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Abstract: The current paper verifies the asynchronous H∞ control and optimization problem for flight
vehicles with a time-varying delay. The nonlinear dynamic model and Jacobian linearization establish
the flight vehicle’s switched model. An asynchronous H∞ tracking controller is designed, considering
the existing asynchronous switching between the controllers and corresponding subsystems. In
order to promote transient efficiency, the tracking controller comprises the model-based part and
the learning-based part. The model-based part guarantees stability and prescribed efficiency, and
the learning-based part compensates for undesirable uncertainties. The multiple Lyapunov func-
tion (MLF) and mode-dependent average dwell time (MDADT) methods are utilized to guarantee
stability and the specified attenuation efficiency. The existing conditions and the solutions of model-
based sub-controllers are represented by linear matrix inequalities (LMIs). The deep Q learning
(DQL) algorithm provides the learning-based part. Different from the conventional method, the
controller parameters are scheduled online. Therefore, robustness, stability, and dynamic efficiency
can be met simultaneously. A numerical example illustrates the efficiency and advantage of the
presented approach.

Keywords: asynchronous H∞ control; time-varying delay; multiple Lyapunov function; mode-
dependent average dwell time; LMI; deep Q learning

1. Introduction

As an efficient way to access space, flight vehicles have attracted considerable at-
tention owing to their high civilian and military value [1,2]. The rapid development of
various flight vehicles provides efficient and convenient tools for multiple missions, such as
remote attacks, autonomous detection, and material transportation. Due to their potential
applications in industry, agricultural military, and other fields, fruitful research results
have emerged in relation to flight vehicles. The problems of stability analysis, control
strategy design, and the formation control of flight vehicles have been studied by scholars
at home and abroad [3,4]. For instance, tracking control in the event-triggered case was
proposed in [5]; the observer-based backstepping control strategy was presented in [6] and
an extended state observer was proposed in [7]. However, the characteristics of high non-
linearity, complex dynamics, strong couplings, and model uncertainties seriously influence
the performance of flight vehicles, putting forward higher requirements for reliability and
control performance.

Nonlinear systems have created many concerns due to the nonlinear nature of most
practical systems [8,9]. The most popular approaches to analyzing nonlinear systems can
be composed of two parts: the nonlinear design method and the linear design method [10].
The nonlinear properties of nonlinear systems are considered in the nonlinear design
method, such as the backstepping and adaptive control methods. The linear design method
approximates the nonlinear systems with linear systems around their operation points
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based on Jacobian linearization. Therefore, the controller design and analysis for complex
nonlinear systems can be converted into designing controllers for linear systems, such as
the gain-scheduled method, the proportional-integral-derivative (PID) method, and robust
control. The linear design method can provide solvable results and stability guarantees
for complex nonlinear systems. As an effective tool with which to address the design of
complex nonlinear systems, switched systems theory has been investigated by researchers,
and there is much literature on modeling, stability analysis, switching strategy design,
fault detection, and fault-tolerance [11,12]. The switched systems establish the connection
between complicated nonlinear and simplified linear systems [13], attracting a great deal of
attention. In recent literature, various interesting results have been presented for various
problems of switched systems. As a fundamental controller design problem, stability
analysis has been fully studied, and several methods have been proposed. For example,
the common Lyapunov function (CLF) method was presented for the switched systems
with arbitrary switching, meaning a CLF was shared for all the subsystems. Therefore,
the switching among subsystems cannot increase the energy. However, in most practical
situations, finding a CLF for all the subsystems is a challenge, limiting the CLF method’s
applications. Moreover, the switching logic depends on the time, states, or their com-
bination in many practical applications, motivating the investigation of average dwell
time (ADT) and MDADT methods. This means that the subsystems should dwell long
enough in the subsystems with poor performance, which is mainly applied to restricted
switching. Compared with the existing CLF approach, the ADT and MDADT methods
lead to less conservative results. In [14], the quantized H∞ filtering problem was investi-
gated for switched T-S fuzzy systems, and the ADT method was utilized to guarantee the
exponential stability of the error system with a given H∞ performance. The quantization
phenomenon and parameter perturbations were considered, and the fuzzy-based Lya-
punov function approach was provided. In [1], the stability of highly nonlinear switched
stochastic systems containing the time-varying delay was analyzed. Lyapunov function
and ADT were employed to derive sufficient conditions to ensure the H∞ stability to avoid
the inappropriate response induced by the time delay. The proposed method extends the
stability results to the environment with a time delay, which is more applicable in a practical
environment. Moreover, it can be deduced that the common dwell time can be employed
for all the subsystems, indicating the worst situation, which results in conservativeness.
The MDADT approach was presented in [15] to derive narrower bounds on dwell time.
The features of every subsystem are considered, which has its own dwell time. This means
that the dwell time depends on the system mods, releasing the ADT method restrictions
[16]. Therefore, the MDADT method has been widely applied for stability analysis and
stabilization. In [17], the fault estimation observer was proposed. The MDADT method
was presented to realize the augmented system’s stability and H∞ performance. Compared
with the conventional ADT approach, fewer conservative results were realized. In [18], the
stability and robust control for switched systems were verified. The multiple discontinuous
Lyapunov function and MDADT were integrated to guarantee the stability and prescribed
weighted performance. It turns out that the proposed method realizes small bounds on
dwell time. In [19], the event-triggered exponential H∞ filter design was investigated,
and the MDADT approach was adopted to derive the exponential stability conditions. In
this study, the event-triggered communication scheme is applied to promote the resource
limitation through the network. The time-varying delay and bounded disturbance are
considered, and the LMI technique is employed to derive sufficient conditions to attain the
desired efficiency. Compared with the conventional results, the presented approach is more
applicable and less conservative. One of the primary purposes of the switched systems is
to obtain fewer conservative results and narrower dwell time bounds, which has motivated
researchers in recent years.

