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Abstract: Research and industrial application can require custom high-level controllers for industrial
drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI
M600 Pro hexacopter. This is a widely used multicopter in the research and industrial community due
to its high payload capability and reliability. To support these communities, the focus of control model
identification was on the exploration and implementation of DJI Onboard Software Development Kit
(OSDK) functionalities, also including some unconventional special modes. Thus, the resulting model
can be controlled with the same OSDK functionalities as the real drone, making control development
and application time effective. First, the hardware and software structure of the additional DJI M600
onboard system are introduced. Then, the postulated dynamic and control system models are shown.
Next, real flight test campaigns generating data for system identification are presented. Then, the mass
and inertial properties are estimated for TB47S and TB48S battery sets and the custom Forerunner
UAV payload. Dynamic system model identification includes the aerodynamic effects and considers
hover, vertical, and horizontal forces together with static horizontal wind components and finally the
rotational moments and dynamics. The control system components were identified following the
structure of OSDK, including vertical, horizontal, and yaw loops. After identification, the model was
validated and refined based on an unused flight test and software-in-the-loop simulation data. The
simulation is provided by DJI and was also compared to real flight results. This comparison showed
that the DJI simulation covers the dynamics of the real drone well, but it requires being connected to
the drone and needs the controllers onboard to be implemented in advance, which limits applicability
and increases development time. This was another motivation to introduce a standalone simulation
in Matlab Simulink, which covers all the important modes of OSDK control and can be run solely in
Matlab without any hardware support. The constructed model will be published for the benefit of
the research and industrial community.

Keywords: system identification; DJI M600 Pro; high-fidelity simulation; real flight test

MSC: 93B30

1. Introduction

Multirotor platforms with different payloads are widely applied in research and
industrial applications. The DJI M600 Pro is a preferred platform due to its high payload
capacity (5–6 kg) and redundant systems [1–8]. Most of the applications only utilize the
factory capabilities but for specific tasks, custom high-level control is required [5,9–13].
The tuning requires the identification of system dynamics to be able to simulate system
responses before field testing ([9,10]).

As the DJI M600 is a widely applied platform (see the references above) and the
Forerunner UAV (see Figure 1) was a specific application which required a custom velocity
controller (see [12,13]), our research team (see authors of [11]) decided to create a high-
fidelity identification model of a DJI M600. The goal was to cover the whole flight envelope
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and also the factory control loops applied in DJI OSDK (Onboard Software Development
Kit see [14]), providing the opportunity for simulation and controller development at any
level (except for the lowest levels controlling: pitch and roll angular rates and thrust).
Identification was based on real flight data, considering also the wind disturbances. The re-
sulting Matlab Simulink simulation model is openly published (see the Supplementary
Material) for the advantage of the research and industrial community.

Figure 1. DJI M600 Pro Forerunner UAV platform with extra payload systems.

System identification of multicopters is a widely researched topic [9,10,15–25]. From a
model structure point of view, sources can be grouped as low-fidelity ([9,10,19,20,22–25])
and high-fidelity ([15–18,21]) methods, the latter considering details of aerodynamics and
flight mechanics. Scheduled linear models are considered to be low fidelity, as their basic
model is a linearized low-fidelity one. The applied methodologies for parameter estimation
can be transfer function identification from input–output data [10,17,20], time domain
parameter estimation for a fixed model structure (gray box identification) [9,18,19,21],
frequency domain system identification [22,24,25] and even neural network-based system
modeling [23]. The considered data sources can be wind tunnel and test bench [17–19,21]
or real flight [9,10,22–25] data.

Closest to our goal was the article [9] identifying the dynamics of the DJI M600
hexacopter. Similarities include the consideration of low-level controllers and delays;
however, there are significant differences, which are listed below.

• The article presents parameter-dependent linearized models instead of high-fidelity
nonlinear ones.

• The article considers almost zero roll and pitch angles (near hover state), resulting in
body and inertial forces close to each other and the neglect of roll and pitch rotational
dynamics. This approximation limits model validity to low speeds (until 1.5–2 m/s).

On the contrary, our approach includes the following features:

• Nonlinear dynamical and aerodynamical model with rotor inertial effects, quadratic air
drag, rotor hub forces and the effect of rotor inflow on ascend and descend dynamics.

• Coverage of the full flight envelope with maximum ±25◦ roll and pitch angles, 18 m/s
forward and side speed, 3–5 m/s ascend and descend speed and 8 m/s wind resistance
(see [26]).

• Modeling of the factory control loops from low to high-level, also including the
identified special modes. Thus, the required control inputs of the simulation model
are the same as those required to control the drone through DJI OSDK, providing an
easy way to integrate and apply the simulation-tested controllers onboard.

The structure of the paper follows. Section 2 introduces the additional hardware and
software structure of the DJI M600 Pro (further referenced as M600) applied for system
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identification. Then, Section 3 introduces the postulated dynamic and control model
structure of the DJI M600 targeted to be identified in the article. Section 4 introduces the
flight test campaigns and the basic analysis of flight data, which has led to the discovery
of two special modes. Section 5 discusses mass and inertia estimation, while Section 6
introduces the process of dynamic system model identification. After dynamic system
identification, Section 7 discusses the identification of control system parameters targeting
to cover the DJI OSDK modes. Finally, Section 8 shows the results of high-fidelity model
validation and refinement, and Section 9 concludes the paper.

2. Hardware and Control Software Structure

The stock DJI M600 was equipped with a custom onboard system to transform it into
a Forerunner UAV (see Figures 1–3). Figure 2 shows the connection of the onboard Nvidia
Jetson Xavier NX computer to the autopilot of the DJI M600 through the OSDK UART
port. This made it possible to control the drone with custom controllers sending OSDK
commands through the UART port. Thus, the system was capable of flying special system
identification maneuvers. Flight data logging for analysis and system identification was
also completed through OSDK, reading and saving the specific packets at 50 Hz frequency.
Flight test maneuvers were executed also through the stock ground control station UgCS
([27], see later).

Figure 2. Block scheme of the drone onboard hardware in the Forerunner UAV setup.

Figure 3. Onboard hardware system of the aerial vehicle. 1: RTK GNSS electronics, 2: Basler camera,
3: Gimbal, 4: WiFi antennas, 5: Nvidia Jetson Xavier NX, 6: 4S LiPo battery.

The possibilities of OSDK control are summarized in Table 1 based on [14].
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Table 1. Possible OSDK control mode settings.

Logic Identifier Mode Identifier Explanation

HorizontalCoordinate HORIZONTAL_GROUND Set the x–y of ground frame as the horizontal frame (NEU)
HORIZONTAL_BODY Set the x–y of body frame as the horizontal frame (FRU)

HORIZONTAL_ANGLE Set the control mode to control pitch and roll angle of the vehicle

HorizontalLogic

HORIZONTAL_VELOCITY Set the control mode to control horizontal vehicle velocities

HORIZONTAL_POSITION Set the control mode to control position offsets of pitch and
roll directions

HORIZONTAL_ANGULAR_RATE Set the control mode to control rate of change of the vehicle’s
attitude

VerticalLogic
VERTICAL_VELOCITY Set the control mode to control the vertical speed of UAV, upward

is positive
VERTICAL_POSITION Set the control mode to control the height of UAV
VERTICAL_THRUST Set the control mode to directly control the thrust

YawLogic YAW_ANGLE Set the control mode to control yaw angle
YAW_RATE Set the control mode to control yaw angular velocity

The high-fidelity simulation model is designed to implement every possibility except
for the HORIZONTAL_ANGULAR_RATE and VERTICAL_THRUST cases, as these are
low-level controls rarely applied in high-level mission controllers. Moreover, the direct
actuation of such low-level controls can be dangerous. Thus, only the other modes were
tested in the flight test campaigns to correctly identify OSDK functionalities.

3. High-Fidelity Simulation Model Structure

The high-fidelity simulation model was targeted to describe the 6 degrees of freedom
(DoF) nonlinear system dynamics of the hexacopter including engine dynamic and aero-
dynamic effects, and the controller structure was based on the OSDK functionalities (see
Table 1). The main structure is shown in Figure 4, while the controller details are shown in
Figure 5.

Figure 4. Block diagram of DJI M600 Pro 6DoF simulation model.

Figure 4 shows that the 6 DoF dynamics were separated into attitude (rotational) and
position (translational) dynamics, the former including the yaw (Section 6.4) and roll/pitch
(Section 6.3), the latter including the vertical (Section 6.2) and horizontal (Section 6.1)
dynamics. The References block covers the generation of an OSDK control flag (see Table 1
for the different modes) and the related X, Y, Z and yaw references.
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Figure 5. Block diagram of identified DJI M600 controller implementing OSDK modes.

The controller block is detailed in Figure 5 having the speeds of the six engines as
output (Ω). In addition to the references, switching signals (TSwitch, NSwitch, ASwitch
and YSwitch) were applied to the controllers determining if velocity or angle (TSwitch,
NSwitch), altitude or velocity (ASwitch) and yaw angle or yaw rate (YSwitch) are tracked
in the actual control (see Table 1 for OSDK control modes). The resulting engine speed is
the sum of the controller incremental outputs ∆Ω and the initial speed for hovering Ω0.
The overall engine speed is simply saturated because this did not cause any problems in
the simulation, although it is well known that saturation can even cause instability [28].
The Reference Manager block obtains the references including OSDK flag and the states of
the drone and generates the switching signals and the related Xre f , Yre f , Zre f and Yawre f
references. Handling of the position kick mode (Section 8.3.1) and ground reference mode
(Section 8.3.2) were also implemented inside this block.

3.1. Coordinate Systems and Transformations

Before detailing the model equations, the applied coordinate systems are considered
as shown in Figures 6 and 7. They are the north–east–down (NED) and Body systems.
The former is in the local tangential plane of the globe with axes pointing to the north, east
and inside the globe (down). The latter has its X-axis pointing toward the front of the drone,
Y-axis pointing to the right and Z-axis pointing downward (see Figure 7). Because of the
short distances flown by a hexacopter drone, the NED system can be considered as the
inertial system. The rotational transformation between the NED and body system was
defined with the well-known Euler angles, having roll ϕ, pitch θ and yaw ψ motions (see,
e.g., [29]).

Figure 6. The applied coordinate systems.
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Figure 7. The body coordinate system on M600.

