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Abstract: This study explores the shape-morphing behavior of 4D-printed structures made from
Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response
of these structures to thermal stimuli, this research investigates how various printing parameters
influence their morphing capabilities. The experimental approach integrates design and slicing,
printing using fused deposition modeling (FDM), and a post-printing activation phase in a controlled
laboratory environment. This process aims to replicate the external stimuli that induce shape morph-
ing, highlighting the dynamic potential of 4D printing. Utilizing Taguchi’s Design of Experiments
(DoE), this study examines the effects of printing speed, layer height, layer width, nozzle temperature,
bed temperature, and activation temperature on the morphing behavior. The analysis includes precise
measurements of deformation parameters, providing a comprehensive understanding of the mor-
phing process. Regression models demonstrate strong correlations with observed data, suggesting
their effectiveness in predicting responses based on control parameters. Additionally, finite element
analysis (FEA) modeling successfully predicts the performance of these structures, validating its
application as a design tool in 4D printing. This research contributes to the understanding of 4D
printing dynamics and offers insights for optimizing printing processes to harness the full potential
of shape-morphing materials. It sets a foundation for future research, particularly in exploring the
relationship between printing parameters and the functional capabilities of 4D-printed structures.

Keywords: PLA; shape morphing; 4D printing; additive manufacturing; printing parameters; design
of experiments; finite element analysis

1. Introduction

Advancements in 4D printing technology mark a significant evolution from conven-
tional 3D printing methodologies. This innovative approach integrates the dimension of
time into the fabrication process, enabling the production of objects that exhibit dynamic
transformations in shape, properties, or functionality when exposed to external stimuli
such as temperature variations, light exposure, or moisture changes [1–3]. The core of this
technology lies in the utilization of smart materials, which are specifically designed to
respond predictably to these stimuli [4–8]. This development in additive manufacturing
opens new possibilities across various sectors, offering the potential for creating objects
that are capable of adapting, self-assembling, or morphing in response to environmental
or operational requirements [9–12]. The emergence of 4D printing is thus a pivotal step
towards more adaptive and intelligent manufacturing practices [13,14].

In the aerospace sector, 4D printing technology has strong potential to enable a major
transformation. This innovative approach is particularly suited to the extreme operational
conditions typical in aerospace applications, such as substantial temperature variations and
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fluctuating atmospheric pressures [11,15,16]. The unique capability of 4D-printed compo-
nents to adapt their form and function in response to these environmental changes promises
to significantly enhance performance and efficiency. For example, the development of air-
craft wings or airfoils that can dynamically alter their shape in response to aerodynamic
conditions has the potential to revolutionize aircraft design, leading to improvements in fuel
efficiency and maneuverability [17–20]. Moreover, the integration of self-healing materials
in 4D printing processes can greatly increase the durability of aerospace components. This
not only reduces the need for frequent maintenance but also extends the overall lifespan
of these components, offering substantial cost savings [16,21–23]. Brischetto et al. [24], in
their 2020 study, conducted an experimental evaluation of the mechanical properties of
FDM-printed polymeric elements, focusing on PLA. Their research provides a compre-
hensive analysis of PLA’s mechanical behavior through tests like tensile, compression,
and three-point bending. This study is key for aerospace applications, where the strength
and reliability of components are crucial. The findings offer a deeper understanding of
PLA’s potential in aerospace, particularly for 4D printing, where materials must endure
extreme conditions.

Zaman et al.’s [25] study delves into the optimization of FDM process parameters and
their influence on the strength of printed parts. Their research is particularly significant for
aerospace applications, where the reliability and strength of components are non-negotiable.
By analyzing how different FDM settings affect part strength, their findings provide an
essential understanding for manufacturing aerospace components where precision and
durability are key. Patil et al. [26] focus on a multi-objective optimization approach for
FDM process parameters, specifically for PLA polymer components. Their findings offer
insights into how FDM parameter optimization can enhance the quality and performance
of aerospace components, aligning with the industry’s stringent requirements for material
robustness and precision.

Another critical advantage of 4D printing in this domain is the lightweight nature
of the materials used. This aligns perfectly with the aerospace industry’s ongoing efforts
to reduce the weight of components, which has a direct and positive impact on fuel
consumption and overall operational efficiency [27–30]. As humanity’s endeavors in space
exploration continue to advance, the ability to create structures capable of adapting to or
even self-assembling in the unique conditions of space becomes increasingly crucial. This
capability could play a pivotal role in future space missions and the construction of space
habitats [31–33].

Shape-memory polymer (SMP) 4D printing has made significant advances recently,
with promising results for aerospace applications. Zhou et al. presented the printing of
high-temperature SMP, poly(ether–ether–ketone) (PEEK), using 4D printing, which is an
appropriate material for challenging aerospace environments [34]. Zhang et al. highlighted
advances in 4D printing SMPs, emphasizing their smart excitation and response and
possible uses in the aerospace industry [35]. Zhang et al. presented the creation of a
UV-curable and mechanically robust SMP system that greatly enhances the mechanical
performance of SMP-based 4D printing structures, qualifying them for utilization in the
aerospace sector [36]. Other types of smart materials that can be employed in 4D printing
for aerospace applications include shape-memory alloys (SMAs) [37,38], shape-memory
ceramics (SMCrs) [39,40], and shape-memory composites (SMCs) [41,42]. Additionally, 4D
printing, along with these smart materials, enables dynamic adjustments, autonomous
responses, and improved adaptability. This results in the manufacturing of aerospace
structures that are revolutionary for space missions, including solar arrays, deployable
panels, cells, booms, self-deployable structures, and reflector antennas [41].