In most practical systems, a time-varying delay is inevitable due to the transmission
limitation in the flight vehicles network, degrading the performance and causing asyn-
chronous switching. The asynchronous switching indicates that the controller switching



Aerospace 2024, 11, 107 3 of 19

lags behind the system mode switching. Therefore, we can see unmatched and matched
periods in all subsystems, which will increase the Lyapunov energy in the unmatched
periods. Thus, the energy function increases in the unmatched periods and decreases
in the matched ones. There are many results of time delay and asynchronous switching.
In [12], the stability and stabilization problems were studied for switched systems with
impulsive switching signals under asynchronous switching. A novel Lyapunov-like func-
tion was established, and the conditions to ensure the system’s exponential stability were
given by the edge-dependent switching signals. In [20], finite-time stabilization and finite-
time bounded stabilization were investigated for switched systems. The asynchronous
environmental switching was considered, and the sufficient stabilization conditions were
presented as nonlinear differential matrix inequalities. The results in the paper validate that
asynchronous switching can affect the system’s dynamic performance, and it is essential
to avoid the undesirable response induced by asynchronous switching. Moreover, the
multiple event-triggered strategies for switched systems with asynchronous switching were
investigated in [21]. The controller-mode-dependent Lyapunov function was established
using an asynchronous switching strategy. The multiple event-triggered schemes were
applied, and the stability criteria were provided based on the ADT method. The state feed-
back controller was proposed to avoid the Zeno behavior. Additionally, the conventional
method for time-delay systems lies in the Lyapunov–Krasovskii function. The time-varying
delay bounds were considered, and the robust stability was realized for the worst case
of unknown delay. In [22], the formation-containment control problem was verified for
multi-agent systems (MAS) containing time-varying delays and switching topologies. It
is assumed that the leaders can communicate through switching topologies with time-
varying delays. The Lyapunov–Krasovskii function method was applied to ensure the
convergence of the formation-containment error. An edge-based state observer was devel-
oped to evaluate the MAS states involving the time delay. The results demonstrate that the
Lyapunov–Krasovskii function method can successfully solve the stabilization problem
for time-delay systems. In [8], the adaptive fuzzy control problem was investigated for
switched nonlinear systems containing the input delay. A nonlinear disturbance observer
for arbitrary switching systems was presented, and a piecewise switched adaptive law was
developed. Padé approximation and dynamic surface control methods were proposed to
address the input delay problem. Unlike the traditional method, the proposed method real-
izes fewer conservative results and more relevant results. From the statement mentioned in
the paper, it is evident that developing more applicable and less conservative methods for
switched systems is interesting and necessary.

It is noticed that the model-dependent methods are proposed assuming that the struc-
ture or bounds of model uncertainties are known in prior [23,24]. However, in many situa-
tions in a realistic environment, the information of uncertainties cannot be obtained, which
motivates the studies on model-free methods. With the development of computational
ability, intelligent methods have been applied to the control issues of flight vehicles [25].
Among the artificial methods, deep learning and reinforcement learning have been exten-
sively employed in many military and economic fields. The deep neural networks and
reinforcement learning were utilized in deep learning to realize online fitting and achieve
better performance by trial and error. Therefore, we can see that data-based algorithms
like deep learning and reinforcement learning can improve the controller efficiency in
the presence of system uncertainties. Deep reinforcement learning (DRL) integrates deep
learning and reinforcement learning benefits. This was widely studied, and fruitful results
emerged. In [26], the DRL algorithm was employed to design the missile’s guidance law,
formulating a Markovian decision process in which the reward function was designed to
realize the trade-off between accuracy, energy consumption, and interception time. The
deep deterministic policy gradient algorithm was adopted, and the guidance gain was
scheduled online. In [27], the PID controller was combined with the DRL algorithm to
improve the control performance. The DRL algorithm was adopted to compensate for the
system uncertainties. However, in the existing literature on DRL, we can see that ensuring
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the algorithm’s convergence is a challenge. Accordingly, an algorithm should be developed
to simultaneously ensure stability and dynamic performance.

According to the above discussion, it can be deduced that the performance enhance-
ment and stability preservation problems should be verified simultaneously. The controller
design problem for switched systems in more applicable environments has not entirely
been verified. The design flexibility and control performance can be enhanced by deriving
the narrower dwell time bounds. Moreover, it is essential to incorporate the benefits of
conventional robust control with an intelligent algorithm. Therefore, the current study
investigates the asynchronous H∞ tracking control problem and optimization for switched
flight vehicles with time-varying delays. The nonlinear dynamic model and Jacobian
linearization can establish the flight vehicles’ switched model. The proposed controller
comprises a dynamic-based sub-controller and a learning-based sub-controller. The nomi-
nal tracking controller is proposed considering the asynchronous switching induced by
the time-varying delay. The MLF and MDADT approaches are integrated to ensure stabil-
ity and attenuation performance. In order to ensure stability and transient performance
simultaneously, a learning-based sub-controller is proposed to compensate for the system
uncertainties. The DQL algorithm is provided to achieve better convergence. Therefore, the
essential novelties of the current study are summarized as follows: (1) a more applicable
and less conservative asynchronous H∞ tracking controller is proposed for switched flight
vehicles with time-varying delays by utilizing MLF and MDADT approaches. The LMI
approach is adopted to extract sufficient conditions ensuring the stability and prescribed
attenuation index; (2) the presented tracking controller consists of a dynamic-based sub-
controller and a learning-based sub-controller. The former is designed for the nominal case,
and the latter is provided to compensate for the model uncertainties. The advantages of
conventional H∞ tracking control and an intelligent algorithm are combined; (3) the DQL is
adopted, and the online scheduling is described with a Markovian process. The controller
parameters are defined as the output action to simultaneously realize stability, robustness,
and dynamic performance.

The remainder of the current paper is arranged as follows. The problem formulation
is presented in Section 2. In Section 3, the intelligent H∞ tracking controller is given. The
simulation results are given in Section 4 to evaluate the efficiency of the presented approach.
Finally, the paper concludes in Section 5.

2. Preliminaries and Problem Formulation

The current study considers the discrete-time switched systems with the time-varying
delay as: {

x(k + 1) = Aix(k) + Ahix(k − h(k)) + Biu(k) + Diω(k)
y(k) = Cix(k),

(1)

where x(k) ∈ Rx stands for the state vector; u(k) ∈ Ru describes the input signal;
y(k) ∈ Ry stands for the output signal; ω(k) ∈ Rω describes the external disturbance with
ω(k) ∈ L2[0, ∞); h(k) ∈ [hm, hM] describes the time-varying delay in the systems caused by
the network’s transformation limitation. We define Ai, Ahi, Bi, Ci and Di as the state-space
matrices with proper dimensions; i = σ(k) : [0, ∞) → Ω = {1, 2, ..., n} represents the
piecewise continuous switching signal.