The horizontal velocities deduced from the DJI OSDK autopilot description (see [14])
were VNo, VEa north and east velocities defined in the NED system and VT , VN tangential
and normal velocities defined parallel to the NE horizontal plane but aligned with body
yaw orientation (body misalignment with the NE horizontal plane is visualized in Figure 6
with the velocity vectors being unaligned with the system). The transformation between
them is defined in (1). [

VT
VN

]
=

[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

][
VNo
VEa

]
(1)

In addition to the coordinate systems, the engine layout and geometry of the hexa-
copter is crucial in modeling its dynamics. It is presented in Figure 8 together with engine
rotational directions (L is for left, R is for right, F is for front, B is for back and S is for side).

Figure 8. Engines, their angular positions and their rotational directions in body system of DJI M600.

3.2. Details of the 6DoF Dynamic Model

Figure 4 shows that the inputs to the attitude dynamics block are engine angular rates
Ω =

[
ΩLB ΩLF ΩLS ΩRB ΩRF ΩRS

]T , windspeed vector WE =
[
WN WE WD

]T
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and groundspeed VE =
[
VNo VEa VD

]T , while its outputs are the body angular rate

ωB =
[
p q r

]T and the Euler angles (ϕ, θ, ψ).
This block implements the hexacopter rotational dynamics assuming a diagonal inertia

matrix J =
〈

Jx Jy Jz
〉

(which is not completely true, as shown in Table 4, but it is a good
approximation), the dynamics of the Euler angles and the calculation of the torques acting
on the hexacopter body. The dynamic equations can be obtained from, e.g., [29]. ṗ

q̇
ṙ

 =

1/Jx 0 0
0 1/Jy 0
0 0 1/Jz

 (Jy − Jz)qr
(Jz − Jx)pr
(Jx − Jy)pq

+

τx
τy
τz

 (2)

ϕ̇
θ̇
ψ̇

 =

1 sϕtgθ cϕtgθ
0 cϕ −cϕ

0 sϕ
cθ

cϕ
cθ

p
q
r

 (3)

Here, τx, τy, τz are the torques acting on the hexacopter body and c, s, tg are shorthands
for cosine, sine and tangent.

The inputs to the position dynamics block are the body angular rate ωB, Euler angles,
engine angular rates Ω and windspeed vector W. Its outputs are the NED position and
velocity VE. This block implements the hexacopter translational dynamics again deduced
from [29].  u̇

v̇
ẇ

 =

rv − qw
pw − ru
qu − pv

+ gB +
1
m

 fx
fy
fz

 (4)

Ṅ
Ė
Ḋ

 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


︸ ︷︷ ︸

TEB

u
v
w

 (5)

Here, m is the mass of the hexacopter, TEB is the body to earth rotational matrix,

VB =

u
v
w

 = TBEVE is the inertial velocity vector in the body system (TBE = TT
EB),

gB = TBE

0
0
g

 is the gravity vector in the body system, fx, fy, fz are the body forces acting

on the hexacopter and N, E, D are the NED positions.
As on a multicopter, the torques are mostly caused by the rotor forces acting on the

body first; the force models should be postulated and then the torque models. For a
multicopter, the basic equilibrium state is hovering, and every control action is relative to
this, increasing or decreasing the engine thrusts. This fact was considered in the control
model structure (see Figure 5) where there is a base engine angular rate vector Ω0 for
hovering, and the controllers generate angular rate changes ∆Ω according to it.

The fz body vertical force model should include the effects of vertical air drag and
engine thrust. The air drag can be represented with the second-order model KzVaz|Vaz| also
considering the sign dependence. Here, Vaz is the vertical airspeed component (see (9))
and Kz is the unknown drag coefficient. The vertical engine forces were represented
applying the usual thrust coefficient-based model of propellers (see, e.g., [16,18,30]) and
considering that the propeller thrust can change with the motion of the propeller, especially
in ascension and descension [31]. Thrust coefficient diagrams in the article show that the
coefficient depends linearly on the advance ratio, increases in descension (backward motion
of propeller in the air) and decreases in ascension (forward motion of propeller in the air).
Thus, the hover thrust model for one motor can be well described as:
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Tzi = −
(

cT0 +
Kc

100
µi

)
ρAR2Ω2

i (6)

Here, ρ = 1.225 kg/m3 is air density at sea level according to International Standard
Atmosphere (ISA), A = 0.2231 m2 is propeller area and R = 0.2665 m is propeller radius.
Substituting the advance ratio µi =

Vaz
RΩi

results in (7). Note that here, the angular rate of one
engine results from hover and control rates as: Ωi = Ω0i +∆ΩTi +∆ΩNi +∆Ωalti

+∆Ωyawi

Tzi = −cT0ρAR2Ω2
i −

Kc

100
VazρARΩi (7)

Finally, summing up all the engine and air drag effects, the vertical force model is the
following:

fz = −cT0ρAR2 ∑
i

Ω2
i −

Kc

100
VazρAR ∑

i
Ωi − KzVaz|Vaz|

i ∈
[
LB, LF, LS, RB, RF, RS

] (8)

VE
a = VE − WE

VB
a = TBEVE

a =

Vax
Vay
Vaz

 (9)

The horizontal body forces were modeled with hub force and air drag forces as:

fx = −Khx
100

ρARVax ∑
i

Ωi − KxVax|Vax|

fy = −
Khy

100
ρARVay ∑

i
Ωi − KyVay|Vay|

(10)

The applied hub force model −Khx
100 ρARVax ∑i Ωi was derived with the simplification

of the blade element-momentum theory models from, e.g., [15,16]. This simplified model is
explicitly referenced in [21] (page 78 Remark 4.1), but here, time-varying Ωi engine speeds
were considered. The time dependence of the variables is not denoted for the sake of
simplicity. Note that all force models include the effect of the unknown wind disturbance
WE through the airspeed terms, so the wind should also be estimated.

After postulating the force models, the torque models were constructed. In the horizon-
tal rotational dynamic model of the rotor inertial forces, the air drag and the momentums
resulting from the thrust forces of the six propellers were considered.

Considering [32], Figure 8 and the thrust model of the engines (7), the following
model equations were made. Note that the air drag from the vertical airspeed Vaz was
assumed to have zero torque effect on the body; only the air drag from rotational motion
was considered.

τx =− qJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2 l
2
(Ω2

LB + Ω2
LF + 2Ω2

LS − Ω2
RB − Ω2

RF − 2Ω2
RS)+

Kc(Vaz)

100
VazρAR

l
2
(ΩLB + ΩLF + 2ΩLS − ΩRB − ΩRF − 2ΩRS)− Kp p|p|

τy =pJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2
√

3l
2

(−Ω2
LB + Ω2

LF − Ω2
RB + Ω2

RF)+

Kc(Vaz)

100
VazρAR

√
3l

2
(−ΩLB + ΩLF − ΩRB + ΩRF)− Kqq|q|

(11)
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Here, l = 0.60285 m is the physical length of the engine arms from the CG and
Jr = 7 × 10−4 kg·m2 is the inertia of the BLDC (brushless DC) engine rotor and propeller
together obtained from [33].

For the vertical torque, the torque of propellers around the vertical (rotational) axes
was derived and considered as a main effect together with the air drag from rotational
speed: −Krr|r|. In [31], the power coefficient of the motors is also almost linearly dependent
on the advance ratio, leading to the following vertical torque model.

Pi = cPρAR3Ω3
i = Mzi Ωi

Mzi = cPρAR3Ω2
i

cP = cP0 + Kp
Vaz

RΩi

Mzi = cP0ρAR3Ω2
i + KpρAVazR2Ωi

(12)

Here, Pi is the motor power, Mzi is the motor vertical torque and cP is the power coefficient.
Considering the rotor rotational directions from Figure 8 and the air drag, the postulated
yaw dynamic model was:

τz =
cP0

100
ρAR3(−Ω2

LB − Ω2
LF + Ω2

LS + Ω2
RB + Ω2

RF − Ω2
RS)+

KpρAVazR2(−ΩLB − ΩLF + ΩLS + ΩRB + ΩRF − ΩRS)− Krr|r|

(13)

Here, it is assumed that while hovering, the sum of engine speed terms is zero:

− Ω2
LB0 − Ω2

LF0 + Ω2
LS0 + Ω2

RB0 + Ω2
RF0 − Ω2

RS0 = 0

− ΩLB0 − ΩLF0 + ΩLS0 + ΩRB0 + ΩRF0 − ΩRS0 = 0
(14)

3.3. Details of Control Loop Models

Table 1 shows that there are three control logics (horizontal, vertical and yaw) which
should be realized in four control loops (tangential, normal, altitude and yaw) as the
horizontal control consists of tangential and normal components, as shown in Figure 5.
The controller models were postulated based on conventional control system design knowl-
edge including PID control and anti-windup to have a simple control structure (as presented
in [29] for UAVs).

As conventional position control is not present on DJI M600 (see Section 4.1.1), only
tangential and normal velocity tracking control was identified considering the following
signal flow: velocity reference with saturation → velocity error → pitch/roll reference
with anti-windup (AW) → pitch/roll error → engine speeds (assuming engine dynamics
included in the controller). The tangential controller scheme is shown in Figure 9. The nor-
mal velocity tracking is the same with VN and ϕ signals instead of VT and θ. The ∆V
signal is required to make an internal gain switching inside the PI+AW block; this will be
detailed in Section 8. The velocity error to the angle reference part was postulated as a
PI (proportional–integral) controller as the integral term is required to compensate wind
in case of zero velocity reference. AW was required because angle references have to be
saturated at ±25◦ according to DJI specification [26]. Note that the d(el) delay term was
only inserted during model verification and refinement in Section 8.

Figure 9. Scheme of tangential velocity controller.
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The postulated altitude controller structure is presented in Figure 10. The assumed
signal flow in the controller is: altitude reference (hre f ) → altitude error (with D down
position) → saturated vertical speed reference (gain + saturation) → vertical speed error →
engine speeds (assuming engine dynamics included in the controller). Note that the d(el)
delay term was only inserted during model verification and refinement in Section 8.

Figure 10. Scheme of altitude controller.

The assumed structure of the yaw angle controller was yaw angle error → yaw rate
reference with saturation → yaw rate error → engine speeds (assuming engine dynamics
included in the controller). The controller scheme is shown in Figure 11. Note that the
d(el) delay terms were considered both in identification and during model verification and
refinement in Section 8.

Figure 11. Scheme of yaw angle controller.

After postulating the model structure, flight data collection for system identification
was completed.

4. Flight Data Collection and Basic Model Analysis

Three flight test campaigns were conducted for the collection of persistently excited
relevant flight data, each time improving the test procedures based on the experiences of
the previous tests.