In 4D printing, the behavior and characteristics of the final printed structure are
influenced by a variety of factors beyond just the material choice. A range of printing
parameters, including print speed, layer height, nozzle diameter, temperature settings,
infill density, and print orientation, are crucial in shaping the morphing capabilities of the
printed object [43,44]. For example, a faster print speed can alter cooling rates, impacting
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how the material responds to external stimuli. Changes in infill densities and patterns
can also create structures with different flexibility and deformation properties [45]. The
interaction between these parameters is complex, with each combination leading to distinct
morphing behaviors. It is vital to understand and fine-tune these parameters to fully lever-
age the capabilities of 4D printing. Proper optimization ensures that the structures morph
accurately, consistently, and predictably, fulfilling their intended applications effectively.

In this paper, the primary objective is to comprehensively investigate the shape-
morphing behavior of PLA structures. We investigate the complex relationship between
the morphing response, the printing parameters (printing speed, layer height, layer width,
nozzle temperature, and bed temperature), and thermal stimulus through a systematic
experimental characterization. By subjecting these structures to thermal stimulus, we
explore their shape-morphing behavior, leveraging the unique properties of SMPs. The
experimentation is further enriched by employing analysis of variance (ANOVA) to de-
termine the significant impact of individual printing parameters and thermal stimulus on
their change of shape. Consequently, regression analysis is conducted to develop empirical
equations that predict the morphing behavior based on the chosen control factors. The
observed morphing behavior is then simulated and validated using finite element analysis
(FEA), which offers important insights into the structural performance under different
thermal conditions.

2. Methodology

With the introduction of structures that can change shape in response to environmen-
tal changes, 4D printing opens a new chapter in the evolution of additive manufacturing.
These novel structures, which are primarily made of Polylactic Acid (PLA), a well-known
bio-sourced shape-memory polymer (SMP), have attracted a lot of attention due to their po-
tential uses in a variety of industries, such as biomedical devices and adaptive architecture.
To successfully comprehend and regulate their shape-morphing activity, research is still
being carried out. The details of the printing process and the post-printing environments
have a major impact on the final shape and functionality of these structures.

To thoroughly understand shape morphing in 4D-printed PLA structures, an extensive
experimental methodology was developed. This approach aimed to reveal the complex
interactions between various printing parameters and their impact on the morphing behav-
iors of the structures. The design and slicing of the sample set the stage for the next step,
which is printing. After that, the sample is created utilizing fused deposition modeling
(FDM) technology, which is an essential step in the creation of the physical product. The
sample is allowed to cool at room temperature after printing. This stage is necessary
for maintaining the structure’s stability, consistency of the material’s characteristics, and
shape stability. The sample is ready for the activation phase after it has cooled, and this
includes putting it in a controlled lab bath (thermostatic water bath, DK-420 model, Wincom
Company, Ltd., Changsha, China). To simulate the external stimuli that cause the shape
morphing, this stage is crucial. The employed bath can develop the targeted activation
temperature, which then constitutes the stimulus for the specimen. Next, the sample’s
activation and deformation are seen, demonstrating the material’s ability to adjust and
change form in response to external stimuli. This change, which highlights the dynamic
potential of 4D printing, is an essential aspect of the research. The deformed sample is then
allowed to cool to ambient temperature. Measurements and data are carefully gathered
during this phase, offering important insights into the morphing process and the elements
controlling it.

2.1. Materials and Methods

The dimensions of the specimens utilized in the experiments are L = 70 mm, b = 3.5 mm,
and h = 1.5 mm. The creation of the test specimens involved a detailed process starting
from digital design to their physical formation. Initially, each specimen was designed using
computer-aided design (CAD) software (Autodesk Inventor 2023). After designing, the
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specimens were prepared for 3D printing. This stage involved setting various printing
parameters in the slicing software, which is crucial for achieving the desired print quality
and functionality. Important parameters set at this stage included print speed, bed and
nozzle temperatures, layer height, and layer width, each contributing significantly to the
final physical attributes of the specimens.

The fabrication of test specimens was carried out using a K1 3D printer (Creality
3D Technology Co., Ltd., Shenzen, China). For this study, a high-quality PLA filament
was selected, with a 1.75 mm diameter, presented in a clean white color (Devil Design,
Mikołów). The specimens were subjected to a number of experimental processes in a lab
water bath after printing. The PLA specimen is printed in its initial, undeformed state.
This is the ‘zero strain energy’ state the reviewer refers to. It is important to clarify that
at this stage, the beam is straight and has not undergone any deformation. This water
bath can reach and sustain a particular temperature, which is known as the activation
temperature. The specimens start to show signs of transformation at this temperature,
reacting to the heat as an outside stimulus. A uniform exposure time of four minutes to
the heat stimulus was maintained across all tests, ensuring consistency in the experimental
conditions. This duration was experimentally observed to be sufficient for the sample to
take its final/locked-in shape. The temperatures selected (thermal stimulus) are above
the glass transition temperature of PLA. This is the ‘triggering’ process for the PLA beam.
Once the PLA beam is removed from the bath and cooled down, it retains the bent shape,
which is its ‘final’ or ‘locked-in’ shape. The recovery to the original straight shape is not
part of this study.