We define the command signal as r(k). Therefore, the tracking error is described as:

e(k) = r(k)− y(k). (2)

Remark 1. The command signal is bounded with −30deg ≤ r(k) ≤ 30deg.

The tracking control problem of switched systems in (1) can be described as the
controller design problem, such that

lim
k→∞

e(k) = 0. (3)
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The tracking error integral is defined in (4).

g(k) =
k−1

∑
s=0

e(s) =
k−1

∑
s=0

(r(s)− y(s)). (4)

Then, the tracking controller for (1) can be proposed as:

u(k) = K1ix(k) + K2ig(k), (5)

where K1i and K2i are unknown parameter matrices to be determined.
Due to the time-varying delay in the system, the tracking controller switching always

lags behind the system mode switching. All subsystems have unmatched and matched
periods. The activated time instant of the ith subsystem is defined as ki, and the activated
time instant of the corresponding controller is defined as ki + ∆i, where ∆i denotes the
unmatched period length in the ith subsystem.

Suppose
x̃(k) = [ xT(k) gT(k)]T , d(k) = [ ωT(k), rT(k)]T .

Now, the following closed-loop switched systems can be derived:{
x̃(k + 1) = Ãii x̃(k) + Ãhi x̃(k − h(k)) + D̃id(k)
e(k) = C̃i x̃(k) + Ẽid(k)

, ∀k ∈ [ki + ∆i, ki+1] (6)

{
x̃(k + 1) = Ãij x̃(k) + Ãhi x̃(k − h(k)) + D̃id(k)
e(k) = C̃i x̃(k) + Ẽid(k)

, ∀k ∈ [ki, ki + ∆i], (7)

where

Ãii =

[
Ai + BiK1i BiK2i

−Ci I

]
, Ãij =

[
Ai + BiK1j BiK2j

−Ci I

]

Ãhi =

[
Ahi 0
0 0

]
, D̃i =

[
Di 0
0 I

]
, C̃i =

[
−Ci 0

]
, Ẽi =

[
0 I

]
.

3. Main Results
3.1. Nominal Tracking Controller Design

The following definitions are provided for the convenience of the tracking controller design.

Definition 1 ([15]). Consider the switching signal σ(k) and k1 > k0 ≥ 0, let Nσi(k0, k1) denote
the switching number of the i-th subsystem occurring on the [k0, k1]; Ti(k0, k1) describes the
running time during time interval [k0, k1]. The positive constant τai is defined as the MDADT of
the switching signal σ(k) such that

Nσi(k0, k1) ≤ N0i +
Ti(k0, k1)

τai
, (8)

where N0i ≤ 0 are mode-dependent chatter bounds.

Definition 2. If there are constants κ > 0 and ε > 0 for a given switching signal σ(k), the
switched systems in (6) and (7) are globally uniformly exponentially stable (GUES) when d(k) = 0
such that

∥e(k)∥ ≤ κe−ε(k−k0)∥e(k0)∥. (9)

Definition 3. For a given switching signal σ(k), and constants γ > 0 and 0 < λ < 1, if
the switched systems in (6) and (7) are GUES with the prescribed H∞ attenuation performance,
such that

∞

∑
s=k0

(1 − λ)seT(s)e(s) ≤ γ2
∞

∑
s=k0

dT(s)d(s); (10)
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accordingly, the tracking controller design problem can be divided into two parts: (1)
the systems (6) and (7) are GUES when d(k) = 0; (2) the closed-loop systems satisfy the
prescribed attenuation index in (10).

Theorem 1 gives sufficient conditions to guarantee the systems (6) and (7) GUES.

Theorem 1. For given constants µ1i > 1, µ2i > 1, 0 < αi < 1, and βi > 0, if there are positive-
definite matrices Pi, Q1i, Q2i, Q3i, Pij, Q1ij, Q2ij, and Q3ij, the closed-loop systems in (6) and (7),
with MDADT satisfying (15), are GUES if (11)–(14) hold.

Pi ≤ µ1iPij
Q1i ≤ µ1iQ1ij
Q2i ≤ µ1iQ2ij
Q3i ≤ µ1iQ3ij

(11)


Pij ≤ µ2iPj
Q1ij ≤ µ2iQ1j
Q2ij ≤ µ2iQ2j
Q3ij ≤ µ2iQ3j

(12)

Φi =

[
−P−1

i Φ12i
∗ Φ22i

]
< 0 (13)

Φij =

[
−P−1

ij Φ12ij

∗ Φ22ij

]
< 0 (14)

τai ≥ τ∗
ai =

−(ln µ1iµ2i + ∆i ln θi)

ln τai
, (15)

where
α̃i = 1 − αi, β̃i = 1 + βi, θi = β̃i/α̃i,

Φ12i =
[

Ãii Ãhi 0 0
]
, Φ12ij =

[
Ãij Ãhi 0 0

]
,

Φ22i = diag
(
−(1 − αi)Pi + Q1i + (hM − hm + 1)Q2i + Q3i,−(1 − αi)

hm Q2i,−(1 − αi)
hm Q1i,−(1 − αi)

hM Q3i

)
,

Φ22ij = diag
(
−(1 + βi)Pij + Q1ij + (hM − hm + 1)Q2ij + Q3ij,−(1 + βi)

hm Q2ij,−(1 + βi)
hm Q1ij,−(1 + βi)

hM Q3ij

)
.