On 5 November 2021, back and forth and ascend/descend maneuvers were flown in
high wind conditions, as listed below. The back and forth flights were aligned with the wind
direction to have larger and smaller airspeeds (groundspeed was the same) and make it
easier to distinguish the wind effect from other dynamics. Stop and turn control mode was
applied to have yaw excitation in the hovering stat and thus proper data for yaw dynamic
and control identification. Ascend/descend were performed together with position hold to
have proper excitation of the vertical dynamics and control. The trajectories were generated
with UgCS software. In all of the cases, the wind direction was approximately estimated
from direction measurement with a flag. From now on, this test day is referenced as FT1
(Flight Test 1).

1. FT1/1 Fly against wind and with wind between two waypoints about 100 m away
from each other with groundspeed limited to 5 m/s.

2. FT1/2 Fly against wind and with wind between two waypoints about 100 m away
from each other with groundspeed limited to 10 m/s.

3. FT1/3 Fly against wind and with wind between two waypoints about 180 m away
from each other with groundspeed limited to 14 m/s.

4. FT1/4 Hold position and make about 60 m ascend and descend maneuvers limiting
vertical speed to ±3 m/s.

The 180 m long back and forth flight trajectory is shown in Figure 12.
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Figure 12. Straight back and forth flight trajectories.

Based on the experiences of the previous flight campaign, new flight tests were
performed on 14 April 2022 applying the stop-and-turn mode of the autopilot to fly between
given waypoints defined through the UgCS software as follows (called FT2). The change
was to fly triangle patterns to have wind disturbance acting from multiple directions
to excite the cross-dynamics of the hexacopter. Otherwise, again, the vertical dynamics
(ascend/descend) and the yaw dynamics were excited to identify all dynamics and OSDK
logic (see Table 1) possible.

1. FT2/1 Hold position and make about 60 m ascend and descend maneuvers limiting
vertical speed to ±3 m/s.

2. FT2/2 Fly a triangular pattern back and forth with 100 m side length and groundspeed
limited to 5 m/s.

3. FT2/3 Fly a triangular pattern back and forth with 100 m side length and groundspeed
limited to 10 m/s.

4. FT2/4 Fly a triangular pattern back and forth with 180 m side length and groundspeed
limited to 14 m/s.

Both the 100 m and 180 m side triangle trajectories are shown in Figure 13.

Figure 13. Triangle flight trajectories.

Finally, a third flight test campaign was flown on 12th August 2022 as FT3 to collect
data from the basic OSDK operational modes listed in Table 1 (except for HORIZON-
TAL_ANGULAR_RATE and VERTICAL_THRUST cases as stated before). All of the ma-
neuvers were tailored to utilize and excite one specific mode of the OSDK logic. In these
flights, the onboard system commanded the drone through DJI OSDK (see [14]) with the
proper mode switching flag and references. DJI provides a simulator for DJI M600 through
DJI Assistant 2, and before flight testing, the designed special maneuvers were verified
in this simulator. During this verification, it turned out that for a step position reference
command, the drone flies away (instead of moving with the given distance), which is why
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in the flight testing, ’position kick’ commands were applied. For details of the specialties of
position mode, see Section 4.1.1.

1. F3/1 Kick command in X and Y position (see the related special mode in Section 4.1.1).
2. F3/2 Normal VN and tangential VT velocity doublet tracking with 3, 5, 10 m/s am-

plitudes.
3. F3/3 Vertical (down VD) velocity doublet tracking with 3, 5 m/s amplitudes.
4. F3/4 Yaw angle ψ doublet tracking with 45◦, 90◦ amplitudes.
5. F3/5 Roll ϕ and pitch θ doublet tracking with 10◦ amplitude.

Normal and tangential velocity refer to the forward and side ground relative velocities
in a body system (see Figure 6). Data from this last flight test campaign were utilized
in the identification of special behaviors of the DJI controller, the verification of the DJI
simulator of M600 in DJI Assistant 2 and the refinement and final validation of the M600
simulation model.

4.1. Discovered Special Cases

Pre-analysis of control actions in the DJI simulator before flight testing showed
two special cases where unexpected behavior was experienced. Unexpected is considered
from a control engineering point of view. These are the horizontal position and angle-
tracking modes. These special behaviors were underlined by the flight test experiences,
and this section compares the simulation and flight test results of these modes.

4.1.1. Horizontal Position Reference Tracking

A step position reference did not result in the change of position with the given
distance as assumed (e.g., 10 m move to the north); rather, the drone had continuous
motion with constant velocity until stopping the controller. Considering the fact that the
step change of any other reference caused the tracking of that reference, this was surprising
(see, e.g., Figure 16), but such behavior is also discussed in the DJI description [34]. So,
in horizontal position mode, the DJI M600 did not track the given position signal; rather, it
moved away (this is underlined by the position response to a position kick maneuver in
Figure 14).

Consequently, position kick commands were sent to the system observing the position,
velocity and angular responses both in DJI simulation and real flight, as presented in
Figures 14 and 15. The figures show that for a 5 m (side) position kick, there was about
2–2.5 m displacement of the drone with a speed up and slow down maneuver.

Figure 14. Effect of position kick command on position.
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Figure 15. Effect of position kick command on velocity and angle.

4.1.2. Horizontal Angle Reference Tracking

Another specialty is the handling of angle references, as a step up and back to zero
angle reference caused different behavior at the changes. The step to nonzero value caused
good tracking of the nonzero signal, but upon jumping to the zero value, a braking mode
was activated, which caused high overshoot of the angle because it started to track a
zero velocity reference with high angle values stopping the vehicle as fast as possible. So,
the zero angle reference is rather implemented as a zero velocity one, stopping the vehicle
(see Figures 16 and 17 presenting both DJI simulation and real flight behavior).

Figure 16. Pitch doublet command response.
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Figure 17. Roll doublet command response.

4.2. Verification of DJI Simulator

The FT3 flight test maneuvers, constructed to analyze the behavior of factory OSDK
control loops, were also utilized to compare flight data and DJI Simulator (referred to
as software-in-the-loop (SIL) later) performance and thus verify the factory simulator of
DJI M600. Details of this verification are presented in [35]. The conclusion was that the
DJI simulator is appropriate for OSDK-based control development and testing. However,
there are certain drawbacks of this simulation, like the need to connect the drone to the
simulation computer and the need to implement the control methods onboard the drone
before evaluation. The high-fidelity Matlab Simulink simulator targeted in this work makes
development and testing much easier, removing the needs to connect the physical drone
and to implement the control code on the onboard computer before the first test runs. This
speeds up control development and application, as only the simulation-tested and -verified
controllers should be implemented and built for DJI simulator and flight testing.

The first step of high-fidelity system identification was the estimation of mass and
inertial data, which is presented in the next section.

5. Estimation of Mass and Inertial Data

It is relatively easy to measure the mass of a drone, but the inertial data estimation
is more complicated. One possible method is to measure it swinging the drone as a
pendulum [19]; another possibility is to measure the size and mass of the parts and create
a 3D model with an appropriate software computing the inertias by the software itself.
As equipment for pendulum tests was not available and it was relatively easy to disassemble
the drone, the latter method was chosen.

The complete disassembly of the drone was not necessary; only the mass of the main
parts was measured, and their dimensions were approximated. The Onshape free online
3D modeling software [36] can determine inertia from a given 3D model, so that was used
for the calculation. The approximate 3D model of the stock M600 without payload is visible
in Figure 18 in flight configuration with retracted landing gears.

Figure 18 shows that the drone was decomposed into six main types of parts. The de-
scription of these parts with the measured weights is summarized in Table 2. Measure-
ment of the folding arms and motors required the removal and disassembly of one arm.
These data were then used to approximate the weight of the drone body. Measuring
the battery and landing gear elements was considerably easier, since they are originally
removable parts.
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Figure 18. Stock DJI M600 3D model for inertia calculation.

Table 2. Mass of DJI M600 components for inertia calculations.

ID Name Mass (g) Element Count

1 Motor 382 6
2 Landing gear 105 2
3 Folding arm 46 6
4 Battery 590/675 6
5 Landing gear arm 61 2
6 Body 2624 1

The drone can be equipped with two types of batteries. The two options are TB47S
and TB48S; the latter has larger capacity. Hence, in Table 2, both weights are stated (the
larger weight belongs to TB48S). Therefore, two masses and two inertia matrices can be
calculated even for the stock M600.

Figures 19 and 20 show the 3D model of the M600 with the forerunner payload
attached (for payload details, see Figures 2 and 3). The payload components are a bit more
detailed than the M600 itself, but some lightweight elements, like the carbon-fiber parts of
the gimbal, were omitted from the model, as the two electric motors dominate the gimbal
weight and inertia. There are blank spaces visible in both 3D models, which are of course
not present in real life. The mass of these elements was neglected or incorporated into
the other elements. But since inertia calculations depend on the position of the individual
elements, each part has to be placed in the exact position where they actually are.

The payload elements and their data are listed in Table 3. The basic elements of the
stock drone are not repeated, but they were included in the inertia calculations of the
payload version as well.

Figure 19. Payload DJI M600 3D model for inertia calculation: top view with additional GPS antenna.
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Figure 20. Payload DJI M600 3D model for inertia calculation: bottom view with onboard computer,
GPS module, gimbal and camera.

Table 3. Mass of payload components for inertia calculations.

ID Name Mass (g) Element Count

1 GNIMU antenna 112 1
2 GNIMU antenna stand 53 1
3 GNIMU 191 1
4 Gimbal part 1 13.3 1
5 Gimbal part 2 24 1
6 Gimbal part 3 (counter weight) 137 1
7 Basler camera 155.8 1
8 Nvidia Jetson Xavier NX 216 1
9 Base plate 325 1

10 Gimbal motors 199 2

Finally, the results of the mass and inertia calculations carried out by Onshape in all
configurations are presented in Table 4. Note that off-diagonal values appeared in the
inertia matrix because of the payload, but they are negligible compared to the diagonal
values. This underlines that the diagonal inertia matrix was a valid assumption in Section 3.

Table 4. Results of mass and inertia calculations.

Configuration Mass (g) Inertia Matrix (g·cm2)

Stock M600 with TB47S batteries 9530

6.894 × 106 0 0
0 5.971 × 106 0
0 0 1.275 × 107



Stock M600 with TB48S batteries 10,040

6.949 × 106 0 0
0 6.026 × 106 0
0 0 1.286 × 107



Payload M600 with TB47S batteries 11,155

7.398 × 106 −1375.236 −8604.432
−1375.236 6.524 × 106 1225.41
−8604.432 1225.41 1.287 × 107



Payload M600 with TB48S batteries 11,665

7.456 × 106 −1376.109 −8849.862
−1376.109 6.582 × 106 1216.184
−8849.862 1216.184 1.298 × 107


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6. Dynamic System Model Identification

Before starting the identification, the maximum motor speed (equal to propeller speed
in case of direct drive BLDC motors) was estimated based on the figures in [33] (page 9)
and real flight data. It was set to Ωmax = 456.45 rad/s.

