector gap height and ejector flap leading
edge radius, while streamwise throat location had little effect on entrainment. Changjie
Ge [24] studied the effects of longitudinal distance between the engine nozzle exit and
aircraft surface and radius of the ejector nozzle exit on the performance of the integrated
ejector nozzle system. Ma [25] studied internal and external field characteristics of the
conformal asymmetric nozzle of a flying wing Unmanned Aerial Vehicle in the typical
flight condition. The results show that under a fixed blow-down ratio of the engine nozzle,
the main flow field characteristics of the afterbody nozzle can be effectively improved by
reasonably optimizing the secondary flow channel and increasing the blow-down ratio of
secondary flow. Cai and colleagues [26] conducted a simulation analysis on the impact of
the entrainment coefficient on the flow and thrust performance of ejector nozzles, proposing
the existence of two typical states, “wall-attached” and “detached”, in the internal shear
layer of ejector nozzles. Huang [27,28] and others studied the flow characteristics of ejector
nozzles with third-stream assisted air intake.

From the above discussion, research on ejector nozzles has mainly focused on the
ejector structure and internal flow characteristics. There are limited explorations into
internal and external integrated flow and the impact of the ejector nozzle on the drag
of afterbody.

For further application of the ejector nozzle, the ejector nozzles investigated in this
study were integrated into the aircraft tail. Using the orthogonal experimental method,
cases were designed to explore the impact of ejector nozzle geometry parameters on their
aerodynamic performance. Based on these investigations, optimization was carried out
with the objectives of maximizing thrust coefficient and net thrust coefficient. The resulting
optimal models aim to serve as a reference for the design of ejector nozzles with internal
and external integrated flow.

2. Research Object and Key Design Parameters
2.1. Research Object

This study focuses on a symmetrical axisymmetric ejector nozzle integrated with the
afterbody of an aircraft. It includes a convergent–divergent ejector sleeve added outside
the converging main nozzle. The aircraft afterbody consists of a straight section and a
converging section, connected to the exit of the ejector nozzle. Due to the symmetry of
the structure about the nozzle axis, a two-dimensional model is employed for the study.
Figure 1 provides a schematic diagram of the two-dimensional geometric model. In the
ejector nozzle, the primary flow flows out through the convergent main nozzle and mixes
with the secondary flow, and then flows out of the ejector nozzle together.

In this study, the aerodynamic performance of the ejector nozzle was investigated
under the conditions of an aircraft flying at a Mach number of 1.05. The geometric structure
of the main nozzle remained unchanged, and both the total pressure and total temperature
of the primary flow and secondary flow were kept constant. For the ejector nozzle, the
geometric parameters include the throat radius Rs, outlet radius Re, axial distance between
the throat of the ejector nozzle and the outlet of the main nozzle Ls, and axial distance
between the outlet of the ejector nozzle and the outlet of the main nozzle L. The converging
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section of the afterbody changes in response to variations in the ejector nozzle, and its
curve is described by the following equation:

r
R10

= 1 − (1 − Re

R10
)(

x
L
)

n
(1)

where R10 is the maximum radius of the afterbody, x is the axial distance from the main
nozzle outlet, r is the circumferential distance, and n is selected as 3 with reference to
Aircraft Engine Design [29].
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Figure 1. Schematic diagram of the ejector nozzle geometry model.

2.2. Key Design Parameters and Their Variation Range

The design parameters for the ejector sleeve are nondimensionalized using the outlet
parameters of the main nozzle. The key design parameters include the ratio of ejector
sleeve throat area to main nozzle outlet area As/Ap, the ratio of ejector sleeve outlet
area to main nozzle outlet area Ae/Ap, the ratio of axial distance between ejector sleeve
throat and main nozzle outlet to main nozzle outlet diameter Ls/Dp, and the ratio of axial
distance between ejector sleeve outlet and main nozzle outlet to main nozzle outlet diameter
L/Dp. The parameter ranges are referenced from the literature [16] and are selected as
1.23 ≤ As/Ap ≤ 1.85, 1.54 ≤ Ae/Ap ≤ 2.91, 0 ≤ Ls/Dp ≤ 0.45, and 1.10 ≤ L/Dp ≤ 1.65.