Proof. The Lyapunov-like function of the ith subsystem is described as:

Vi(k) =
3

∑
l=1

Vli(k) (16)

where
V1i(k) = x̃T(k)Pi x̃(k) (17)

V2i(k) =
k−1
∑

s=k−hm

(1 − α)k−s−1 x̃T(s)Q1i x̃(s) +
k−1
∑

s=k−h(k)
(1 − α)k−s−1 x̃T(s)Q2i x̃(s) +

k−1
∑

s=k−hM

(1 − α)k−s−1 x̃T(s)Q3i x̃(s) (18)

V3i(k) =
k−hm

∑
j=k−hM+1

k−1
∑

s=j
(1 − α)k−s−1 x̃T(s)Q2i x̃(s). (19)

The weighted difference of Vi(k) is defined as:

∆V1i(k) + αV1i(k) = V1i(k + 1)− (1 − α)V1i(k) = x̃T(k + 1)Pi x̃(k + 1)− (1 − α)x̃T(k)Pi x̃(k)



Aerospace 2024, 11, 107 7 of 19

∆V2i(k) + αV2i(k) = V2i(k + 1)− (1 − α)V2i(k)

=
k
∑

s=k−hm+1
(1 − α)k−s x̃T(s)Q1i x̃(s) +

k
∑

s=k−h(k)+1
(1 − α)k−s x̃T(s)Q2i x̃(s) +

k
∑

s=k−hM+1
(1 − α)k−s x̃T(s)Q3i x̃(s)

−
k−1
∑

s=k−hm

(1 − α)k−s x̃T(s)Q1i x̃(s)−
k−1
∑

s=k−h(k)
(1 − α)k−s x̃T(s)Q2i x̃(s)−

k−1
∑

s=k−hM

(1 − α)k−s x̃T(s)Q3i x̃(s)

≤ x̃T(k)Q1i x̃(k)− (1 − α)hm x̃T(k − hm)Q1i x̃(k − hm) + x̃T(k)Q2i x̃(k)− (1 − α)hm x̃T(k − h(k))Q2i x̃(k − h(k))

+x̃T(k)Q3i x̃(k)− (1 − α)hM x̃T(k − hM)Q3i x̃(k − hM) +
k−hm

∑
s=k−hM+1

(1 − α)k−s x̃T(s)Q2i x̃(s)

∆V3i(k) + αV3i(k) = V3i(k + 1)− (1 − α)V3i(k)

=
k−hm+1

∑
j=k−hM+2

k
∑

s=j
(1 − α)k−s x̃T(s)Q2i x̃(s)−

k−hm
∑

j=k−hM+1

k−1
∑

s=j
(1 − α)k−s x̃T(s)Q2i x̃(s)

= (hM − hm)x̃T(k)Q2i x̃(k)−
k−hm

∑
s=k−hM+1

(1 − α)k−s x̃T(s)Q2i x̃(s).

We define the augmented vector as:

ξ(k) =
[

x̃T(k) x̃T(k − h(k)) x̃T(k − hm) x̃T(k − hM)
]T. (20)

The following equations can be derived under zero-initial conditions when d(k) = 0.

∆Vi(k) + αVi(k) ≤ x̃T(k)
(

ÃT
i Pi Ãi

)
x̃(k) + x̃T(k − h(k))

(
ÃT

hiPi Ãi
)

x̃(k − h(k)) + x̃T(k)(−(1 − α)Pi + Q1i

+(hM − hm + 1)Q2i + Q3i)x̃(k) + x̃T(k − h(k))
(
−(1 − α)hm Q2i

)
x̃(k − h(k))

+x̃T(k − hm)
(
−(1 − α)hm Q1i

)
x̃(k − hm) + x̃T(k − hM)

(
−(1 − α)hM Q3i

)
x̃(k − hM)

= ξT(k)
(
ΦT

12iPiΦ12i + Φ22i
)
ξ(k).

(21)

Together with the Schur complement, we have

∆Vi(k) + αVi(k) ≤ ξT(k)
(
ΦT

12iPiΦ12i + Φ22i
)
ξ(k) ≤ ξT(k)Φiξ(k) ≤ 0. (22)

Similarly, the Lyapunov-like function in unmatched periods is defined as:

Vij(k) =
3

∑
l=1

Vlij(k), (23)

where
V1ij(k) = x̃T(k)Pij x̃(k) (24)

V2ij(k) =
k−1
∑

s=k−hm

(1 + β)k−s−1 x̃T(s)Q1ij x̃(s) +
k−1
∑

s=k−h(k)
(1 + β)k−s−1 x̃T(s)Q2ij x̃(s) +

k−1
∑

s=k−hM

(1 + β)k−s−1 x̃T(s)Q3ij x̃(s) (25)

V3ij(k) =
k−hm

∑
j=k−hM+1

k−1

∑
s=j

(1 + β)k−s−1 x̃T(s)Q2ij x̃(s). (26)

The following equation can be obtained by the difference method:

∆Vi(k)− βVi(k) ≤ ξT(k)
(

ΦT
12ijPijΦ12ij + Φ22ij

)
ξ(k) ≤ ξT(k)Φijξ(k) ≤ 0. (27)
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Combining (22) with (27) gives:

Vσ(kp)

(
k−p+1

)
≤ α̃

kp+1−kp−∆p

σ(kp)
Vσ(kp+∆p)

(
kp + ∆p

)
≤ µ1σ(kp)α̃

kp+1−kp−∆p

σ(kp)
Vσ(kp)

(
kp + ∆p

)
≤ µ1σ(kp)α̃

kp+1−kp−∆p

σ(kp)
β̃

∆p

σ(kp)
Vσ(kp)

(
kp
)

≤ µ1σ(kp)µ2σ(kp)α̃
kp+1−kp−∆p

σ(kp)
β̃

∆p

σ(kp)
Vσ(kp−1)

(
k−p
)

= µ1σ(kp)µ2σ(kp)α̃
kp+1−kp

σ(kp)
θ

∆p

σ(kp)
Vσ(kp−1)

(
k−p
)

.

(28)

The switching instants in the interval [k0, k] are k1, k2, · · · , and kNσ . Accordingly, the
following equation can be derived by iteration:

Vσ(kNσ )
(k) ≤ µ1σ(kNσ )

µ2σ(kNσ )
α̃

k−kNσ
σ(kNσ )

θ
∆Nσ
σ(kNσ )

Vσ(kNσ−1)(
kNσ )

≤ µ1σ(kNσ )
µ1σ(kNσ−1)

µ2σ(kNσ )
µ2σ(kNσ−1)α̃

k−kNσ
σ(kNσ )

α̃
kNσ−kNσ−1

σ(kNσ−1)
θ

∆Nσ
σ(kNσ )

θ
∆Nσ−1

σ(kNσ−1)
Vσ(kp−2)(kNσ−1)

· · ·

≤
Nσ

∏
s=0

µ1σ(ks)µ2σ(ks)α̃
ks+1−ks
σ(ks)

θ∆s
σ(ks)

V0(k0)

= exp
( Nσ

∑
s=0

(
ln µ1σ(ks)µ2σ(ks) + (ks+1 − ks) ln α̃σ(ks) + ∆s ln θσ(ks)

))
V0(k0)

= exp
( n

∑
i=1

(
Nσi(k0, k1)(ln µ1iµ2i + ∆i ln θi) + Ti(k0, k1) ln α̃i

))
V0(k0).