First the force and then the torque model parameters were identified. As the vertical
force depends on the airspeed, and thus the wind disturbance first, the horizontal force
model parameters were identified including the north and east horizontal wind components
and assuming WD = 0 as the deterministic wind disturbance is dominantly horizontal.
It was also assumed that the strength and direction of horizontal wind disturbance was
constant during each flight test. Considering the 15–20 min maximum flight time, this can
be approximately true.

6.1. Horizontal Force Model Identification

In case of the FT1 flight campaign, there was high wind but no crosswind excitation
of the drone (flight against or with wind), while in case of FT2, there was crosswind
excitation but low wind. Considering that in the postulated force model (10) both terms
depend on the airspeed in low wind, it is hard to distinguish them, while in high wind,
the air drag becomes dominant (considering 6ρAR = 0.437, Ωmax/100 = 4.56 and so
6ρARΩmax/100 = 1.992). Thus, in the high wind condition of FT1, the forward air drag
parameter can be determined well, and so the cross-value should be derived based on
engineering assumptions, while with FT2 data, the hub force coefficients can be determined
if the air drag values are known and fixed. A repeated FT2 flight in high wind could
be a good solution, but it is hard to organize all the logistics of a test flight, and it is not
guaranteed that an attempt in case of high wind forecast will be successful (too high wind
cancels all the flight tests). That is why the collected data were utilized in the best way to
obtain realistic parameters.

In the FT1 flight test campaign, back-and-forth flights were made, meaning that the
horizontal wind components can be aligned with the body system to make parameter iden-
tification easier. Flight directions were ψ f wd = −38◦ and ψbckwd = 142◦ and considering
positive tangential and normal wind velocities WT , WN for the former (can be obtained
from NE wind analogously to (1)) results in −WT ,−WN velocities for the latter doing a
180◦ rotation. For the positive WT , WN values and considering VT , VN , VD body aligned
drone speeds, the horizontal airspeed components result were:

Vax =VT cos(θ)− VD sin(θ)− WT cos(θ)

Vay =VT sin(ϕ) sin(θ) + VN cos(ϕ)+

VD sin(ϕ) cos(θ)− WT sin(ϕ) sin(θ)− WN cos(ϕ)

(15)

From the translational dynamics (4), the horizontal force Equation (10) can be related
to the measured body acceleration (ax, ay) of the vehicle as:

m · ax = −Khx
100

ρARVax ∑
i

Ωi − KxVax|Vax|

m · ay = −
Khy

100
ρARVay ∑

i
Ωi − KyVay|Vay|

(16)

From (16), the unknowns are Khx, Khy, Kx, Ky, WT , and WN , while the other variables
are measured by the on-board system of the M600. For the estimation of parameters,
two data sets were selected (FT1/1 and FT1/2), each set including hover, climb, against
(FAW = forward against wind) and with (FWW = forward with wind) wind (both 5 m/s
and 10 m/s ground speed) maneuvers for persistent excitation of the horizontal forces.
The limits of air drag coefficients Kx, Ky were determined from the maximum wind tol-
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erance 8 m/s and maximum bank angle 25◦ of the M600 considering maximum wind
hovering flight (see technical specifications [26]):

m · g sin(25/180π) = Kmax82 → Kmax = 0.65

Note that in FAW flight, the air velocity can be higher and so the Kx limit is lower:
that is why this is a realistic upper limit. The limits for Khx, Khy were assumed to be
3 and the tangential and normal wind limits were assumed to be 10 m/s (a bit above
the maximum 8 m/s to allow free motion of the parameters for convergence). All of the
parameter minimums were 0 as the parameters cannot change signs (invalid model). As (16)
is nonlinear in the winds, the Matlab nonlinear least-squares solver lsqcurvefit was applied
considering flight data Sets FT1/1 and FT1/2. Having all six parameters free, the results
are as summarized in Table 5.

Table 5. Results of horizontal forces identification from FT1 flight campaign.

Parameter Khx Khy Kx Ky WT WN K̃y

Set FT1/1 0.7194 0.3096 0.0563 0.031 4.4635 6.609 0.0488
Set FT1/2 0.7028 0.289 0.0539 0 4.6476 10 0.0467
Average 0.7111 0.2993 0.0551 0.0155 4.555 8.3 0.04775

Table 5 shows that the longitudinal parameters Khx, Kx, WT are consistent between
the two sets, while the lateral parameters Khy, Ky, WN are rather inconsistent, including
a saturation of WN at the maximum unrealistic 10 m/s upper limit. This underlines the
statement that the cross-direction was not persistently excited.

However, as in the FT2 campaign, the air drag was not dominant, an approximation
of Ky was obtained considering the geometric parameters of the M600. As the air drag is
linearly proportional to the front area of the vehicle, which from the Y direction is

√
3/2

times smaller than from the X (see again Figure 8) K̃y ≈ 0.866Kx was applied (see Table 5).
After determining Kx and Ky from FT1, they were fixed and FT2 flight data (without

air drag dominance due to the low wind) were utilized to obtain the hub force coefficients
Khx, Khy. To cover a large range of maneuvers and thus provide persistent excitation, one
complete 5 m/s speed triangle was combined with one 10 m/s triangle flown in the reverse
direction (one CW and one CCW), forming four different data sets. The model structure
was the same as postulated in Equations (15) and (16) completed with (17), showing the
transformation from NE to TN wind components as from the triangle flights. Only the NE
components can be determined.

WT = WN cos(ψ) + WE sin(ψ)

WN = −WN sin(ψ) + WE cos(ψ)
(17)

Finally, making Kx, Ky fix from the previous model gave satisfactory results with only
a few outliers as Table 6 shows. Outliers were defined as values more than 30% larger or
smaller than the others. They are caused by turbulence and windgust disturbances in the
real flight data.

Table 6. Results of horizontal forces identification from the second flight campaign (FT2), first run.
Outliers are denoted with bold face.

Parameter Khx Khy WN WE

Set FT2/1 1.1045 0.8265 2.4815 –1.376
Set FT2/2 1.0527 0.9276 1.745 –1.1056
Set FT2/3 1.036 0.7077 1.613 –0.67
Set FT2/4 1.132 0.66 1.7222 –1.2163
Average 1.0813 0.8206 1.6934 –1.2326
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In the next step, the resulting average Khx, Khy values were fixed, and the other
parameters were fit to check model’s validity (Kx, Ky should result the same as the fixed
values from FT1). The results (again with outliers) are shown in Table 7.

Table 7. Results of horizontal forces identification from the second flight campaign (FT2), second run.
Outliers are denoted with boldface.

Parameter Kx Ky WN WE

Set FT2/1 0.1028 0.0968 2.57 –1.41
Set FT2/2 0.0928 0.2181 1.747 –1.12
Set FT2/3 0.0987 0.1582 1.581 –0.57
Set FT2/4 0.1072 0.0934 1.667 –1.28
Average 0.1 0.0951 1.665 –1.27

The wind values are close to the previous results (also the outliers), while Kx and Ky are
far from the previous ranges. As there is no other data set to be applied, the average results
from FT1 (Table 5) and FT2 (Table 7) were finally considered as Kx = 0.0775, Ky = 0.0714.
Fixing them and ensuring a fit for the hub force and wind disturbances gave the final model
values in Table 8.

Table 8. Final results of horizontal forces identification from the second flight campaign (FT2).
Outliers are denoted with boldface.

Parameter Khx Khy WN WE

Set FT2/1 0.9613 0.7881 2.41 –1.325
Set FT2/2 0.908 0.8951 1.668 –1.1098
Set FT2/3 0.8966 0.6713 1.574 –0.623
Set FT2/4 0.9911 0.6138 1.6592 –1.2107
Average 0.9392 0.7848 1.6337 –1.2112

Again, the outliers are at the same places. The average Khx, Khy values are smaller than
in the first round (see Table 6) but larger than from the previous flight campaign, giving
a model balanced between the two cases. The absolute value of average wind result was
2.03 m/s, while its direction was −36.55◦ (southeast). The Windguru weather and wind
forecast (see [37]) for 14 April 2022 is presented in Figure 21 (on-site wind measurements
were not calculated due to the lack of equipment). The system identification flights were
between 11 and 11:30, and the predicted wind for that time range is 2–3 m/s southeast.
The system identification well covers the southeast (a bit more south) direction and is close
to the 2–3 m/s with a 2 m/s estimate. So, the estimated model values can be accepted
as realistic.

Figure 21. Weather and wind forecast for 14 April 2022 (FT2) (printscreen from [37]).

Fixing the hub force and air drag model parameters at the new values makes it possible
to re-identify the wind disturbances in the two flights in FT1. The results are shown in
Table 9. The table shows that there is only one outlier; the other results are close, so the
averages can be easily calculated. The results show that the wind disturbances were lower
than previously estimated, which is realistic, as the previous estimates were too close to
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the maximum (8 m/s) wind tolerance of the M600, while there was no problem even with
14 m/s flight speeds. Unfortunately, there is no saved Windguru forecast for the day of
that test.

Table 9. Re-identified wind disturbances in the first flight campaign (FT1). Outliers are denoted
with boldface.

Set Subset WN WE

1–2 1 –4.6152 –0.4295
2 –4.599 –0.556
3 –4.332 –0.1331
4 –4.5963 –0.5295

Average – –4.5356 –0.505

3 1 –5.2753 –1.262
2 –5.5744 –0.8514

Average – –5.4248 –1.0576

Evaluation of the final 3D simulation model showed that the maximum 18 m/s flight
speed of M600 (in still air, see [26]) could not be achieved due to the too high air drag
coefficients. So, fine tuning was performed, decreasing the Kx air drag in forward flight
until reaching 18 m/s. Finally, Kx = 0.072 was a proper value and so Ky was decreased with
the same ratio to Ky = 0.0663. Fixing Kx, Ky and re-identifying the other parameters for the
second flight test campaign (FT2) gave the values listed in Table 10. Here, the spread of the
values is lower than in the previous case (Table 8), showing that the refinement moved the
parameters into the proper direction. Testing again for the reaching of 18 m/s showed that
Khx and Khy should be slightly decreased to Khx = 0.94 and Khy = 0.7641 (the same ratio as
for Khx). The wind estimates were not updated, as they were close to the previous ones.

Table 10. New fit of parameters in the second flight campaign (FT2) after air drag model refinement.
Outliers are denoted with boldface.