3. Optimization Design Method
3.1. Definition of Aerodynamic Performance

The aerodynamic performance of the studied ejector nozzle in this paper is char-
acterized by three parameters: the ejector flow rate ratio, thrust coefficient, and net
thrust coefficient.

The ejector flow ratio
.

ms/
.

mp is defined as the ratio of the secondary flow to the
primary flow.

The thrust of the ejector nozzle is compared with the ideal thrust of a Laval nozzle
under isentropic, fully expanded conditions.

The thrust coefficient C f is defined as the ratio of the actual thrust generated by the
ejector nozzle to the ideal fully expanded thrust of the primary flow:

C f =
Fej

Fip
(2)
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According to the primary flow parameters, the ideal fully expanded thrust Fip of the
Laval nozzle can be calculated as follows:

Fip =
.

mipUip (3)

where
.

mip is the ideal flow rate and Uip is the nozzle outlet velocity during isentropic
complete expansion of the gas flow. The expression is as follows:

.
mip = Pt A8

k

√(
2

k+1

) k+1
k−1

√
kRTt

(4)

Uip =

√√√√2
kRTt

k − 1

[
1 −

(
Pa

Pt

) k−1
k
]

(5)

The actual thrust Fej of the ejector nozzle is calculated based on CFD results:

Fej =
.

mej Ux + (Pe − Pa)Ae (6)

where
.

mej is the flow rate of the ejector nozzle, Ae, Pe, and Ux are the area, static pressure,
and axial velocity of the ejector nozzle outlet, and Pa represents the ambient pressure.

The net thrust coefficient C f−net takes into account the influence of afterbody drag on
the thrust of the ejector nozzle and is defined as follows:

C f−net =
Fej − Da f t

Fip
(7)

where Da f t is the afterbody drag.
The afterbody drag includes pressure drag and friction drag, which are the integrals

of the pressure difference force and friction force along the axial direction of the nozzle
from the cross section of the afterbody of the aircraft to the nozzle outlet cross-section. The
calculation formula is as follows:

Da f t = −
∫
(P − Pa)dA + X f (8)

where P is the static pressure on the afterbody surface and X f is the friction drag.

3.2. Mathematical Description of Optimization Design

Design parameters that describe the ejector nozzle profile can be considered as in-
puts and for each set of inputs, there are corresponding values of

.
ms/

.
mp, C f , and C f−net,

which are the responses of inputs. The ejector nozzle profile optimization is to obtain
the maximum C f or C f−net responses by taking values of the parameters within the
variation range.

With the maximization of the thrust coefficient as the optimization objective, the
mathematical description of the surface optimization design is as follows:

max C f = f (As/Ap, Ae/Ap, Ls/Dp, L/Dp)
s.t. 1.23 ≤ As/Ap ≤ 1.85,

1.54 ≤ Ae/Ap ≤ 2.91,
0 ≤ Ls/Dp ≤ 0.45,
1.07 ≤ L/Dp ≤ 1.61
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With the maximization of the net thrust coefficient as the optimization objective, the
mathematical description of the surface optimization design is as follows:

max C f−net = f (As/Ap, Ae/Ap, Ls/Dp, L/Dp)
s.t. 1.23 ≤ As/Ap ≤ 1.85,

1.54 ≤ Ae/Ap ≤ 2.91,
0 ≤ Ls/Dp ≤ 0.45,
1.07 ≤ L/Dp ≤ 1.61

3.3. Optimization Design Process

The optimization process for the ejector nozzle profile is illustrated in Figure 2, with
the main steps outlined as follows:
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(1) Utilize the orthogonal experimental design method to determine initial sample
points systematically. (2) Establish a model and numerically compute the response for
each sample point. (3) Based on the initial sample points and their responses, select and
construct a surrogate model representing the relationship between aerodynamic parameters
and design parameters. (4) Use new responses from external sample points to evaluate the
accuracy of the surrogate model, and if the accuracy falls below the required threshold,
add the new sample points to the initial sample points and repeat steps 2 to 4. Continue
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this process until a surrogate model with satisfactory accuracy is obtained. (5) Utilize
the surrogate model and optimization algorithm to obtain the optimal solution under
given constraints. (6) Compare simulation results with the predictions of the surrogate
model to assess convergence. If convergence is not achieved, add the results to the initial
sample points and repeat steps 2 to 6 until the desired convergence is reached. (7) Evaluate
the reasonability of the optimization results. If deemed unreasonable, add or modify
constraints, and repeat steps 5 to 7 until satisfactory optimization results are obtained.