2.2. Design of Experiments

The analysis was conducted using Minitab 17 statistical software, focusing on the
effects of various printing factors. These factors included printing speed, layer height,
layer width, nozzle temperature, bed temperature, and activation temperature. This study
employed Taguchi’s L18 Design of Experiments (DoE) for its recognized accuracy and
efficiency. A detailed outline of the control parameters and their levels is presented in the
following Table 1.

Table 1. Control parameters and their levels.

Code Control Parameters Unit Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

A Activation
Temperature

◦C 76 80 84 88 92 96

B Printing Speed mm/s 50 80 110 - - -
C Layer Height mm 0.1 0.2 0.3 - - -
D Layer Width mm 0.36 0.4 0.48 - - -
E Nozzle Temperature ◦C 200 210 220 - - -
F Bed Temperature ◦C 30 45 60 - - -

The range of activation temperatures, from 76 ◦C to 96 ◦C, was chosen to thoroughly
evaluate the material’s response to different thermal conditions. Printing speed, measured
in mm/s, was varied across three levels to assess its impact on the final structure. Layer
height, a critical factor in 3D printing, was tested at three different levels to balance
between detail accuracy and printing speed. Finally, the layer width was also set at three
distinct levels to understand its influence on the structural integrity and appearance of the
printed object.

Table 2 presents a comprehensive overview of the experimental runs, which were
structured according to the Taguchi method. In this table, the columns represent the control
factors, while the rows indicate the individual experimental runs. Each run is essentially
a unique combination of factor levels. The cells within the table specify the level of each
factor for a particular run.
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Table 2. The Taguchi L18 (61 × 35) orthogonal array.

Experiment
Run

Activation
Temperature (◦C)

Printing Speed
(mm/s)

Layer Height
(mm)

Layer Width
(mm)

Nozzle
Temperature (◦C)

Bed Temperature
(◦C)

1 76 50 0.1 0.36 200 30
2 76 80 0.2 0.4 210 45
3 76 110 0.3 0.48 220 60
4 80 50 0.1 0.4 210 60
5 80 80 0.2 0.48 220 30
6 80 110 0.3 0.36 200 45
7 84 50 0.2 0.36 220 45
8 84 80 0.3 0.4 200 60
9 84 110 0.1 0.48 210 30
10 88 50 0.3 0.48 210 45
11 88 80 0.1 0.36 220 60
12 88 110 0.2 0.4 200 30
13 92 50 0.2 0.48 200 60
14 92 80 0.3 0.36 210 30
15 92 110 0.1 0.4 220 45
16 96 50 0.3 0.4 220 30
17 96 80 0.1 0.48 200 45
18 96 110 0.2 0.36 210 60

During the data acquisition stage, precise measurements of R1, R2, and R3 were
obtained using Autodesk Inventor Professional software, which is known for its advanced
measurement capabilities. The analysis focused on the deformed shape of the structure,
with each parameter capturing a distinct aspect of the deformation:

• R1—Chord of Deformed Structure: This parameter represents the straight line distance
between the two ends of the curve, essentially measuring the overall length of the
deformed structure;

• R2—Beam Deflection: R2 measures the extent of deviation or displacement of the
beam from its original position. It is a critical indicator of the degree of deformation
experienced by the structure;

• R3—Internal Arc: This parameter captures the curvature within the deformed shape,
providing insights into the internal bending and shape changes of the structure.

For a more comprehensive understanding, Figure 1 visually illustrates these parame-
ters, offering a clearer perspective on their roles and relevance in analyzing the deformation
of the structure. R is the radius of curvature of the arc, and ϕ is the angle subtended by
the arc.
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two ends of the curve, R2 indicates the deflection, and R3 is the internal arc.
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2.3. Main Effect Analysis

To assess the influence of each control factor on the response, the means and signal-to-
noise (S/N) ratios are calculated. The S/N ratio, a measure of robustness, helps identify
control factor configurations that effectively minimize variability or ‘noise’ in the process.
In this study, the ‘Larger is better’ criterion was selected to maximize the response. This
criterion is applicable to the R2 responses. Conversely, for the R1 and R3 responses, the
‘Smaller is better’ criterion was employed. The S/N ratios for these criteria are calculated
using specific equations, designated as Equation (1) for the ‘Larger is bett’ and Equation (2)
for the ‘Smaller is better’ [46]:

S/N = −10 · log10

(
n

∑
i=1

(
1/Y2

)
/n

)
, (1)

S/N = −10 · log10

(
n

∑
i=1

Y2/n

)
. (2)

where Y denotes responses for the given factor level combination, and n is the number of
responses in the factor level combination. These equations provide a quantitative basis for
evaluating and optimizing the performance of the control factors in the experiment.

The response of each factor level in the context of a Taguchi experimental design can
be effectively analyzed using the mean of the signal-to-noise (S/N) ratios and the mean
response values. This approach is crucial for understanding how different levels of a factor
influence the outcome of an experiment. For a given factor level, the mean of the S/N ratios
is obtained by averaging the S/N ratios of all experiment runs where that particular level is
present. Mathematically, it is represented as follows:

M S
N
=

1
k

k

∑
i=1

(S/N)i. (3)

Here, k is the number of experimental runs that include the specific level of the factor
being analyzed.