Parameter Khx Khy WN WE

Set 1 0.9963 0.7954 2.4296 –1.3371
Set 2 0.9433 0.901 1.6879 –1.0998
Set 3 0.9308 0.6786 1.5838 –0.6343
Set 4 1.0256 0.6753 1.6592 –1.2117

Average 0.974 0.7917 1.649 –1.2162

Figures 22–25 show the final model outputs compared to the flight measured horizon-
tal forces for FT1 (hover, climb, FAW 5 m/s, FWW 5 m/s, FAW 10 m/s, FWW 10 m/s) and
FT2 (5 m/s and 10 m/s triangle flights). Note that system identification was completed
considering the specific sections where clear vertical or horizontal movements arise without
vertical rotation. These sections were cut out from the continuous data. That is why there
are gaps between the data sections in the figures: because the non-specific parts are not
compared and thus not plotted.

The figures show that the measured accelerations and thus the dynamic forces are
very noisy, and there can be large differences between the measured and the model forces.
This is the reason why performance measures (such as (23)) were not applied, as they gave
unacceptably large results for any model. However, the model well follows the range and
dynamic changes of the measurements, so in light of the high uncertainty in the parameter
identification, the model performance is acceptable.
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Figure 22. Longitudinal (X) forces in hover, climb, FAW and FWW flights and the outputs of the fitted
model in the first flight campaign (FT1).

Figure 23. Lateral (Y) forces in hover, climb, FAW and FWW flights and the outputs of the fitted
model in the first flight campaign (FT1).

Figure 24. Longitudinal (X) forces in 5 m/s and 10 m/s triangle flights in the second flight campaign
(FT2).
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Figure 25. Lateral (Y) forces in 5 m/s and 10 m/s triangle flights in the second flight campaign (FT2).

6.2. Vertical Force Model Identification

Considering the vertical force model (8) first, the hover thrust coefficient cT0 and
the hover engine speed Ω0 were identified considering flight data sections with Va ≈ 0.
In hover, the vertical gravitational force should be compensated by the engines:

mg cos θ cos ϕ = cT0ρAR2 ∑
i

Ω2
i (18)

In the identification, ∑i Ω2
i is substituted with 6Ω2, which is the average squared

engine angular rate.

Ω2 =
Ω2

LB + Ω2
LF + Ω2

LS + Ω2
RB + Ω2

RF + Ω2
RS

6
(19)

Hovering flight test sections were considered from FT1 and FT2 flights with TB48S
batteries and so m = 10.04 kg mass and from FT2 flight with TB47S batteries and so
m = 9.53 kg. cT0 was calculated as the mean of the ratio

cT0 =
mg cos θ cos ϕ

6ρAR2Ω2

for every flight section. Also, Ω0 =

√
Ω2 was calculated as the average (of the averages)

hover engine speed. The results are summarized in Tables 11 and 12 for m = 9.53 kg and
m = 10.04 kg, respectively.

Table 11. Hover thrust coefficients and engine speeds for m = 9.53 kg.

FLY Nr. FT2/1 FT2/2 FT2/3 FT2/4

cT0 [-] 0.0106 0.0102 0.0105 0.0101
Ω0 [rad/s] 275.8 280.93 277.08 288.7

Table 12. Hover thrust coefficients and engine speeds for m = 10.04 kg.

FLY Nr. FT1/1 FT1/2 FT1/3 FT1/4 FT2/1 FT2/2 FT2/3 FT2/4 FT2/5

cT0 [-] 0.0107 0.0106 0.0107 0.0106 0.0101 0.0103 0.0104 0.0107 0.0106
Ω0 [rad/s] 280.59 282.54 280.25 282.74 288.7 286.17 284.66 280.57 282.57

The tables show that the results are similar for the two different masses giving only
slightly lower hover engine speed for the lower mass. As the final goal in the Forerunner
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project was flight with payload finally, the data for the larger mass (Table 12) were averaged
to obtain the setpoint:

cT0 = 0.0105 Ω0 = 283.032 rad/s

Figures 26 and 27 show the engine speed and the vertical forces in the FT1/3 hover
case. Figure 26 shows that the engine speeds are not all equal, as there is a need for roll
and pitch to compensate for wind disturbance (position hold). However, their values are
almost constant. Figure 27 shows the body vertical force from gravity and from the hover
engine model, giving values very close to each other (errors between 0.02 and 0.1 N).

Figure 26. Engine speeds in FT1/3 hover case.

Figure 27. Gravitational and thrust force in hover (FT1/3 case).

After identifying the hover thrust coefficient and hover engine speed, the full thrust
model was targeted considering maz = fz, (8) and that cT0 is known.

Trying to fit the model (Kc, Kz) to ascend/descend/FAW flight data showed that a
single vertical airspeed-dependent gain Kc(Vaz) is sufficient to cover it; Kz was not required.
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This was because (according to [31]) in ascending flight, the rotor thrust coefficient decreases
while in descending flight, it increases, and this is a similar effect to the air drag (down in
ascension and up in descension). As both effects are airspeed dependent, they cannot be
distinguished. So, the force model in (8) was modified by deleting the air drag term and
including an airspeed-dependent Kc(Vaz) gain.

fz = −cT06ρAR2Ω2 − Kc(Vaz)

100
Vaz6ρARΩ (20)

Again, the sums of engine angular rates were replaced by the average values for
parameter identification, resulting in:

Ω =
ΩLB + ΩLF + ΩLS + ΩRB + ΩRF + ΩRS

6

In the first flight campaign (FT1), the persistently excited data sections (regarding Vaz)
were ascend/descend, FAW 10 m/s and FAW 14 m/s. As the Vaz airspeed values depend
on the wind disturbances, their estimates from Table 9 were applied in the calculation.
Separate Kc constant coefficients were determined through linear least-squares fit for the
different Vaz ranges. The estimated coefficients, together with the dominant Vaz values
from the first flight campaign, are shown in Table 13. Estimates from the second flight
campaign are presented in Table 14 calculated with wind values from Table 10. The second
flight campaign includes ascend and descend test maneuvers with TB47S batteries (smaller
mass) and forward flight maneuvers along the triangles with TB48S batteries (larger mass).
For this model, some of the Kc results are invalid, giving negative values, so only the
positive results were considered in further calculation. The invalid values are at the
smallest Vaz part, so there was not enough excitation of the model.

Table 13. Resulting vertical force coefficients and related Vaz values from the first flight campaign
(FT1).

Maneuver Kc Vaz [m/s]

Ascend 1.7419 –3.3
FAW 10 m/s 2.5236 –4
FAW 10 m/s 1.7482 –3.8
FAW 14 m/s 3.4947 –6
FAW 14 m/s 4.5452 –7

Ascend 2.6345 –3.5
Descend 9.4385 2.8
Descend 7.2495 2.7
Ascend 2.1952 –3.4

Table 14. Resulting vertical force coefficients and related Vaz values from the second flight campaign
(FT2).

Maneuver Kc Vaz [m/s]

Ascend 3.5995 –3.15
Ascend 4.3 –3.1
Descend 2.895 3
Ascend 3.5535 –3.1
Descend 6.1913 2.9

Along 10 m/s –2.77 –1.4
Diagonal 10 m/s –2.8 –2.3

Cross 10 m/s –0.28 –2
Along 14 m/s 4.22 –6
Cross 14 m/s 2.79 –4
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The tabular data are visualized in Figure 28. The figure shows that most of the
maneuvers were performed with negative Vaz (drone motion relative to air), meaning
ascension or forward motion with high pitch angles (high velocity). There were two
outliers in the data in the first flight campaign: the 7.2495 and 9.4385 values, which were
removed from data union (see the figure). The figure shows that there are many more
data points for negative Vaz values than for positive. What is more, only the positive Vaz
value is about 3 m/s (descend). Thus, the characteristic for positive velocity is uncertain.
Considering the range of thrust coefficients (1.5–4.5) in the negative Vaz range suggests that
the two Flight 1 points in the positive range are outliers. This is underlined by the finally
selected symmetric fit, which has much lower values. First, an asymmetric second-order
curve was fit to the data:

Kc(Vaz) = 0.0715V2
az + 0.3091Vaz + 3.0277 (21)

Figure 28. Thrust coefficient fit to all flight data.

However, later testing the vertical control of the model (after identification of the
vertical controller, see Section 8.1) showed that with this asymmetric model, the output
does not fit the flight measured data. This is illustrated by Figure 29, showing the differences
(slower settling) in VD vertical speed tracking with the asymmetric model (compare it to
Figure 52). That is why a symmetric model was fit considering only the negative Vaz range,
as there were more measurement points:

Kc(Vaz) = 0.0243V2
az + 2.8851 (22)

Figures 30–32 show the flight measured ∆ fz = maz + cT06ρAR2Ω2 forces and the out-
puts of the −Kc(Vaz)

100 Vaz6ρARΩ model for 3 m/s ascend and descend maneuvers. Figure 30
for a 3 m/s ascend shows that the symmetric model output is closer to the measured values
than the asymmetric. Figure 31 for a 3 m/s descend maneuver shows that neither of the
models cover the measured data well.

However, for another 3 m/s descend in the same flight test campaign, Figure 32
shows that the models cover the data, the symmetric model having a smaller average error.
So for the case in Figure 31, possibly some windgust disturbance occurred, which is not
considered in the model.
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Figure 29. Slower settling of vertical velocity tracking with asymmetric thrust coefficient model.

Figure 30. Vertical force model outputs in ascend mode.

Figure 31. Vertical force model outputs in descend mode.



Aerospace 2024, 11, 79 27 of 53

Figure 32. Vertical force model outputs in another descend mode.

As a quality measure, the time-averaged absolute percentage model error was ap-
plied (23). The measures for the three figures are summarized in Table 15.

e = ∑
i

( |ymeasi − ymodeli |
|ymeasi |

100
)

(23)

Table 15. Quality measures for asymmetric and symmetric vertical force models.

Figure Figure 30 Figure 31 Figure 32

Asymmetric 833.5 1216 2169
Symmetric 675.8 1453 1623

The table shows that except for the disturbed case when both models fail, the symmet-
ric model gave better results. These results underline that the symmetric model is better, so
it is applied in the final M600 simulation.

6.3. Horizontal Torque Model Identification

The postulated model is presented in (11). Combining it with the rotational dynam-
ics (2) results in (24).