This study employs the Kriging model as the surrogate model. Initially proposed
by Danie Krige, Kriging is an unbiased estimation model that minimizes variance. It
features local estimation capabilities, making it particularly effective in achieving desir-
able fitting results for problems with high nonlinearity [30,31]. In the field of surface
design, researchers such as Shi et al. [32–36] have achieved favorable results using the
Kriging model.

For the accuracy assessment of the surrogate model, the evaluation metrics include
the root mean square error (RMSE) and the max error. Taking the thrust coefficient as an
example, they are defined as follows:

Precision testing is conducted by constructing cases with external sample points. The
thrust coefficient obtained from computational fluid dynamics (CFD) numerical simulations
is denoted as C f ,CFD, while the thrust coefficient obtained from the surrogate model is
denoted as C f ,Kriging. The expressions for the root mean square error (RMSE) and the max
error of the surrogate model are as follows:

RMSE =

√
1
n

n

∑
i=1

ε2
C f ,i (9)

max error = max(
∣∣∣εC f ,i

∣∣∣), i = 1, . . . , n (10)

The precision testing standards require that RMSE ≤ 0.05, max error ≤ 0.1.
The optimization algorithm references [33,35,36] use the adaptive simulated annealing

algorithm (ASA), which is an improved algorithm for the simulated annealing algorithm
proposed by Ingber et al. It has better global solving ability and computational efficiency
than the traditional SA algorithm and is an efficient and fast global optimization algorithm
for solving difficult nonlinear optimization problems with multi-modal and non-smooth
characteristics [30,31]. The convergence criterion for the optimization results in this study
is εC f ≤ 0.05.

4. The Influence of the Design Parameters of the Ejector Nozzle on the Aerodynamic
Performance

This chapter mainly introduces the contents of steps (1) and (2) in the optimization
process and analyzes the results.

4.1. Case Design Based on Orthogonal Experimental Method

The variation range of design parameters was determined previously. Within the
variation range, four levels were designed at equal intervals, resulting in a corresponding
factor level table, as shown in Table 1.

Table 1. Factors and levels of ejector nozzle design parameters.

Level
Factor

As/Ap Ae/Ap Ls/Dp L/Dp

1 1.23 1.44 0 1.10
2 1.44 1.93 0.15 1.28
3 1.64 2.42 0.3 1.47
4 1.85 2.91 0.45 1.65
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For the four factors at four levels, an orthogonal array L16(45) [37] was employed to
construct 16 initial sample points, as detailed in Table 2. Cases 11 and 16, with converging
ejector nozzles, are excluded. Case 1 is utilized as the baseline ejector nozzle for reference.

Table 2. Computational cases of ejector nozzle based on orthogonal experiment design method.

Model
Factor

As/Ap Ae/Ap Ls/Dp L/Dp Blank

Case 1 1.23 1.44 0 1.10 1
Case 2 1.23 1.93 0.15 1.28 2
Case 3 1.23 2.42 0.3 1.47 3
Case 4 1.23 2.91 0.45 1.65 4
Case 5 1.44 1.93 0.3 1.10 4
Case 6 1.44 1.44 0.45 1.28 3
Case 7 1.44 2.91 0 1.47 2
Case 8 1.44 2.42 0.15 1.65 1
Case 9 1.64 2.42 0.45 1.10 2

Case 10 1.64 2.91 0.3 1.28 1
Case 11 1.64 1.44 0.15 1.47 4
Case 12 1.64 1.93 0 1.65 3
Case 13 1.85 2.91 0.15 1.10 3
Case 14 1.85 2.42 0 1.28 4
Case 15 1.85 1.93 0.45 1.47 1
Case 16 1.23 1.44 0 1.10 1

4.2. Flow Field Calculation Method

This article uses commercial software Fluent v 6.3 for numerical calculations, selecting
a density-based two-dimensional N-S equation solver. The flow control equation is dis-
cretized using a second-order upwind scheme, and the turbulence model uses the SST k-ω
model [38].