The mean response for each factor level involves averaging the response values for all
the experimental runs where the factor level is present. The equation is given as:

MResponse =
1
k

k

∑
i=1

Rxi. (4)

In this equation, Rxi represents the average response value for the i-th experimen-
tal run.

2.4. Analysis of Variance (ANOVA)

The primary objective of ANOVA in this context is to assess the individual impact of
each factor on the response variables R1, R2, and R3. The ANOVA process involves several
key calculations [47]:

• Total Degrees of Freedom: This is calculated using d ftot = k − 1, where k represents
the total number of experimental runs.

• Degrees of Freedom for Each Control Factor: Determined by d fi = l − 1, where i
corresponds to each factor (A, B, C, D, E, F), and l is the total number of levels for
each factor.

• Degrees of Freedom for Residual Error: Calculated using d ferror = d ftot − ∑n
i=1 d fi,

where n is the number of control factors.
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The total sum of squares (SST) represents the overall variation in the response values.
It can be broken down into components attributable to the individual control factors and
the residual error. This relationship is expressed in the following equation:

SST = SSE +
n

∑
i=1

SSi, (5)

where SSi is the sum of squares attributed to the i-th control factor, and SSE is the sum of
squares due to residual error.

The total sum of squares, SST , quantifies the total variation in the response data and is
calculated using the following equation:

SST =
m

∑
i=1

(
Yi − Y

)2, (6)

where Yi is the mean response value for the i-th experiment run, Y is the overall mean of
the response values, and m is the number of experimental runs in the orthogonal array.

The mean sum of squares of the i-th factor represents the average of the squared
deviations for a particular factor. It is a measure of the variance within the groups defined
by that factor. The equation is MSi =

SSi
d fi

. The equation for the F-ratio is Fi =
MSi
MSE

, where
MSE is the mean sum of squares of the residual error [48]. A higher F-value indicates a
more significant effect of the control factor on the response variable (R1, R2, or R3).

The percent contribution of a factor in an experiment, particularly in the context of
ANOVA, is a measure of how much a specific factor contributes to the overall variability
in the response variable. The formula to calculate the percent contribution of a factor is
as follows:

contribution (%) =
SSi
SST

100 (%). (7)

A high percent contribution indicates that a small change in this factor will have a
significant impact on the performance or outcome of the experiment.

3. Finite Element Modelling

In the finite element modeling conducted for this study, the heating process of the
Polylactic Acid (PLA) structures was accurately represented using convective heat transfer
principles. This process is described by the equation [49,50]:

.
Q = hA(T2 − T1), (8)

where
.

Q signifies the rate of heat transfer, h is the coefficient of heat transfer, A represents
the surface area over which heat transfer occurs, T1 is the initial temperature of the PLA
structure, and T2 is the activation temperature, equivalent to the temperature of the labo-
ratory’s water bath. This equation is crucial in the simulation, as it determines the rate at
which heat is transferred from the water bath to the PLA structure.

In the context of continuum mechanics, the deformation of a particle as it moves from
its original position to a new position over time can be mathematically described using the
concept of the deformation gradient. The initial position of a particle is denoted by X, and
its position at a later time t is given by x = x(X, t). The displacement vector u = u(X, t)
represents the change in position of the particle, pointing from its original location X to its
new location x. The deformation gradient, F, is a fundamental tensor that captures all the
information about the deformation and rotation of material elements in the body. It can be
defined using the equation [49,50]:

F =
∂x
∂X

= I +
∂u
∂X

. (9)
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This equation represents the gradient of the current position with respect to the initial
position, encapsulating how a differential element in the body moves and deforms. The
term I is the identity tensor, which represents a state of no deformation. The second term
is the gradient of the displacement vector, indicating how the displacement varies over
the body.

In the finite element analysis of thermally induced deformation of PLA structures,
understanding the interplay between mechanical and thermal properties is essential. The
following equations form the basis of this analysis, explaining the complex relationships
governing material behavior under thermal stimuli.

The equation of motion, represented as

ρ
du
dt2 = ∇ · (FS) + fv, (10)

is fundamental in describing the dynamic response of the PLA material. Here, ρ denotes
the material’s density, S represents the second Piola–Kirchhoff stress tensor, and fv is the
volumetric force. The stress–strain relationship is crucial in understanding how the material
deforms under stress. This relationship is expressed as

S = C : εel , (11)

where C is the elasticity tensor, and εel is the elastic strain tensor. This constitutive equation
is key to modeling the elastic behavior of the PLA material under applied stresses.

Thermal strain is generally described by the equation

εth = a
(

T − Tre f

)
. (12)

In this context, α represents the coefficient of thermal expansion (CTE), T is the current
temperature, and Tre f is the reference temperature.

The CTE for different parts of the PLA structure is calculated using

an =
∆Ln

L0∆T
. (13)

Here, an denotes the CTE for either the top or bottom part of the structure, ∆Ln is the
change in length of that part, L0 is the initial length, and ∆T is the temperature change.
Accurate calculation of the CTE is vital for precise thermal analysis in FEA.