Jx ṗ =qr(Jy − Jz)− qJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2 l
2
(Ω2

LB + Ω2
LF + 2Ω2

LS − Ω2
RB − Ω2

RF − 2Ω2
RS)+

Kc(Vaz)

100
VazρAR

l
2
(ΩLB + ΩLF + 2ΩLS − ΩRB − ΩRF − 2ΩRS)− Kp p|p|

Jy q̇ =pr(Jz − Jx) + pJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2
√

3l
2

(−Ω2
LB + Ω2

LF − Ω2
RB + Ω2

RF)+

Kc(Vaz)

100
VazρAR

√
3l

2
(−ΩLB + ΩLF − ΩRB + ΩRF)− Kqq|q|

(24)

In (24), the first four terms on the right-hand side are known from angular rate
measurement, inertia and vertical force identification. On the left-hand side, smoothed
numerical differentiation from [38] was applied to calculate ṗ, q̇ so those are also known.
Theoretically, only the air drag terms (Kp, Kq) should be identified. Subtracting the known
terms of the right-hand side gives residual terms (∆L for roll and ∆M for pitch) which
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should be covered with the air drag. The residuals were far from zero and the air drag com-
ponent (plotted with Kp = 10, Kq = 10) had a completely different characteristic, so it was
impossible to cover the residuals with any constant Kp, Kq as Figures 34–36 show. So, addi-
tional model terms were required. Several combinations of Vax, Vay, Ωi, ϕ, θ, ∥Va∥, and ∥W∥
were tested to find something characteristically similar to the residuals. Finally, the wind
disturbance-based models below were postulated to cover the residuals, as they were very
similar to the residual characteristic (see Figures 34–36).

KW p∥W∥ l
200

(ΩLB + ΩLF + 2ΩLS − ΩRB − ΩRF − 2ΩRS)

KWq∥W∥
√

3l
200

(−ΩLB + ΩLF − ΩRB + ΩRF)

(25)

here, ∥W∥ =
√

W2
N + W2

E is the Euclidean norm of the wind disturbance and KW p, KWq are
gains to be determined. From engineering intuition, it would be better to apply the airspeed

∥Va∥ =
√

V2
ax + V2

ay instead of the wind speed ∥W∥; however, it gave unacceptable results.
To successfully determine the gains, persistently excited flight sections were required, which
were inside a short time range to have a valid constant wind disturbance assumption and
thus apply the estimated constant wind values. Hover, 5 m/s, 10 m/s, 14 m/s, +180◦ yaw
and −180◦ yaw maneuvers were considered from the flights, forming different combined
data sets from them to give a wide range of excitation. Parameters estimated from the FT1
flight campaign are shown in Table 16; those from FT2 are in Table 17 together with the
average values. Note that multiple take-offs were considered from the first flight campaign.

The average data showed that the gain is wind strength dependent, so polynomials
were fitted to the ∥W∥ − KW curves. Raw data and fitted polynomials are shown in
Figure 33.

Table 16. Pitch and roll moment parameters from first flight campaign (FT1).

Take-Off Set KWq KW p ∥W∥

1 Set FT1/1 –2.3902 –2.4444 4.5636
1 Set FT1/2 –2.3927 –2.4537 4.5636

AVERAGE - –2.3914 –2.449 4.5636
2 Set FT1/1 –1.9803 –2.007 5.527
2 Set FT1/2 –2.0158 –2.0136 5.527

AVERAGE - –1.9981 –2.0103 5.527

Table 17. Pitch and roll moment parameters from second flight campaign (FT2).

Set KWq KW p ∥W∥

Set FT2/1 –5.2789 –5.3329 2
Set FT2/2 –5.216 –5.1729 2
Set FT2/3 –5.2445 –5.2666 2
Set FT2/4 –5.2464 –5.2241 2
Set FT2/5 –5.208 –5.25 2
Set FT2/6 –5.1866 –5.1786 2
Set FT2/7 –5.1939 –5.086 2
AVERAGE –5.2249 –5.2159 2
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Figure 33. ∥W∥ − KW curves and fitted polynomials.

Figure 33 shows that a negative second-order function can possibly well cover the data.
This is underlined by the resulted best fit (measured by mean squared error) expressions
(W = ∥W∥):

KWq = −0.2W2 + 2.46W − 9.39

KW p = −0.183W2 + 2.3W − 9.136

Some illustrative results with the averaged parameters are plotted in Figures 34–36,
showing acceptable coverage of the residuals by the fitted model.

However, during simulation testing, this model form gave instabilities, so finally,
the fitted additional term (with KW) was removed, but air drag effects −10p|p| and −10q|q|
were added, resulting in the final roll and pitch dynamic models (26). The 10 coefficient of
air drag was heuristically tuned based on the damping behavior of the model for roll and
pitch excitation.

Figure 34. Roll model with averaged parameters (FWW 10 m/s flight section).
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Figure 35. Pitch model with averaged parameters (FWW 10 m/s flight section).

Figure 36. Roll model with averaged parameters (FAW 10 m/s flight section).

τx =− qJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2 l
2
(Ω2

LB + Ω2
LF + 2Ω2

LS − Ω2
RB − Ω2

RF − 2Ω2
RS)+

Kc(Vaz)

100
VazρAR

l
2
(ΩLB + ΩLF + 2ΩLS − ΩRB − ΩRF − 2ΩRS)− 10p|p|

τy =pJr(ΩLB + ΩLF − ΩLS − ΩRB − ΩRF + ΩRS)+

cT0ρAR2
√

3l
2

(−Ω2
LB + Ω2

LF − Ω2
RB + Ω2

RF)+

Kc(Vaz)

100
VazρAR

√
3l

2
(−ΩLB + ΩLF − ΩRB + ΩRF)− 10q|q|

(26)

Identification of the roll and pitch controllers was flawless for this model, which was
similar to the final roll and pitch behavior of the DJI M600 simulation model. Thus, model
mismatch from the neglection of this effect (questionable from an engineering point of
view) was accepted.
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6.4. Yaw Torque Model Identification

The yaw torque model is postulated in (13) together with the assumption that the
hover speed of the motors is the same, so the hover parts cancel out (14).

However, the voltages of the motors differ from each other as shown, e.g., in Figure 37.
As engine speed is proportional to voltage (see, e.g., [33]), this means that the hover speeds
were not the same, so the mean hover speed effects were subtracted from the model before
identification. This was because only the engine angular rate changes, causing the yaw
rotation, should be considered to have a model relative to the hover state (see the control
structure in Figure 5). The considered averaged hover values are shown below:

TcP0 = ρAR3(−Ω2
LB0 − Ω2

LF0 + Ω2
LS0 + Ω2

RB0 + Ω2
RF0 − Ω2

RS0)/100

TKp = ρAVazR2(−ΩLB0 − ΩLF0 + ΩLS0 + ΩRB0 + ΩRF0 − ΩRS0)
(27)

Figure 37. Engine voltages during flight.

Subtracting the hover terms from the τz torque (13) and considering the rotational dynam-
ics (2) resulted in the complete yaw dynamics (28).

Jz ṙ = pq(Jx − Jy)+

cP0

[
ρAR3

100
(−Ω2

LB − Ω2
LF + Ω2

LS + Ω2
RB + Ω2

RF − Ω2
RS)− TcP0

]
+

Kp

[
ρAVazR2(−ΩLB − ΩLF + ΩLS + ΩRB + ΩRF − ΩRS)− TKp

]
− Krr|r|

(28)

In the above model, the unknowns were cP0, Kp and Kr; however, hover and ±180◦

yaw rotation maneuvers were applied to identify the model parameters and the M600
held position during these maneuvers, so the Vaz velocity was small and was not properly
excited. On the contrary, during FAW or FWW maneuvers, the vertical rotation was zero.
So finally, the Kp term was removed from the model together with pq(Jx − Jy), while the
measured term was negligibly small (see Figures 38–40) due to the almost zero roll and
pitch rates in hover or vertical rotation.

Parameter identification was completed with the least squares (LS) method selecting
hover sections followed by positive and negative yaw rotations, so three flight sections/data
sets were considered. The results are summarized in Table 18, including both FT1 and FT2
results. The table shows that the parameters are close to each other in one flight, and the
cP0 values are globally close to each other. The Kr values are more uncertain, showing
that the dominant term is cP0. Finally, the averaged values were applied as they gave
satisfactory results shown in Figures 38–40. In the figures, Jzdr is the left side with inertial
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torque, ’Inertial’ means the pq(Jx − Jy) term and ’Model’ is the output of the postulated
model with average identified parameters. The figures show the negligible value of the
pq(Jx − Jy) inertial term and the good fit of the model both for hover and yaw rotations.
Again, the performance measures (23) were too large to make a proper model selection,
while the qualitative fit can be seen in the figures.

Table 18. Yaw moment parameters.

FT Set Kr cP0

1 Set 1 0.3035 0.2906
Set 2 0.3099 0.2961
Set 3 0.3092 0.2927

2 Set 1 0.4064 0.2733
Set 2 0.356 0.2552
Set 3 0.4403 0.2693

AVERAGE 0.3542 0.2795

Figure 38. Yaw torque model in hover.

Figure 39. Yaw torque model in +180 degs yaw turn.
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Figure 40. Yaw torque model in –180 degs yaw turn.

7. Control System Identification

After identifying the dynamic and aerodynamic parts of the system model, the factory
DJI control loops were identified, considering the possibilities of OSDK control summarized
in Table 1.

As vertical and yaw control can be identified in the position hold model and thus
are relatively independent from the horizontal motion of the drone, they were identified
first. The horizontal control of the drone was only identified after. In most of the cases,
transfer function identification was completed on noisy measured data, so the goal was
only to cover the characteristic dynamics without considering turbulence and noise effects
in the models.

7.1. Vertical Control Identification

The altitude controller structure is postulated and discussed in Section 3.3 in Figure 10.
It was straightforward to generate the vertical speed reference from the altitude error with
a proper gain and saturation. Upon the step change of the altitude reference, there was
a large step change in altitude error, so the maximum saturation of VD (this case 3 m/s)
was immediately activated. Thus, the altitude error to VD reference gain could only be
identified in the sections where the altitude approached the reference, and so the scaled
error decreased below the saturation limit. These sections were cut out from the flight
data, and an LS optimal gain fit was performed, resulting in Kalt = −0.3769 for FT1 and
Kalt = −0.3865 for FT2. The method is illustrated in Figure 41. The difference between the
two gains is about 2.5%, so the average value can be applied:

Kalt = −0.3817

The engine speeds can be generated directly from the VD tracking error, assuming that
the engine dynamics is included in the controller. For the identification of the controller, two
ascend–descend sections were selected from FT1 and two ascend sections were selected
from FT2. Note that while there was hovering between ascend and descend in the first
campaign, there was an immediate transition to descend in the second, as shown in
Figure 42, so in this case, only the ascend dynamics were considered for identification.
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Figure 41. Conversion of altitude error to VD reference on selected sections (highlighted with x and
o symbols).