4.2.1. Flow Field Calculation Domain

The simulation calculations utilize a two-dimensional half-symmetric model. Figure 3
shows the flow field calculation domain. To mitigate potential influences on the results due
to the computational domain, the calculation domain is 60R10 long and 10R10.
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Figure 3. Flow field calculation domain diagram.

4.2.2. Boundary Conditions

All walls are defined as no-slip walls. With the exception of the main nozzle wall,
which is set as a coupled heat transfer boundary, all other wall surfaces are considered
adiabatic. The main nozzle and ejector inlet are defined as pressure inlets, while the external
flow field is configured as a pressure far-field. The specific values are shown in Table 3.
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Table 3. Flow field boundary conditions of ejector nozzle.

Boundary Mach Number Pressure Temperature

Main nozzle inlet —— Pt/Pa = 4.83 Tt/Ta = 8.22
Ejector inlet —— Pt/Pa = 1.90 Tt/Ta = 1.22

External flow 1.05 Pa Ta

4.2.3. Grid Division and Grid Independence Verification

Figure 4 shows the grid division of the entire calculation, and Figure 5 shows the
results of local magnification of the nozzle region. As can be seen from the figure, the
grid uses a structured grid to divide boundary layer mesh near the main nozzle wall,
ejector sleeve wall, and aircraft rear body wall, while the downstream mesh of the nozzle
is encrypted.
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To ensure computational accuracy while optimizing computational resources, a mesh
independence study was conducted. Different grids were applied to the same ejector nozzle
model, with the thrust coefficient used as a reference. The results for varying grid quantities
are depicted in Figure 6. It is observed that after exceeding 20,000 grids, the variations
become negligible. Therefore, considering computational efficiency and accuracy, the mesh
quantity is maintained around 30,000.
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4.3. Analysis of a Typical Ejector Nozzle Flow Field

Figure 7 presents the velocity vector field for Case 1. At different axial positions, red
arrow sizes indicate velocity magnitude, while directions represent velocity vectors. It can
be observed that the secondary flow initially has a slower velocity, creating a significant
velocity gradient downstream of the main nozzle outlet in conjunction with the primary
flow. The velocity continuously accelerates and becomes relatively constant near the
outlet position.
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Figure 8 illustrates the streamlines for Case 1. The red, blue, and black streamlines
originate from the main nozzle inlet, ejector inlet, and the external flow, respectively. From
the streamlines, it is evident that both the primary and secondary flows continue to move
outward near the nozzle outlet. Additionally, separation of the external flow occurs in the
converging section, leading to eventual recirculation near the outlet.
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Figure 9 depicts the Mach number contour plot for Case 1. It is evident that the
Mach number reaches 1 at the main nozzle outlet for the primary flow, and it continues
to expand and accelerate within the ejector nozzle. The external flow notably accelerates
as it transitions from the straight to the converging section of the afterbody, leading to a
significant decrease in Mach number at the location where recirculation occurs.
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Figure 10 provides the dimensionless pressure contour plot for Case 1, where P/Pa
represents the ratio of local static pressure to ambient atmospheric pressure. It is observed
that the jet at the ejector nozzle outlet is in an over-expanded state, leading to the appearance
of shock structures downstream with a significant pressure increase. The accelerated
external flow creates a pronounced low-pressure zone in the corresponding region.
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Figure 10. Dimensionless pressure contour plot of Case 1.

Figure 11 provides the dimensionless temperature contour plot for Case 1, where T/Ta
represents the ratio of local static temperature to ambient atmospheric pressure. It can be
seen from the figure that the primary flows out of the main nozzle outlet and expands
directly to the wall of the ejector nozzle. The secondary flow all mixes with the primary
flow, and the temperature near the wall of the ejector nozzle is slightly lower.
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4.4. Direct Analysis of Aerodynamic Performance

Table 4 presents the aerodynamic performance results obtained from computational
simulations based on the orthogonal experimental design.