Together with (8), (22), (24), and (28), we can obtain that:

Vσ(kNσ )
(k) ≤ exp

{ n
∑

i=1

(
Ti(k0,k1)

τai
(ln µ1iµ2i + ∆i ln θi)

)
+Ti(k0, k1) ln α̃i

}
V0(k0)

≤ exp
{ n

∑
i=1

Ti(k0, k1)×
(

ln µ1iµ2i+∆i ln θi
τai

+ ln α̃i

)}
V0(k0).

(29)

According to (15), we can obtain

ln µ1iµ2i + ∆i ln θi
τai

+ ln α̃i < 0. (30)

Therefore, the switched systems in (6) and (7) are GUES if the MDADT satisfies (15).
Now, the proof is finished.

Remark 2. The (22) gives the variation of the Lyapunov function in the matched periods and (27)
provides the variation of the Lyapunov function in the unmatched periods. According to (22) and
(27), we can obtain the relationship between the Lyapunov function at time instant k and the initial
state by iteration.

Theorem 1 provides a stability analysis. Accordingly, sufficient conditions to guarantee
the prescribed attenuation index can be derived.

Theorem 2. For given constants µ1i > 1, µ2i > 1, 0 < αi < 1, βi > 0, if there are positive-definite
matrices Pi, Q1i, Q2i, Q3i, Pij, Q1ij, Q2ij, and Q3ij, and (31) and (32) hold, ∀i, j ∈ N, i ̸= j, the
closed-loop systems in (6) and (7), with MDADT meeting (15), are GUES with the prescribed
attenuation index γ.

Φ̃i =

 −P−1
i 0 Φ̃13i
∗ −I Φ̃23i
∗ ∗ Φ̃33i

 < 0 (31)
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Φ̃ij =

 −P−1
ij 0 Φ̃13ij

∗ −I Φ̃23i
∗ ∗ Φ̃33ij

 < 0, (32)

where

Φ̃13i =
[

Ãii Ãhi 0 0 D̃i
]
, Φ̃13ij =

[
Ãij Ãhi 0 0 D̃i

]
, Φ̃23i =

[
C̃i 0 0 0 Ẽi

]
,

Φ̃33i = diag
(
−(1 − αi)Pi + Q1i + (hM − hm + 1)Q2i + Q3i, − (1 − αi)

hm Q2i,−(1 − αi)
hm Q1i,−(1 − αi)

hM Q3i,−γ2 I
)

,

Φ̃33ij = diag
(
−(1 + βi)Pij + Q1ij + (hM − hm + 1)Q2ij + Q3ij,

−(1 + βi)
hm Q2ij,−(1 + βi)

hm Q1ij,−(1 + βi)
hM Q3ij,−γ2 I

)
.

Proof. By combining Theorem 1 and (31) and (32), it is evident that the closed-loop systems
in (6) and (7) are GUES. Suppose

ξ̃(k) = [ x̃T(k) x̃T(k − h(k)) x̃T(k − hm) x̃T(k − hM) dT(k); ]T,

according to the Schur complement, we have

∆Vi(k) + αiVi(k) + W(k) ≤ ξ̃T(k)
(
Φ̃T

13iPiΦ̃13i + Φ̃T
23iΦ̃23i + Φ̃33i

)
ξ̃(k) ≤ ξ̃T(k)Φ̃i ξ̃(k) < 0 (33)

∆Vij(k)− βiVij(k) + W(k) ≤ ξ̃T(k)
(

Φ̃T
13ijPijΦ̃13ij + Φ̃T

23ijΦ̃23ij + Φ̃33ij

)
ξ̃(k) ≤ ξ̃T(k)Φ̃ij ξ̃(k) < 0 (34)

where W(k) = eT(k)e(k)− γ2dT(k)d(k).

Vσ(kp)

(
k−p+1

)
≤ µ1σ(kp)µ2σ(kp)α̃

kp+1−kp−∆p

σ(kp)
β̃

∆p

σ(kp)
Vσ(kp−1)

(
k−p
)

−
kp+1−1

∑
s=kp+∆p

α̃
kp+1−1−s

σ(kp)
W(s)−

kp+∆p−1

∑
s=kp

α̃
kp+1−kp−∆p−1

σ(kp)
β̃

kp+∆p−s
σ(kp)

W(s)

= µ1σ(kp)µ2σ(kp)α̃
kp+1−kp

σ(kp)
θ

∆p

σ(kp)
Vσ(kp−1)

(
k−p
)
−

kp+1−1

∑
s=kp+∆p

α̃
kp+1−1−s

σ(kp)
W(s)−

kp+∆p−1

∑
s=kp

α̃
kp+1−s−1

σ(kp)
θ

kp+∆p−s
σ(kp)

W(s).

(35)
The following equation can be obtained by iteration on the interval [k0, k1].