To accurately replicate the bending behavior characteristic of the shape-memory effect
(SME) observed in shape-memory materials (SMMs), a strategy involving the concept of
differential shrinking was employed. This approach is based on the principle of assign-
ing different CTE to various parts of the structure, thereby inducing varying degrees of
shrinkage in these parts, which in turn mimics the bending action seen in SME. The struc-
ture under study was modeled as consisting of two distinct parts. The post-deformation
lengths of the top and bottom parts of the structure are determined using the following
equations [50]: {

Lt = (R + 0.25hs)φ
Lb = (R + 0.75hs)φ

}
. (14)

In these equations, Lt and Lb represent the lengths of the top and bottom parts,
respectively, after deformation. hs is the height of the cross-section of the structure. These
lengths are calculated at half the height of each of the top and the bottom parts of the
structure, hence the use of 0.25hs and 0.75hs.

The primary equation that governs the deformation of the PLA structure in response
to thermal stimuli can be represented as follows:

Ku = F + Fth. (15)
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Here, K is the global stiffness matrix of the structure, u is the displacement vector,
representing the deformation of the structure in response to the applied forces, F is the
vector of mechanical forces acting on the structure, including any external loads or con-
straints, and Fth is the thermal force vector, which arises due to the thermal expansion or
contraction of the material as a result of temperature changes. The thermal force vector is
calculated based on the material’s coefficient of thermal expansion (CTE), the temperature
change, and the constraints of the structure and, thus, introduces the effects of temperature
into the structural behavior. The FEA process involves discretizing the PLA structure into
a finite number of elements, where each element’s behavior is described by the above
equation. The global stiffness and the force vectors are assembled from the contributions
of all these elements. The resulting system of equations is then solved numerically to
find the displacement vector, which provides a detailed prediction of how each part of
the PLA structure deforms in response to the combined effects of mechanical loads and
thermal stimuli.

Our model, employing a CTE gradient/layering approach, is primarily designed to
predict the maximum strain recovery for a given change in temperature based on the CTE
and delta-Temp. It is important to note that in our current model, subsequent triggering of
the PLA structures is not included. This means that while our model effectively handles
a range of initial deformation levels (strains) up to the point of damage or fracture, it
primarily focuses on the first activation cycle. The deformation in the previously triggered
stage, which may vary widely, is considered as the starting point for each simulation. Our
approach allows for the prediction of the final shape after the initial triggering but does not
simulate repeated cycles of deformation and recovery. We acknowledge this as a limitation
in the current scope of our model and suggest that future work could extend the model
to include multiple triggering cycles. This would enhance the model’s applicability in
scenarios where repeated shape-memory effects are critical.

4. Results and Discussion
4.1. Experimental Results and Analysis
4.1.1. S/N Analysis

In quality engineering, particularly when applying the Taguchi method, the S/N
ratio is a vital metric. It measures how much the desired signal (or quality characteristic)
stands out from the noise, which represents the variability or unwanted fluctuations in the
process. A high S/N ratio indicates that the quality characteristic is significantly stronger
and more consistent compared to the noise factors. In process optimization, the S/N ratio
is key to determining performance. A higher S/N ratio suggests a more robust process
where the impact of random variations is minimized. This is crucial in manufacturing
and engineering, where achieving consistent and predictable outcomes is essential. The
optimal level for any process parameter is identified by the highest S/N ratio. At this level,
the process demonstrates maximum stability and minimal susceptibility to noise. In this
study, these optimal levels are marked with circles in Figures 2–4. This visual highlighting
aids in quickly identifying which parameter levels yield the best performance in terms
of quality characteristics. Focusing on these optimal levels allows for fine-tuning of the
process parameters to achieve the best possible results.

One desirable characteristic is the minimization of the response R1. The optimal
levels of the process parameters can be selected from Figure 2, indicated by the levels that
produce the highest S/N ratio values, i.e., A6B3C1D1E1F3. Specifically, the optimal levels
translate to specific settings for each process parameter level: activation temperature at
level 6, which is 96 ◦C’ printing speed at level 3, equating to 110 mm/s; layer height at
level 1, set at 0.1 mm; layer width at level 1, which is 0.36 mm; nozzle temperature at level 1,
corresponding to 200 ◦C; and bed temperature at level 3, set at 60 ◦C.



Aerospace 2024, 11, 134 10 of 18

Aerospace 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

study, these optimal levels are marked with circles in Figures 2–4. This visual highlighting 
aids in quickly identifying which parameter levels yield the best performance in terms of 
quality characteristics. Focusing on these optimal levels allows for fine-tuning of the pro-
cess parameters to achieve the best possible results. 

 
Figure 2. R1 mean of S/N ratios for each factor. 

 
Figure 3. R2 mean of S/N ratios for each factor. 

Figure 2. R1 mean of S/N ratios for each factor.

Aerospace 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

study, these optimal levels are marked with circles in Figures 2–4. This visual highlighting 
aids in quickly identifying which parameter levels yield the best performance in terms of 
quality characteristics. Focusing on these optimal levels allows for fine-tuning of the pro-
cess parameters to achieve the best possible results. 

 
Figure 2. R1 mean of S/N ratios for each factor. 

 
Figure 3. R2 mean of S/N ratios for each factor. Figure 3. R2 mean of S/N ratios for each factor.

Aerospace 2024, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 4. R3 mean of S/N ratios for each factor. 

One desirable characteristic is the minimization of the response R1. The optimal lev-
els of the process parameters can be selected from Figure 2, indicated by the levels that 
produce the highest S/N ratio values, i.e., A6B3C1D1E1F3. Specifically, the optimal levels 
translate to specific settings for each process parameter level: activation temperature at 
level 6, which is 96 °C’ printing speed at level 3, equating to 110 mm/s; layer height at level 
1, set at 0.1 mm; layer width at level 1, which is 0.36 mm; nozzle temperature at level 1, 
corresponding to 200 °C; and bed temperature at level 3, set at 60 °C. 