Figure 42. Flight altitude and the generated reference signal in flight campaigns FT1 and FT2.

Continuous time controller transfer function identification was completed using the
Matlab tfest function with the vertical speed error as input and the average engine speed
(between the six engines) relative to the hover average value as output. The denominator
order was selected by trial and error, and a second-order denominator gave acceptable
results for all flights (1, 2 for the first campaign and 3, 4 for the second):

GVDE1 =
−23.27s − 8.273
s2 + 1.023s + 0

, 55.44%

GVDE2 =
−16.53s − 10.76
s2 + 0.9894s + 0

, 64.2%

GVDE3 =
−21.99s − 13.16
s2 + 1.395s + 0

, 55.05%

GVDE4 =
−7.688s + 0.5073

s2 + 1.523s + 0
, 7.9%
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The parameters were close to each other, and integral controllers resulted as expected;
however, the numerator of GVDE4 was an outlier (more than 30% difference from the
other parameters). This was underlined by the fit measures provided by Matlab compare
function. The measure of GVDE4 was much lower, while the others were close to each other.
GVDE2 gave the best measure, but the first numerator coefficients are closer to each other
in cases of GVDE1, GVDE3 obtained, respectively, from FT1 and FT2. That is why, finally,
an average function was calculated from GVDE1, GVDE2, GVDE3 to balance the disturbance
effects between the different flights.

GVDE =
−20.6s − 10.731

s2 + 1.1358s
=

−9.448(1.9197s + 1)
0.88s2 + s

(29)

A detailed evaluation of the result (test on flight data) led to the decrease of the time
constant from T = 0.88s to T = 0.5s. The fit quality values of the final controllers are
presented in Table 19 giving balanced performance for FT1 but worse and unacceptable
values for FT2. The worst value is about 0%, but Figure 43 shows that the trend of the
function is acceptable. The best fit is presented in Figure 44.

Figure 43. Worst altitude control function fit.

Figure 44. Best altitude control function fit.
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Table 19. Vertical controller fit to flight data.

FLY Set Fit Quality

FT1 1 58.08%
FT1 2 58.13%
FT2 3 43.33%
FT2 4 0.0627%

7.2. Yaw Control Identification

The yaw control model is postulated in Section 3.3 in Figure 11. For this identification,
±180◦ rotations from the first flight campaign (FT1) and the largest rotations from the
second (FT2) were selected. As the latter used a triangular flight pattern, there were no 180◦

rotations. As ±180◦ rotation means opposite orientation, the roll and pitch values required
to maintain hover against the wind swap with each other, which also means a change in
the engine speeds. As on the FT1 flight test, there was high wind speed; this effect was
significant. So in this case, the yaw control engine speed components were calculated by
subtracting a spatially changing engine speed characteristic whose value depend on the
northeast angular positions of the engines. That is why first, the NE angular positions of
the engines (body positions are shown in Figure 8) and their speeds were registered before
(at −38◦ M600 yaw angle) and after (at 142◦ M600 yaw angle) the yaw rotations and plotted
in Figures 45 and 46. The figures show that the average values give a close to sinusoidal
change, so a sinusoidal curve was fitted as Ω0(φ) = 275 − 43 sin(φ + 70◦) where φ is the
engine actual angular position in the NE system. The engine speeds for yaw identification
were calculated relative to this curve. In case of the second flight campaign FT2, the wind
was very low, so no such compensation was required.

Figure 45. Engine speed effect of engine angular position at −38◦ yaw.
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Figure 46. Engine speed effect of engine angular position at 142◦ yaw.

In the next step, the yaw angle step references were estimated (in FT1 and FT2,
UgCS-generated trajectories were used, so the onboard DJI references were not known)
considering the flight yaw angle changes and the start of yaw rate changes. A constant gain
was applied to generate the yaw rate reference from the yaw angle error considering the
yaw rate saturations, which are 0.72 rad/s and −1.605 rad/s for FT1 and +1.92 rad/s and
−1.745 rad/s for the FT2 flight campaign (set by the DJI system independently from the
user). Kψ = 2 was the first result but finally, tuning with yaw control simulation Kψ = 1.5
gave satisfactory results as Figure 47 shows. For unlimited applicability, the yaw angle
error ψre f − ψ should be checked for unrealistic large values upon changes from 180◦ to
−180◦ or vice versa. This is denoted by the ±π in the Kψ gain block in Figure 11.

Figure 47. Yaw rate reference from yaw angle error and flight yaw rate.
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After generating the yaw rate reference from the angle error, the yaw rate error to
engine speed (relative to the hover speeds) transfer functions were identified. Considering
the engine rotational directions in Figure 8, their reaction torques are opposite to the rotation
so RF, RB, LS engines give positive torques and RS, LF, LB give negative torques. That is why
the controller dynamics were identified separately for these two groups (GrE+ and GrE−),
again applying the Matlab tfest function with second-order transfer function denominators.
However, first the delay between the yaw rate error and engine speed output in the
measured data was corrected, being about 0.26s in all flights. Later (see Section 8), detailed
delay analysis was applied, resulting in a separate yaw angle and yaw rate reference delays,
as shown in Figure 11.

The transfer function identification results are shown in Table 20 with averaged
functions for the two +180◦ and −180◦ rotations. Four sets from each flight campaign
were considered.

Table 20. Yaw controller transfer functions.

FLY Set GrE+ GrE−

FT1 1–3 GrE1+ = 76.4(s + 0.43)
s(0.046s + 1) GrE1− = −193.8544(s + 0.1243)

s(0.6932s + 1)

FT1 2–4 GrE2+ = 85.9512
s(0.0964s + 1) GrE2− = −77.4487(s + 0.5384)

s(0.0134s + 1)

FT2 5–7 GrE3+ = 68.43(s − 0.1377)
s(0.11s + 1) GrE3− = −76.8125(s + 0.4649)

s(0.0653s + 1)

FT2 6–8 GrE4+ = X
s(0.0428s + 1) GrE4− = −67.3(s + 0.14)

s(0.226s + 1)

Regarding the GrE+ results, the numerator gains were close to each other except for
the fourth case where the numerator was negative and thus invalid. The gains for the
GrE− case were also similar to the GrE+ case, too. However, the numerator time constants
were very different for GrE+, while for GrE−, the 1 and 4 and the 2 and 3 numerator time
constants were similar. Regarding the denominator time constants, there were slower
(above 0.1 s) and faster (below 0.1 s) values. Finally, after evaluating and tuning on all of
the data sets to obtain the best overall results, the following form was fixed:

GrE =
±97.2(s + 0.3)
s(0.0767s + 1)

(30)

The fit qualities are shown in Table 21. The best result (Set 5/GrE− with 70.45% fit
quality) and worst result (Set 1/GrE− with 24.13% fit quality) are plotted in Figure 48 and
Figure 49, respectively. Considering the amplitudes, the worst result is also acceptable, only
it is delayed at the beginning. Overall, the fit quality is above 40–50% in most of the cases.

Table 21. Data fit of final yaw controller transfer function.

FLY Set GrE+ GrE−
FT1 1 25.16% 24.13%
FT1 2 45.37% 29.25%
FT1 3 42.01% 33.01%
FT1 4 69.72% 51.36%

FT2 5 42.63% 70.45%
FT2 6 52.07% 64.4%
FT2 7 43.78% 62.7%
FT2 8 48.59% 50.13%
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Figure 48. Yaw angle control model output and flight data in the best case.

Figure 49. Yaw angle control model output and flight data in the worst case.

7.3. Horizontal Velocity Control Identification

The horizontal control structure is postulated in Section 3.3 in Figure 9. After saturating
the velocity reference, pitch or roll angle references (depending on tangential or normal
control) should be generated from the velocity error. However, as the wind disturbances
must be compensated with nonzero pitch and roll angles, a PI controller was required
for this task to be able to hover with zero velocity (and so nonzero angles). Integral
control requires AW (θmax = ϕmax = 25◦) to quickly react with the angles for any changes.
However, this introduced a switching nonlinearity into the system, making closed-form
transfer function identification impossible. That is why the PI gains were tuned by trial-
and-error. There was an attempt to identify the pitch (roll) angle error to engine speed
control dynamics subtracting hovering engine speeds, but the results were unsatisfactory
when tested in simulation. So, finally, two-step tuning was performed after building a
longitudinal simulation including altitude and pitch dynamics.
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The postulated angle-tracking controller transfer function was similar to Galt and
Gψ without the integral effect (as the engine speeds generate torque and thus angular
acceleration, the system has integral property):

Gθ =
g(Tds + 1)

Ts + 1
(31)

Note that for pitch control, only the front and back four engines were applied with
negative controller dynamics for the back ones. In roll control, the right engine reactions
were considered negative. First, the g gain (pure P controller) was tuned to have a proper
initial response g = 100, which was satisfactory. Then, the time constant T and derivative
effect Td were tuned to have short settling time (pitch (roll) control is the innermost loop, so
it should be fast) without oscillations, T = 0.01s was satisfactory together with Td = 0.1s,
so the final control transfer function (both for pitch and roll) is:

Gθ(ϕ) =
100(0.1s + 1)

0.01s + 1
(32)

After identifying the pitch (roll) error to engine speed control dynamics, the gains of the
PI AW controller generating the reference angles from the velocity error were determined
applying the longitudinal control model again by trial-and-error to fit flight data with
model outputs. Finally, P = 0.07 and I = 0.03 constant gains were determined with
negative signs in case of tangential control (there, a negative pitch down causes positive
forward velocity).

After finishing the whole system identification, SIL simulation (provided by DJI) and
flight data-based validation and refinement of the model were performed.

8. SIL and Flight Data-Based Verification, Refinement and Special Modes

After identifying the system dynamics and the control loops, the Matlab Simulink
3D simulation model was constructed considering the full 6DoF rigid body motion of
the drone (see Figure 4 in Section 3). After model construction, model validation and
refinement are required, which was completed running the simulation model with the
same OSDK reference inputs as in SIL and real flight and comparing the results. The flight
test part was based completely on the FT3 flight campaign, whose data were not applied
in the identification process, so this provided the validation of the model. Of course,
the model was initialized for the initial flight state. The next sections show the identified
model outputs and discuss the refinements, presenting the finally applied model and its
outputs compared to SIL and flight data. First, the inner and then the outer control loops
were refined.

8.1. Vertical Control

First, the tracking of the vertical velocity reference of the model (SIM in the figures)
was compared to SIL and flight test results applying the controller in (29). The results
are shown in Figures 50 and 51. The figures show that the model was too slow with
large overshoot, and there was a delay in both SIL and flight tracking, which was not
present in the simulation model. Thus, the gain of the controller was increased, and the
numerator time constant decreased as (33) shows. Additionally, a 0.07s delay was applied
at the VDre f reference, as shown in Figure 10. The improved tracking results are shown
in Figures 52 and 53. The figures show that the tracking became very similar to SIL and
flight results, though not all of the delay was modeled at the beginning of the reference.
However, at the other transients, the delay difference is smaller.