Vσ(kNσ )
(k)

≤ µ1σ(kNσ )
µ2σ(kNσ )

α̃
k−kNσ
σ(kNσ )

θ
∆Nσ
σ(kNσ )

Vσ(kNσ−1)(
kNσ )

−
k−1
∑

s=kNσ+∆Nσ

α̃k−1−s
σ(kNσ )

W(s)−
kNσ+∆Nσ−1

∑
s=kNσ

α̃k−s−1
σ(kNσ )

θ
kNσ+∆Nσ−s
σ(kNσ )

W(s)

≤ µ1σ(kNσ )
µ2σ(kNσ )

α̃
k−kNσ
σ(kNσ )

θ
∆Nσ
σ(kNσ )

(
µ1σ(kNσ−1)

µ2σ(kNσ−1)
α̃

kNσ−kNσ−1

σ(kNσ−1)
θ

∆Nσ−1

σ(kNσ−1)
Vσ(kNσ−2)(kNσ−1)

−
kNσ−1

∑
s=kNσ−1+∆Nσ−1

α̃
kNσ−1−s
σ(kNσ−1)

W(s)−
kNσ−1+∆Nσ−1−1

∑
s=kNσ−1

α̃
kNσ−s−1
σ(kNσ−1)

θ
kNσ−1+∆Nσ−1−s

σ(kNσ−1) W(s)
)

−
k−1
∑

s=kNσ+∆Nσ

α̃k−1−s
σ(kNσ )

W(s)−
kNσ+∆Nσ−1

∑
s=kNσ

α̃k−s−1
σ(kNσ )

θ
kNσ+∆Nσ−s
σ(kNσ )

W(s)

· · ·

≤
Nσ

∏
s=0

µ1σ(ks)µ2σ(ks)α̃
ks+1−ks
σ(ks)

θ∆s
σ(ks)

V0(k0)

−
Nσ

∏
r=0

µ1σ(kr)µ2σ(kr)α̃
kr+1−kr
σ(kr)

θ∆r
σ(kr)

( k1−1
∑

s=k0+∆0

α̃k1−1−s
σ(k0)

W(s) +
k0+∆0−1

∑
s=k0

α̃k1−s−1
σ(k0)

θk0+∆0−s
σ(k0)

W(s)
)
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· · ·

−
k−1
∑

s=kNσ+∆Nσ

α̃k−1−s
σ(kNσ )

W(s)−
kNσ+∆Nσ−1

∑
s=kNσ

α̃k−s−1
σ(kNσ )

θ
kNσ+∆Nσ−s
σ(kNσ )

W(s)

≤
n
∏
i=1

µ
Nσi(k0,k)
1i µ

Nσi(k0,k)
2i α̃

Ti(k0,k1)
i θ

∆i Nσi(k0,k)
i V0(k0)

−
k−1
∑

s=k0

(
µ1j

n
∏

m=1
m ̸=j

µ
Nσm(s,k)
1m µ

Nσm(s,k)
2m µ

Nσj(s,k)
1j µ

Nσj(s,k)
2j × α̃

Tm(s,k)
m θ

∆m Nσm(s,k)
m α̃

Tj(s,k)−1
j θ

∆j Nσj(s,k)
j

)
W(s)

−
k−1
∑

s=k0

(
µ1j

n
∏

m=1
m ̸=j

µ
Nσm(s,k)
1m µ

Nσm(s,k)
2m µ

Nσj(s,k)
1j µ

Nσj(s,k)
2j × α̃

Tm(s,k)
m θ

∆m Nσm(s,k)
m α̃

Tj(s,k)−1
j θ

∆j(Nσj(s,k)+1)−1
j

)
W(s),

where m and j are the number of inactivated and activated subsystems in the s-th step,
respectively.

Considering the initial condition and Vσ(k)(k) ≥ 0, we have

k−1
∑

s=k0

(
µ1j

n
∏

m=1
m ̸=j

µ
Nσm(s,k)
1m µ

Nσm(s,k)
2m µ

Nσj(s,k)
1j µ

Nσj(s,k)
2j

×α̃
Tm(s,k)
m θ

∆m Nσm(s,k)
m α̃

Tj(s,k)−1
j θ

∆j Nσj(s,k)
j

)
W(s)

+
k−1
∑

s=k0

(
µ1j

n
∏

m=1
m ̸=j

µ
Nσm(s,k)
1m µ

Nσm(s,k)
2m µ

Nσj(s,k)
1j µ

Nσj(s,k)
2j

×α̃
Tm(s,k)
m θ

∆m Nσm(s,k)
m α̃

Tj(s,k)−1
j θ

∆j(Nσj(s,k)+1)−1
j

)
W(s) ≤ 0.

(36)

Multiplying both sides of (36) by

n

∏
m=1

µ
−Nσm(k0,k)
1m µ

−Nσm(k0,s)
2m µ

−Nσj(k0,k)
1j θ

−∆m Nσm(k0,k)
m ,

we have

k−1
∑

s=k0

( n
∏

m=1
m ̸=j

µ
−Nσm(k0,s)
1m µ

−Nσm(k0,s)
2m µ

−Nσj(k0,s)
1j µ

−Nσj(k0,s)
2j

×α̃
Tm(s,k)
m θ

−∆m Nσm(k0,s)
m α̃

Tj(s,k)−1
j θ

−∆j Nσj(k0,s)
j

)
eT(s)e(s)

+
k−1
∑

s=k0

(
µ1j

n
∏

m=1
m ̸=j

µ
−Nσm(k0,s)
1m µ

−Nσm(k0,s)
2m µ

−Nσj(k0,s)
1j

×µ
−Nσj(k0,s)
2j α̃

Tm(s,k)
m θ

−∆m Nσm(k0,s)
m α̃

Tj(s,k)−1
j θ

∆j(−Nσj(k0,s)+1)−1
j

)
eT(s)e(s)

≤
k−1
∑

s=k0

( n
∏

m=1
m ̸=j

µ
−Nσm(k0,s)
1m µ

−Nσm(k0,s)
2m µ

−Nσj(k0,s)
1j

×µ
−Nσj(k0,s)
2j α̃

Tm(s,k)
m θ

−∆m Nσm(k0,s)
m α̃

Tj(s,k)−1
j θ

−∆j Nσj(k0,s)
j

)
γ2dT(s)d(s)

+
k−1
∑

s=k0

(
µ1m

n
∏

m=1
m ̸=j

µ
−Nσm(k0,s)
1m µ

−Nσm(k0,s)
2m µ

−Nσj(k0,s)
1j

×µ
−Nσj(k0,s)
2j α̃

Tm(s,k)
m θ

−∆m Nσm(k0,s)
m α̃

Tj(s,k)−1
j θ

∆j(−Nσj(k0,s)+1)−1
j

)
γ2dT(s)d(s).
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Together with (8) and (15), we can obtain that

0 ≤ Nσm(k0, s) ≤ Tm(k0, s)
τam

≤ − Tm(k0, s)lnα̃m

lnµ1mµ2m + ∆mlnθm
. (37)