For the response variable R2, the objective is to maximize its value. The optimal set-
tings for the process parameters, identified from Figure 3 based on the highest S/N ratio 
values, are A5B3C3D2E2F3. These translate into specific process settings as follows: The 
activation temperature is optimally set at level 5, which is 92 °C, ideal for maximizing R2. 
The printing speed is maintained at level 3, equivalent to 110 mm/s, which is identified as 
the most effective speed for this response. The layer height is adjusted to level 3, or 0.3 
mm, while the layer width is set at level 2, or 0.4 mm. The nozzle temperature is at level 
2, set at 210 °C, and the bed temperature is kept at level 3, or 60 °C, effectively contributing 
to the maximization of the response R2. These settings collectively ensure that the process 
is finely tuned to achieve the highest possible response for R2. 

In the case of the response variable R3, the target is to minimize its value. To deter-
mine the most effective settings for the process parameters, one can refer to Figure 4, 
where the optimal levels are indicated by the highest S/N ratio values. For R3, the optimal 
parameter levels (A6B3C1D1E1F1) have been identified as follows: The activation temper-
ature is set at level 6, corresponding to 96 °C, which is the most effective level for mini-
mizing R3. The printing speed is maintained at level 3, equating to 110 mm/s, which is 
identified as optimal for this specific response. The layer height is adjusted to level 1, set 
at 0.1 mm, while the layer width is set at level 1, or 0.36 mm. The nozzle temperature is at 
level 1, corresponding to 200 °C, optimal for the minimization objective. Lastly, the bed 
temperature is kept at level 1, or 30 °C. 

4.1.2. ANOVA 
ANOVA was employed to evaluate the influence of various control parameters on 

the response variables R1, R2, and R3, as indicated by their S/N ratios. The results of these 
analyses are presented in Tables 3, 4, and 5, respectively. The ANOVA was conducted with 
a 95% confidence level (significance level of 5%). 

For R1 (Table 3), the ANOVA results show that the activation temperature was the 
most significant factor, contributing 46.8% to the S/N ratio with an F-value of 42.640 and 

Figure 4. R3 mean of S/N ratios for each factor.



Aerospace 2024, 11, 134 11 of 18

For the response variable R2, the objective is to maximize its value. The optimal
settings for the process parameters, identified from Figure 3 based on the highest S/N ratio
values, are A5B3C3D2E2F3. These translate into specific process settings as follows: The
activation temperature is optimally set at level 5, which is 92 ◦C, ideal for maximizing R2.
The printing speed is maintained at level 3, equivalent to 110 mm/s, which is identified as
the most effective speed for this response. The layer height is adjusted to level 3, or 0.3 mm,
while the layer width is set at level 2, or 0.4 mm. The nozzle temperature is at level 2, set
at 210 ◦C, and the bed temperature is kept at level 3, or 60 ◦C, effectively contributing to
the maximization of the response R2. These settings collectively ensure that the process is
finely tuned to achieve the highest possible response for R2.

In the case of the response variable R3, the target is to minimize its value. To determine
the most effective settings for the process parameters, one can refer to Figure 4, where the
optimal levels are indicated by the highest S/N ratio values. For R3, the optimal parameter
levels (A6B3C1D1E1F1) have been identified as follows: The activation temperature is set
at level 6, corresponding to 96 ◦C, which is the most effective level for minimizing R3. The
printing speed is maintained at level 3, equating to 110 mm/s, which is identified as optimal
for this specific response. The layer height is adjusted to level 1, set at 0.1 mm, while the
layer width is set at level 1, or 0.36 mm. The nozzle temperature is at level 1, corresponding
to 200 ◦C, optimal for the minimization objective. Lastly, the bed temperature is kept at
level 1, or 30 ◦C.

4.1.2. ANOVA

ANOVA was employed to evaluate the influence of various control parameters on the
response variables R1, R2, and R3, as indicated by their S/N ratios. The results of these
analyses are presented in Table 3, Table 4, and Table 5, respectively. The ANOVA was
conducted with a 95% confidence level (significance level of 5%).

Table 3. ANOVA results for R1 S/N ratios.

Code DoF Sum of Squares Mean Squares F p Contribution (%)

A 5 9.938 1.988 42.640 0.023 46.8
B 2 0.752 0.376 8.060 0.110 3.5
C 2 3.698 1.849 39.670 0.025 17.4
D 2 2.238 1.119 24.010 0.040 10.5
E 2 3.462 1.731 37.130 0.026 16.3
F 2 1.050 0.525 11.270 0.082 4.9

Residual error 2 0.093 0.047 - - 0.4
Total 17 21.231 - - - 100.0

Table 4. ANOVA results for R2 S/N ratios.

Code DoF Sum of Squares Mean Squares F p Contribution (%)

A 5 104.909 20.982 1.350 0.476 27.7
B 2 1.677 0.839 0.050 0.949 0.4
C 2 75.979 37.990 2.450 0.290 20.1
D 2 63.356 31.678 2.040 0.329 16.7
E 2 44.837 22.419 1.450 0.409 11.8
F 2 56.876 28.438 1.840 0.353 15.0

Residual error 2 30.995 15.497 - - 8.2
Total 17 378.628 - - - 100.0
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Table 5. ANOVA results for R3 S/N ratios.