Table 4. Aerodynamic performance of cases based on orthogonal experiment design method.

Model
.

ms/
.

mp Cf Cf−net

Case 1 0.14139 1.00827 0.69932
Case 2 0.18958 1.05969 0.82563
Case 3 0.16241 0.94731 0.75585
Case 4 0.13001 0.86432 0.72661
Case 5 0.32305 1.04829 0.81417
Case 6 0.21405 1.02569 0.69514
Case 7 0.46181 1.01465 0.8803
Case 8 0.37017 1.03436 0.83509
Case 9 0.51736 1.06655 0.88605

Case 10 0.52007 1.04064 0.91061
Case 11 —— —— ——
Case 12 0.46314 1.09612 0.82296
Case 13 0.85085 1.12905 1.00359
Case 14 0.75949 1.16576 0.97649
Case 15 0.60218 1.12707 0.85508
Case 16 —— —— ——

The summarized results are organized in Table 5, where Ki represents the sum of
corresponding aerodynamic performance values for each level i(i = 1, 2, 3, 4 ) of the geo-
metric factors, and ki denotes the arithmetic mean of the aerodynamic performance values
obtained when the geometric factor is set to level i. R represents the range, defined as
R = max {k1, k2, k3, k4} − min {k1, k2, k3, k4}. A larger range R for a geometric param-
eter indicates a more significant impact of the level variations of that parameter on the
objective function.
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Table 5. Direct analysis of influence of design parameters on aerodynamic performance.

As/Ap Ae/Ap Ls/Dp L/Dp Blank

.
ms/

.
mp

K1 0.62339 0.35545 1.82583 1.83265 1.63382
K2 1.36908 1.57795 1.4106 1.68319 1.16875
K3 1.50058 1.80942 1.00553 1.2264 1.69045
K4 2.21252 1.96274 1.4636 0.96332 1.21254
k1 0.15585 0.17772 0.45646 0.45816 0.40845
k2 0.34227 0.39449 0.4702 0.4208 0.38958
k3 0.50019 0.45236 0.33518 0.4088 0.42261
k4 0.73751 0.49069 0.3659 0.32111 0.40418
R 0.58166 0.31296 0.13502 0.13706 0.03303

C f

K1 3.87959 2.03396 4.28481 4.25218 4.21035
K2 4.123 4.33118 3.22311 4.29178 3.14089
K3 3.20332 4.21399 3.03625 3.08903 4.19817
K4 3.42189 4.04867 4.08363 2.99481 3.07838
k1 0.9699 1.01698 1.0712 1.06304 1.05259
k2 1.03075 1.08279 1.07437 1.07295 1.04696
k3 1.06777 1.0535 1.01208 1.02968 1.04954
k4 1.14063 1.01217 1.02091 0.99827 1.02613
R 0.17073 0.07063 0.06229 0.07468 0.02646

C f−net

K1 3.0074 1.39446 3.37908 3.40314 3.3001
K2 3.2247 3.31784 2.66431 3.40786 2.59198
K3 2.61962 3.45348 2.48062 2.49123 3.27753
K4 2.83516 3.52111 3.16288 2.38466 2.51727
k1 0.75185 0.69723 0.84477 0.85078 0.82503
k2 0.80618 0.82946 0.8881 0.85197 0.86399
k3 0.87321 0.86337 0.82688 0.83041 0.81938
k4 0.94505 0.88028 0.79072 0.79489 0.83909
R 0.1932 0.18305 0.09738 0.05708 0.04461

Upon comparison, the influence of each design parameter on aerodynamic perfor-
mance can be ranked as follows:

For
.

ms/
.

mp, the descending order of influence is As/Ap, Ae/Ap, L/Dp, Ls/Dp. For
C f , the descending order of influence is As/Ap, L/Dp, Ae/Ap, Ls/Dp. For C f−net, the
descending order of influence is As/Ap, Ae/Ap, Ls/Dp, L/Dp.

For all three aerodynamic parameters, As/Ap consistently emerges as the design
parameter with the most significant impact.