Combining (36) and (37) with µ1m > 1, µ2m > 1, 0 < α̃m < 1, θm > 1, and ∆m > 1, it
can be inferred that:

k−1
∑

s=k0

(
n
∏

m=1

(
µ1mµ2mθ∆m

m

) Tm(k0,s) ln α̃m
ln µ1mµ2m+∆m ln θm α̃

Tm(s,k)−1
m

)
eT(s)e(s)

+
k−1
∑

s=k0

(
µ1jθ

∆j−1
j

n
∏

m=1
m ̸=j

(
µ1mµ2mθ∆m

m

) Tm(k0,s) ln α̃m
ln µ1mµ2m+∆m ln θm α̃

Tm(s,k)−1
m

)
eT(s)e(s)

≤
k−1
∑

s=k0

(
n
∏

m=1
α̃

Tm(s,k)−1
m

)
γ2dT(s)d(s) +

k−1
∑

s=k0

(
µ1jθ

∆j−1
j

n
∏

m=1
α̃

Tm(s,k)−1
m

)
γ2dT(s)d(s).

(38)

Thus, we have

k−1
∑

s=k0

(
n
∏

m=1
α̃

Tm(k0,k)−1
m

)
eT(s)e(s) +

k−1
∑

s=k0

(
µ1jθ

∆j−1
j

n
∏

m=1
α̃

Tm(k0,k)−1
m

)
eT(s)e(s)

≤
k−1
∑

s=k0

(
n
∏

m=1
α̃

Tm(s,k)−1
m

)
γ2dT(s)d(s) +

k−1
∑

s=k0

(
µ1jθ

∆j−1
j

n
∏

m=1
α̃

Tm(s,k)−1
m

)
γ2dT(s)d(s).

(39)

When k → ∞, we have

∞

∑
s=k0

(1 − αmax)
s−k0 eT(s)e(s) ≤ γ2

∞

∑
s=k0

dT(s)d(s), (40)

where αmax = max{ffm}.
According to Definition 3, the switched systems in (6) and (7) are GUES with the

prescribed attenuation index γ. This completes the proof.

Accordingly, the LMI problem in the theorem can be solved. Theorem 3 is given to
obtain the solution of the tracking controller.

Theorem 3. For given constants µ1i > 1, µ2i > 1, 0 < αi < 1, βi > 0, if there are positive-
definite matrices Pi, Si, Q1i, Q2i, Q3i, Pij, Q1ij, Q2ij, and Q3ij, ∀i, j ∈ N, i ̸= j, the solution of the
nominal tracking controller can be realized by the following equations:

min tr(Si, Pi) s.t.[
Si I
I Pi

]
≥ 0 (41)

Φ̃i =

 −Si 0 Φ̃13i
∗ −I Φ̃23i
∗ ∗ Φ̃33i

 < 0 (42)

Φ̃ij =

 −Sij 0 Φ̃13ij
∗ −I Φ̃23i
∗ ∗ Φ̃33ij

 < 0 (43)

SiPi = I. (44)

Then, the closed systems in (6) and (7) are GUES with the prescribed attenuation
performance γ with the MDADT satisfying (15).
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3.2. Learning-Based Tracking Controller Design

The nominal tracking controller is proposed according to the H∞ control theory. The
stability and prescribed attenuation performance of switched systems are guaranteed.
However, as we all know, attaining the optimal compromise of robustness and transient
efficiency is challenging. Therefore, the online scheduling algorithm is presented using
the DQL approach. The learning-based tracking controller compensates for the system
uncertainties to realize performance improvement.

The DQL is an important DRL algorithm. The agent learns an action from an unknown
environment according to the reward function in the reinforcement learning framework.
In this paper, the controller parameters’ online scheduling is viewed as a Markovian
decision process. The action is described with the learning-based tracking controller
parameters, which are given to compensate for the undesirable response induced by system
uncertainties. The action is provided to maximize the expected discounted reward function
during the predefined interval. The action and the reward function are given as follows:

Ak = [ ∆K1i ∆K2i ] (45)

Rk =
K f

∑
i=k

γi−k
d rc,i = rc,k + γdrc,k+1 + γ2

drc,k+2 + · · ·+ γ
K f −k
d rc,K f = rc,k + γdRk+1, (46)

where γd ∈ [0, 1] denotes the discount factor; K f is the terminal step.
The state vector of the DRL algorithm is defined as:

Sk =
[

x(k) e(k) g(k).
]

(47)

The reward function is defined as:

rc,k = ε1|e(k)|2 + ε2rem + ε3rs (48)

rem =

{
kem, |e| ≥ em
0, |e| < em

(49)

rs =

{
kum, |u| ≥ um
0, |u| < um,

(50)

where ε1, ε2, and ε3 denote the weights of the reward function, and kem and kum are given
constants.

In the DQL algorithm, a deep neural network is introduced to approximate the action–
state value function Q∗

e (Sk, Ak), and the action is developed according to the maximum
Q value:

a∗ = arg max
a

Qe(Sk, Ak). (51)

It is supposed that the algorithm has two neural networks, including the critic and
target neural networks. The weights of the critic neural network are changed according
to the TD error, and the weights of the target critic neural network are updated according
to (52).

Qe(Sk, Ak, ω−) = Lr

[
R + γdmaxa′ (Qe

(
S
′
, A

′
, ω−

)
)
]
+ (1 − Lr)Qe(Sk, Ak, ω), (52)

where Qe(sk, ak, ω) and Qe(sk, ak, ω−) denote the outputs of the critic and target critic neural
networks, respectively; Lr denotes the learning rate; R is the value of the reward function
from the state Sk to S

′
; maxa′(Q(s′, a′, ω−)) represents the target critic network’s maximum

Q value. Therefore, the design algorithm of the learning-based tracking controller can be
given as shown in Algorithm 1.
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Algorithm 1 Learning-based tracking controller design.