Code DoF Sum of Squares Mean Squares F p Contribution (%)

A 5 2.240 0.448 7.600 0.120 19.0
B 2 0.104 0.052 0.880 0.532 0.9
C 2 7.855 3.927 66.650 0.015 66.8
D 2 0.138 0.069 1.170 0.461 1.2
E 2 1.234 0.617 10.470 0.087 10.5
F 2 0.074 0.037 0.620 0.616 0.6

Residual error 2 0.118 0.059 1.0
Total 17 11.762 100

For R1 (Table 3), the ANOVA results show that the activation temperature was the
most significant factor, contributing 46.8% to the S/N ratio with an F-value of 42.640 and
a p-value of 0.023. Other factors like layer height and nozzle temperature also showed
notable contributions of 17.4% and 16.3%, respectively. Layer width had lesser but still
significant impact on R1.

In the case of R2 (Table 4), the activation temperature again showed the highest
contribution at 27.7%, although with a lower F-value of 1.350 and a higher p-value of 0.476,
indicating a less significant impact compared to R1. Layer height, layer width and bed
temperature contributed 20.1%, 16.7% and 15.0%, respectively, while the other factors had
minimal impact. The residual error accounted for 8.2% of the total variance.

For R3 (Table 5), layer height emerged as the most influential factor, contributing a
substantial 66.8% to the S/N ratio with a high F-value of 66.650 and a low p-value of 0.015.
Nozzle temperature also had a notable impact, with a 10.5% contribution. Other factors
like activation temperature, printing speed, layer width, and bed temperature showed
relatively minor contributions.

From these ANOVA results, it is evident that certain factors have more significant
impacts on the 4D shape-morphing properties of the structures. For instance, layer height
predominantly influences R3, while activation temperature has a more pronounced effect
on R1 and R2. These insights are crucial for optimizing the 3D printing process parameters
to achieve the desired smart performance in the final printed structures.

4.1.3. Regression Analysis

In this research, regression analysis was employed to establish the relationships be-
tween independent variables (control parameters) and dependent variables (responses R1,
R2, and R3). The effectiveness of these relationships is quantified using the R-squared (R2)
value, a statistical measure that assesses the validity of the regression model. R2 indicates
how well the independent variables explain the variability in the dependent variables.

The predictive equation for the mean R1 (in mm) response, derived from regression
analysis, is expressed as

R1 = 28.1 − 0.624A − 0.044B + 35.76C + 37.3D + 0.3070E − 0.0622F, (16)

with an R2 value of 86.35%. This high R2 value suggests a strong correlation between
the model and the observed data, indicating the model’s reliability in predicting the R1
response based on the control parameters.

Similarly, the predictive equation for the mean R2 (in mm) response is formulated as

R2 = 10.1 + 0.2718A + 0.0111B + 21.05C − 30.58D − 0.1059E + 0.0972F, (17)

with an R2 value of 80.51%. Although slightly lower than that for R1, this value still reflects
a good level of predictability of the R2 response from the control parameters.
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For the mean R3 response, the regression analysis yields the equation.

R3 = 30.2 − 0.3163A − 0.0199B + 52.96C + 5.21D + 0.2081E + 0.0343F, (18)

with an R2 value of 93.40%. This high R2 value indicates an excellent fit between the model
and the observed data, suggesting that the model is highly effective in predicting the
R3 response.

In the field of multiple regression analysis, the R2 value is a critical indicator of the
model’s predictive power. Ideally, R2 should range between 0.8 and 1.0 for the model to be
considered highly effective. In the context of this study, the mathematical equations devel-
oped through regression analysis have R2 values within this ideal range. Consequently,
these equations are well-suited for predicting the shape-morphing behavior of 4D printing
PLA structures.

To assess the accuracy and reliability of the developed regression models, a crucial step
involved comparing the predicted values from the models with actual experimental results.
This comparison is essential for validating the effectiveness of the regression models in
accurately predicting outcomes. The comparison was visualized through plots that are
illustrated in Figure 5. Generally, the plots showed a high degree of similarity between the
experimental and predicted values, indicating that the regression models were successful
in closely approximating the actual behavior of the 4D printing PLA structures. This level
of accuracy is crucial for practical applications, as it provides confidence in using these
models for design and optimization purposes in the field of 4D printing technology.
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4.2. FEA Results

The structure under study was modeled as consisting of two distinct parts, as depicted
in Figure 6a. Each part was assigned a different CTE value. The rationale behind this
approach is that when these parts are subjected to thermal changes, they shrink at different
rates due to their distinct CTE values. This differential shrinking across the parts results in
the bending effect, which is a crucial aspect of the SME in SMMs.

To determine the appropriate CTE values for the top and bottom parts of the structure,
an analysis of their arc length differences was conducted. By calculating the difference in
arc lengths, the required CTE values for each part were estimated. These calculated CTE
values were then incorporated into the FEA models. The corresponding results are shown
in Table 6.
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Table 6. CTE values of top and bottom parts of the sample for each experiment run.