The impact of design parameter variations on aerodynamic performance is illustrated
in Figure 12, with each factor’s level as the x-axis and the average values ki of

.
ms/

.
mp, C f ,

and C f−net at each level as the y-axis. From the figure, it can be observed that with an
increase in As/Ap,

.
ms/

.
mp, C f , and C f−net all exhibit a monotonically increasing trend. On

the other hand, as Ae/Ap increases,
.

ms/
.

mp and C f−net increase, while C f first increases
and then decreases.
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5. Surrogate Model Accuracy Testing

The accuracy of the surrogate models was tested by calculating an additional
10 cases beyond the samples constructed in the orthogonal table. The results of the ac-
curacy test are shown in Tables 6 and 7. The calculated values for the C f surrogate model are
RMSE = 0.01010 and max error = 0.02413, while for the C f−net surrogate model,
RMSE = 0.01743 and max error = 0.04636. The accuracy meets the requirements.

Table 6. Accuracy of surrogate model of C f .

Model As/Ap Ae/Ap Ls/Dp L/Dp Cf,CFD Cf,Kriging εCf

Case 17 1.23 2.42 0.45 1.28 0.92789 0.9267 −0.00119
Case 18 1.23 2.91 0 1.47 0.9344 0.94945 0.01505
Case 19 1.23 1.44 0.3 1.65 0.99587 1.02 0.02413
Case 20 1.44 1.93 0 1.28 1.06628 1.0736 0.00732
Case 21 1.44 1.44 0.45 1.28 1.02558 1.0246 −0.00098
Case 22 1.64 2.42 0 1.28 1.1191 1.117 −0.0021
Case 23 1.64 2.42 0.45 1.47 1.07616 1.0649 −0.01126
Case 24 1.85 1.93 0.45 1.28 1.12789 1.1266 −0.00129
Case 25 1.85 2.42 0.15 1.10 1.15558 1.1608 0.00522
Case 26 1.85 2.91 0.15 1.65 1.13091 1.1291 −0.00181

Table 7. Accuracy of surrogate model of C f−net.

Model As/Ap Ae/Ap Ls/Dp L/Dp Cf−net,CFD Cf−net,Kriging εCf−net

Case 17 1.23 2.42 0.45 1.28 0.7464 0.742549 −0.00385
Case 18 1.23 2.91 0 1.47 0.80009 0.800948 0.00086
Case 19 1.23 1.44 0.3 1.65 0.66082 0.707178 0.04636
Case 20 1.44 1.93 0 1.28 0.82328 0.817813 −0.00547
Case 21 1.44 1.44 0.45 1.28 0.69507 0.694903 −0.00017
Case 22 1.64 2.42 0 1.28 0.933 0.914527 −0.01847
Case 23 1.64 2.42 0.45 1.47 0.88308 0.885085 0.00201
Case 24 1.85 1.93 0.45 1.28 0.86593 0.854722 −0.01121
Case 25 1.85 2.42 0.15 1.10 0.97466 0.972219 −0.00244
Case 26 1.85 2.91 0.15 1.65 0.99306 1.002735 0.00967

6. Ejector Nozzle Profile Optimization Design

The design parameters and calculation results of the optimized model are shown in
Table 8. Compared to the baseline model, the C f of the max C f ejector nozzle increased by
16.333%, and the C f−net of the max C f−net ejector nozzle increased by 46.674%.

Table 8. Comparison between baseline model and optimization models’ aerodynamic performance.

Model As/Ap Ae/Ap Ls/Dp L/Dp
.

ms/
.

mp Cf Cf−net

Case 1 1.23 1.44 0 1.102 0.1414 1.00827 0.69932
max C f 1.85 2.4425 0 1.102 0.8489 1.17295 0.99296

max C f−net 1.85 2.91 0 1.102 0.8690 1.15168 1.02572

Comparison of simulation results and predictions for the optimized profile are shown
in Table 9, demonstrating that the optimization results meet the convergence criteria.

Table 9. Convergence criteria of two optimization models.