1: Calculate the nominal tracking controller based on Theorem 3.
2: Initialize the parameters of the Q value network and the target Q value network.
3: Initialize the Replay buffer R, episode = 0.
4: for episode = 1 to M do
5: Initialize the state S1 with a random value and take the initial observation.
6: for t = 1 to K do
7: Calculate the action Ak according to the state and the reward function.
8: Calculate the reward function and the state of the next time instant.
9: Store the transition pair (Sk, Ak, Rk, Sk+1) in the Replay

10: Sample a random minibatch transition pair from the Replay buffer.
11: Update the weights of the Q value function.
12: Update the weights of the target Q value network.
13: end for
14: end for

Remark 3. The model-based method and learning-based method are combined in this paper. The
model-based method is provided based on the robust control theory and the switched control theory.
To improve the transient performance, the deep Q learning algorithm is applied in the learning-based
method. The output of action is supposed to be the compensation of controllers, and the reward
function is defined as the weighted function of tracking error and constraints. By using this method,
the parameters of controllers can be trained, and the stability, robustness, and transient performance
can be guaranteed simultaneously.

4. Numerical Example

The flight vehicles studied in this paper are the HiMAT vehicles, which can be modeled
as switched systems in the flight envelope. This paper considers the switching signals
between subsystems 1, 2, 8, 12, and 18. The flight conditions of the operating points are
given in Table 1:

Table 1. Flight conditions of the vehicle.

Point Number Ma Height/m Attack Angle

1 0.29 762.5 3.18
2 0.4 762.5 1.49
8 0.6 6100 1.48
12 0.9 7625 1.19
18 1.2 12,200 2.23

Therefore, the sampling time is chosen as Ts = 0.02. The switched model of longitudi-
nal motion dynamics can be described as:

A1 =

[
0.9804 0.0188
0.1768 0.9720

]
, B1 =

[
−0.0049 −0.0034 0.0007
−0.1579 −0.0979 0.0993

]

A2 =

[
0.9728 0.0188
0.3773 0.9622

]
, B2 =

[
−0.0075 −0.0050 0.0014
−0.2941 −0.1765 0.1831

]
A8 =

[
0.9766 0.0190
0.3312 0.9668

]
, B8 =

[
−0.0077 −0.0054 0.0018
−0.3759 −0.2798 0.2113

]
A12 =

[
0.9649 0.0188
0.2242 0.9509

]
, B12 =

[
−0.0136 −0.0094 0.0042
−0.9015 −0.6166 0.4367

]
A18 =

[
0.9657 0.0191
−0.9772 0.9523

]
, B18 =

[
−0.0061 −0.0033 0.0023
−0.4595 −0.2426 0.2576

]
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 v(k + 1) =
[

0.9922 0.1247
−0.1247 0.9922

]
v(k)

d(k) =
[

1 0
]
v(k),

(53)

where v(k) stands for the state vector, and the initial value of v(k) is chosen as [0.01, 0]T.
The current paper considers the switched systems parameters as: a1 = 0.25, a2 = 0.23,

a8 = 0.26, a12 = 0.23, a18 = 0.27, b1 = 0.03, b2 = 0.04, b8 = 0.02, b12 = 0.05, b18 = 0.04,
∆1 = 0.1, ∆2 = 0.12, ∆8 = 0.16, ∆12 = 0.14, ∆18 = 0.12, µ11 = 1.22, µ12 = 1.15, µ18 = 1.16,
µ112 = 1.18, µ118 = 1.17, µ21 = 1.21, µ22 = 1.17, µ28 = 1.18, µ212 = 1.16, and µ218 = 1.15.
Therefore, the MDADT in (16) can be calculated as follows:

τ∗
a1 = 1.4641, τ∗

a2 = 1.2735, τ∗
a3 = 1.2131, τ∗

a4 = 1.3673, τ∗
a5 = 1.0779.

The ADT can be obtained as τ∗
a = 1.6800.

It is evident that the dwell time obtained by the MDADT approach is less than that
obtained by the ADT method. Therefore, it leaves more room for controller design. The
system can stay in the modes with a better performance for a longer time.

We set the attenuation performance γ as 0.7. According to the conditions mentioned
above, the nominal tracking controller can be derived using Theorem 3. The time delay
and switching logic are presented in Figures 1 and 2, respectively.
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Figure 1. The time delay response.
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Figure 2. The switching logic response.
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Firstly, we give a comparison between the ADT and MDADT methods, as described
in Figures 3–6. It is evident that the MDADT method can realize a better performance
compared with the conventional ADT method. The attack angle response based on the
MDADT method can avoid the undesirable response induced by the external disturbance.
The generated controller can improve the robustness to the environment. Moreover, the
actuator response is admissible.
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Figure 3. The attack angle response.
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Figure 4. The elevator deflection response.

Figures 7–11 compare the MDADT approach with the presented method. It can be
seen that the transient performance and robustness are enhanced using the DQL algorithm.
The controller can compensate for the adverse effect induced by the system uncertain-
ties. A better response of attack angle can be obtained based on the compensation of the
uncertainties. Moreover, the actuator response of the proposed controller is admissible.
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Figure 5. The elevon deflection response.
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Figure 6. The canard deflection response.
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Figure 8. The elevator deflection response.
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Figure 9. The elevon deflection response.
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Figure 11. The episodes reward response.

Accordingly, the proposed method can realize a better transient performance and
robustness than the conventional method. The fewer conservative results can be derived
through the MDADT approach. The presented method can eliminate the undesirable
response induced by time-varying delays and asynchronous switching. The learning-
based tracking controller compensates for the system uncertainties. Therefore, we can
see that the presented method can simultaneously ensure stability, robustness, and
transient performance.

5. Conclusions

This paper presents a novel asynchronously H∞ tracking controller design and an
online scheduling method for flight vehicles containing time-varying delays. The feed-
back controller is constructed using the flight vehicle’s switched model, derived based on
Jacobian linearization. Due to the limitation of network transmission, the asynchronous
switching induced by the time-varying delay is considered. The nominal tracking con-
troller is proposed to guarantee robustness and stability. The learning-based tracking
controller is established to avoid the undesirable response generated by system uncertain-
ties. A combination of the MLF and MDADT methods is considered to verify the stability
and attenuation efficiency. The sufficient existing conditions are derived based on the
LMI technique. Then, the learning-based tracking controller is designed using the DQL
to enhance the tracking controller’s transient efficiency. The proposed approach ensures
stability, robustness, and transient efficiency, simultaneously.
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