Experiment Run at (◦C−1) ab (◦C−1)

1 −4.98 × 10−3 −4.88 × 10−3

2 −1.70 × 10−3 −1.46 × 10−3

3 −7.45 × 10−4 −6.26 × 10−4

4 −3.22 × 10−3 −3.02 × 10−3

5 −1.25 × 10−3 −1.19 × 10−3

6 −1.53 × 10−3 −1.26 × 10−3

7 −1.78 × 10−3 −1.63 × 10−3

8 −1.29 × 10−3 −9.78 × 10−4

9 −3.97 × 10−3 −3.83 × 10−3

10 −9.98 × 10−4 −8.40 × 10−4

11 −3.28 × 10−3 −3.06 × 10−3

12 −2.90 × 10−3 −2.71 × 10−3

13 −2.44 × 10−3 −2.15 × 10−3

14 −1.85 × 10−3 −1.51 × 10−3

15 −3.38 × 10−3 −3.24 × 10−3

16 −1.35 × 10−3 −1.13 × 10−3

17 −4.75 × 10−3 −4.62 × 10−3

18 −2.67 × 10−3 −2.24 × 10−3

The CTE values of Table 6 can be implemented into the FEA model. To determine
the most suitable element size for mesh generation in the FEA model, a mesh sensitivity
analysis is performed. This analysis is crucial to ensure that the mesh is fine enough
to capture the necessary details of the model while also being coarse enough to keep
computational costs reasonable. When the element size is reduced to less than 1 mm,
the values for R1, R2, and R3 start to converge towards a consistent value. An element
size of 0.5 mm is selected (Figure 6b). This size not only falls within the range where the
response variables converge but also offers a fine enough mesh to ensure detailed and
accurate modeling.

In this study, Figure 7 compares the outcomes of FEA simulations with actual experi-
mental observations of a printed structure. This comparison is diagnostic for validating
the accuracy and applicability of the FEA model developed. For both the simulation and
the experimental test, the structure was produced under specific conditions (experimental
run 4): a printing speed of 50 mm/s, layer height of 0.1 mm, layer width of 0.4 mm, nozzle
temperature set at 210 ◦C, bed temperature at 60 ◦C, and an activation temperature of 80 ◦C.
Figure 7a displays the results from the FEA simulation. The simulation provides a theoreti-
cal insight into how the structure is expected to deform in response to the set conditions.
Conversely, Figure 7b illustrates the actual deformation observed in the structure following
its immersion in a laboratory bath.
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Figure 7. Shape morphing of a PLA beam at 80 ◦C. (a) finite element prediction and (b) experimen-
tal result.

In assessing the accuracy of the FEA model for predicting responses R1, R2, and
R3, a comparison was made between the mean values obtained from experimental runs
and those derived from the simulation. This comparison is crucial for evaluating the
model’s precision and identifying areas for improvement. For the R1 response, a significant
proportion of the experiment runs showed close agreement between the experimental and
simulated values. Figure 8a illustrates this comparison, showcasing the mean R1 values
from both the experiments and the FEA model. The similarity in these values indicates a
strong correlation and reliability of the FEA model for the R1 response. In the case of the
R2 response, as depicted in Figure 8b, the FEA model also demonstrated a good level of
agreement with the experimental data, although with some variations. These variations
might be attributed to factors such as slight discrepancies in material properties, boundary
conditions, or assumptions made in the simulation process. Similarly, for the R3 response,
Figure 8c compares the mean values from experiments with those predicted by the FEA
model. While there is a good level of agreement, some variations are observed, which could
be due to factors like the precision of the experimental measurements, the complexity of
the model, or the sensitivity of the response to specific parameters.
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The material chosen, while exhibiting thermoplastic behavior typical of many poly-
mers when heated above its glass transition temperature, was selected for its improved
performance in maintaining a deformed shape upon cooling. This property is particularly
valuable in aerospace applications where components often require permanent, intricate
adjustments to optimize performance under varying operational conditions. The focus on
the deformation and stabilization phases, rather than the recovery characteristic typical
of SMPs, aligns with the practical requirements of applications, where the permanence
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of the deformed shape can be more relevant than the material’s ability to return to its
original form. This approach provides insights into the material’s suitability for specific
applications, such as the fabrication of morphing structures, where the emphasis is on
reliable, long-term performance in demanding environmental conditions.

5. Conclusions

In conclusion, this study marks a significant advancement in the field of 4D printing,
particularly in understanding the shape-morphing behavior of PLA structures. The research
highlights the critical role of specific printing parameters in influencing this behavior,
offering valuable insights for both theoretical understanding and practical applications.
Key findings include the following:

• Activation temperature and layer height emerged as significant factors influencing the
shape-morphing behavior, as revealed by the S/N ratio analysis and ANOVA results;

• The precision in setting the printing speed, layer width, nozzle temperature, and bed tem-
perature was found to be crucial in achieving the desired shape-morphing characteristics;

• Regression models developed for predicting the responses R1, R2, and R3 demon-
strated strong correlations with observed data, highlighting the interplay between
these printing parameters and the shape-morphing outcomes;

• The FEA modeling successfully predicted the performance of the structures, demon-
strating its potential as an effective design tool in 4D printing;

• The ability of FEA modeling to closely predict the experimental outcomes suggests
its utility in the design phase, allowing for the optimization of printing parameters
before actual production.

These insights not only enhance our understanding of the complex dynamics in 4D
printing but also provide a foundation for optimizing the printing process to harness the
full potential of shape-morphing materials in various applications. This study paves the
way for future research and development in the field, focusing on the intricate relationship
between printing parameters and the functional capabilities of 4D-printed structures.
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