Max Cf Max Cf−net

C f ,CFD C f ,Kriging εC f C f−net,CFD C f−net,Kriging εC f−net

1.17295 1.1664 −0.00558 1.02572 1.01856 −0.00698
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Figure 13 presents a comparative illustration of the three models. Compared to the
baseline model (Case 1), the two optimized models primarily exhibit an increase in As/Ap
and Ae/Ap, while L/Dp and Ls/Dp remain unchanged. L/Dp has the maximum value
within the variation range, and Ls/Dp = 0 indicates that the ejector nozzle throat is at the
same section as the main nozzle outlet. In comparing the two optimized models, As/Ap is
at its maximum value, Ae/Ap for the max C f model is at the mid-range, and Ae/Ap for
the max C f−net model is at the maximum value within variation range.
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1.17295 1.1664 −0.00558 1.02572 1.01856 −0.00698 
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baseline model (Case 1), the two optimized models primarily exhibit an increase in 𝐴௦ 𝐴௣⁄  
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within the variation range, and 𝐿௦ 𝐷௣⁄ = 0 indicates that the ejector nozzle throat is at the 
same section as the main nozzle outlet. In comparing the two optimized models, 𝐴௦ 𝐴௣⁄  
is at its maximum value, 𝐴௘ 𝐴௣⁄  for the max 𝐶௙ model is at the mid-range, and 𝐴௘ 𝐴௣⁄  for 
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Figures 14–16 present the Mach number contour plot, dimensionless pressure contour
plot, and dimensionless temperature contour plot for the two optimized models. From
the figures, it can be observed that both optimized models are in a state of overexpansion.
Due to the larger outlet area of the ejector nozzle in the max C f−net model, it exhibits
lower pressure near the outlet, resulting in a greater degree of overexpansion. The high-
temperature area generated by shock waves at the outlet position is higher and the range is
larger. However, this also effectively slows down the acceleration of the external flow in
the converging section of the afterbody. In comparison with the pressure contour plot, the
low-pressure region near the afterbody in the max C f−net model is smaller. This explains
why, despite having a lower C f compared to the max C f model, the max C f−net model still
has a higher C f−net.
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To more intuitively illustrate the impact of Ae/Ap variation on the afterbody drag, the
pressure distribution on the afterbody surface for the two models is shown in
Figure 17. It can be observed that in the max C f−net model, the pressure on the after-
body surface decreases more gradually, and the lowest pressure point is closer to the ejector
nozzle outlet.
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7. Conclusions

In this paper, numerical simulation cases were designed using orthogonal experimen-
tal methods at a Mach number of 1.05, and the effects of the ejector nozzle throat area ratio
As/Ap, outlet area ratio Ae/Ap, throat position Ls/Dp, and ejector nozzle length L/Ap on
the ejector flow ratio, thrust coefficient, and net thrust coefficient of the ejector nozzle were
investigated. Subsequently, optimization design was conducted with the goal of achiev-
ing the maximum thrust coefficient and net thrust coefficient. The following conclusions
were drawn:

(1) The factors that have the most significant influence on the aerodynamic performance
of the ejector nozzle are As/Ap and Ae/Ap. An increase in As/Ap leads to an increase
in

.
ms/

.
mp, C f , and C f−net of the ejector nozzle. On the other hand, an increase in

Ae/Ap results in a decrease in
.

ms/
.

mp and C f , but an increase in C f−net.
(2) The Kriging surrogate model combined with the adaptive simulated annealing (ASA)

optimization algorithm demonstrates effective predictive capabilities for the aerody-
namic performance of the ejector nozzle. In comparison with the baseline model, the
max C f model exhibits a 16.333% increase in C f , while the max C f−net model shows a
substantial 46.674% enhancement in C f−net.

(3) For the ejector nozzle, being in an overexpanded state is advantageous for achieving
greater thrust. Although increasing Ae/Ap may cause a loss in the thrust of the ejector
nozzle, it effectively reduces the afterbody drag, thereby enhancing C f−net.
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Nomenclature
A Area
R Radius/Gas constant
D Diameter/Drag
L Axial length
F Thrust
T Static temperature
P Pressure
U Velocity
k Specific heat ratio
.

m Mass flow rate
C f Thrust coefficient
p Primary flow
s Secondary flow
a Air
e Ejector nozzle
t Total
Ma Mach number
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