GVDE =
−18(2s + 1)

0.1s2 + s
(33)
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Figure 50. Comparison of vertical velocity tracking results.

Figure 51. Zoomed start of vertical velocity tracking.

Figure 52. Comparison of vertical velocity tracking results with improved controller.
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Figure 53. Zoomed start of vertical velocity tracking with improved controller.

After fine tuning the vertical velocity tracking control, the altitude tracking was tested
again by comparison to SIL and flight results (see Figures 54 and 55). The figures show that
both altitude and vertical velocity dynamics are very similar to SIL and flight, so there is
no need to change the Kalt gain and the method of vertical velocity reference generation or
the controller.

Figure 54. Comparison of altitude tracking results.

Figure 55. Vertical velocity tracking in altitude tracking control.
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8.2. Yaw Control

In case of yaw control, first, the yaw rate tracking was evaluated and fine tuned.
Unfortunately, the yaw rate was only saved onboard the drone, and this log file was
damaged during the SIL test, so only the comparison to flight test results was possible.

Figure 56 shows the yaw rate tracking with controller from (30) and zero reference
delay. The figure shows that the model was slow and did not converge fast enough in case
of larger yaw rate reference. Thus, the controller time constant was decreased, and the gain
increased, resulting in (34). Also, 0.02 s delay was added to the yaw rate reference based on
detailed evaluation of the data. The improved yaw rate tracking is shown in Figure 57 with
fast increase and settling.

GrE =
200(s + 0.3)

0.06s2 + s
(34)

After tuning the yaw rate inner loop, the yaw angle tracking control was evaluated
first, with a Kψ = 1.5 yaw angle error to yaw rate gain. Figure 58 shows that the tracking
was slow and did not have any overshoot. So finally, Kψ = 2.5 was applied, reproducing the
fast dynamics but without overshoot (note that the first identified parameter was Kψ = 2
closer to the final value; see Section 7.2). With larger Kψ, part of the overshoots could be
reproduced but with too fast dynamics. Thus, finally, the dynamics similar to SIL and flight
was preserved, sacrificing the overshoot. The tracking results of the final control are shown
in Figure 59 together with the yaw rate dynamics in Figure 60. The latter shows a faster
increase in yaw rate and the lack of overshoot.

Figure 56. Yaw rate tracking.

Figure 57. Yaw rate tracking with improved controller.
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Figure 58. Yaw angle tracking.

Figure 59. Yaw angle tracking with improved controller.

Figure 60. Yaw rate in yaw angle tracking with improved controller.

8.3. Horizontal Control

First, the roll and pitch angle tracking control was verified, and the handling of the
special mode discussed in Section 4.1.2 was solved. The final tracking results are presented
in Figures 61 and 62. The normal tracking of the angle references worked well with the
identified model (see (32)), giving even slightly better results than the SIL simulation
(compared to the flight response). Only 0.07 s delay was added to the angle references.
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The special mode includes switching from angle reference tracking to zero velocity reference
tracking, and also the increase in velocity tracking gain was observed, meaning that a
braking mode is activated in this case. The figures show that even this braking mode
behavior is well described by the model having outputs close to the SIL results.

Zero velocity tracking is switched in the model when the OSDK control is switched
to angle tracking mode and both roll and pitch references are zero. The activation of the
braking mode is more complex, following the rules below:

• If Vre f = 0 and |V| > 1 (consequently |∆V| > 1) and the controller is in normal
velocity tracking mode: switch braking mode meaning upscale of the P gain P′ = 1.8P
and zeroing out the integral state of the PI controller.

• If |∆V| < 1 and controller is in braking mode: switch back to normal tracking mode
by applying the P gain again (integral state remains unchanged)

So, the braking mode is activated when the commanded velocity is zero, the velocity
tracking error is large and even the velocity itself is large. Note that this is why the ∆V
velocity tracking error is an input of the velocity tracking PI controllers (see Figure 9).

Figure 61. Roll angle tracking.

Figure 62. Pitch angle tracking.

After validating the roll and pitch angle control and its special mode, tangential and
normal velocity tracking control were evaluated. The results are shown in Figures 63–66.
Figures 63 and 64 show that the velocity tracking is pretty good with the original identified
P = 0.07 and I = 0.03 parameters; even the overshoots are reproduced well. The only
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difference is the earlier settling of the model to nonzero values and a later settling to zero
values, but both are acceptable.

Figures 65 and 66 show that the roll and pitch angles are also reproduced well by the
model being closer to the flight data than to SIL results. Note that the flight data are shifted
due to the roll and pitch compensation of wind disturbances. Shifting its theoretically zero
sections back to zero, the nonzero sections approach the model output.

Figure 63. Tangential velocity tracking.

Figure 64. Normal velocity tracking.
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Figure 65. Pitch angle tracking during tangential velocity tracking.

Figure 66. Roll angle tracking during normal velocity tracking.

8.3.1. Position Kick Control Identification

The position kick control is a special mode as discussed in Section 4.1.1. Flight and
SIL testing showed that for a position kick reference, the drone accelerates to some velocity
(as tracking a half-doublet speed reference) and then stops; for a step position reference,
the drone keeps a constant velocity. The questions were the length and value of the
half-doublet velocity reference and the value of the constant velocity reference.

Analysis of different position kick tracking maneuvers showed that the value of the
half-doublet velocity reference is the value of the position kick signal. Its length was
identified through a series of inverse model calculations applying SIL simulation data,
as it is not affected by wind disturbance, and its validity for this maneuver was verified in
Section 4.1.1 as Figure 15 shows. First, the transfer functions from pitch and roll references
(8 − 9◦ to avoid any saturation in the system) to pitch and roll angles were identified (with
Matlab tfest function) giving two similar functions with 97.02% and 97.15% fit quality:
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Gθre f θ =
104.8

s2 + 13.87s + 121.1
, Gϕre f ϕ =

103.4
s2 + 14.6s + 119.3

The two functions and their fit quality were very close to each other, so their average was
considered as

G =
104.1

s2 + 14.235s + 120.2

As the inner references of the DJI controller could not be logged, the inverse of this
transfer function was applied to estimate the pitch and roll references in position kick flight
from the pitch and roll angle outputs. As the transfer function was stable, its inverse could
be calculated giving an improper function, but its execution in discrete time was feasible.

After estimating the pitch and roll references, they were smoothed, and the inverse of
the PI controller (generating angle references from velocity error) was applied to estimate
the velocity references generated by the position kick control. The length of the half-doublet
velocity reference was estimated based on this signal and resulted as 0.65s. Plots of the
main steps are shown in Figures 67 and 68.

Figure 67. Pitch reference identification from tangential position kick maneuver.

Figure 68. Model behavior in tangential position kick maneuver.

Figure 67 shows the raw and smoothed estimated pitch reference and the transfer
function output driven by the smoothed reference compared to the SIL simulation output.
The model pitch output is very close to the SIL one. Figure 68 shows the estimated velocity
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reference and the generated one based on the width of the estimated signal covering only
the first half-doublet wave. The second half is not required to generate a behavior similar
to the real system. The pitch references and dynamics are also plotted comparing the
smoothed estimated reference to the one generated from the velocity reference and the SIL
and model outputs. Comparison of the outputs shows that qualitatively they are similar,
but the values are different from each other.

Refinement and final validation of this model was performed on the full 3D simulation
of M600, resulting in 0.75s width of the velocity reference, giving better results in velocity
and position responses. Figure 69 shows the position transients after a tangential kick
command. The figure shows that the maximum value of the position move is about the
same as in SIL, but the model moves back after reaching the maximum distance. This is
caused by a transient of the velocity shown in Figure 70 and could not be removed from
the model. The figure also shows that the maximum velocities are about the same as in SIL.
The width of the velocity reference was increased to achieve this state. Finally, Figure 71
shows the pitch angle reference and transients having similar peak values and dynamics.
As this position kick mode is not the most practical and important one, model refinement
was finished at this stage.

Figure 69. Position transients in tangential position kick maneuver.

Figure 70. Velocity transients in tangential position kick maneuver.
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Figure 71. Pitch angle tracking in tangential position kick maneuver.

Regarding the application of step position reference (Pre f ) instead of the position kick
command SIL and flight data analysis showed that for smaller position references, half of
them were set as reference velocity, but for larger references, the velocity was limited to
3 m/s, so finally the reference velocity model was:

Vre f = sign
(

Pre f

)
min

(
|Pre f |

2
, 3

)
both in tangential and normal direction.

8.3.2. Control in Northeast Directions

In Table 1, the HORIZONTAL_GROUND option means that the horizontal position,
velocity or angle references should be implemented along north and east earth coordinate
system axes. Although the system identification was performed with the HORIZON-
TAL_BODY option, this mode was also implemented in the model to extend applicability.
For position and velocity references, simply the inverse of the transformation in (1) was
applied. The pitch and roll angle references are now understood around the east (αE) and
north (αN) axes, so the transformation matrix from a rotated body to the NED system
should be constructed (based on ψ, αE, αN) and the body referenced Euler angles (which
drive the controllers in the model) obtained from it. The rotation steps are as follows.
Rotation from body to NED:

Tψ =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (35)

Rotation around the north axis (ground ‘roll’ rotation):

TN =

1 0 0
0 cos(αN) −sin(αN)
0 sin(αN) cos(αN)

 (36)

Rotation around the east axis (ground ‘pitch’ rotation):

TE =

 cos(αE) 0 sin(αE)
0 1 0

−sin(αE) 0 cos(αE)

 (37)

The final rotation from the transformed body to NED system results as:
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TEB = TETNTψ (38)

The body referenced Euler angles can be obtained from this and applied in the
tangential-normal control setup. After identification, verification and refinement of the
dynamics and control loops the conclusion can be drawn.

9. Conclusions

This paper presents the high-fidelity simulation model identification of a DJI M600
Pro hexacopter, including not only system but also controller dynamics, focusing on
the OSDK (Onboard Software Development Kit) control modes and presenting even the
special cases. Such a model is required in research and development projects aiming to
design custom mission controllers for this drone, which is widely used by universities and
research institutes.

Real flight and software-in-the-loop (SIL) test data were applied to identify the model
also validating the SIL simulation provided by DJI. First, the hardware and control software
structure of the drone was introduced. Then, the planned structure of the high-fidelity
simulation model was presented. After introducing the three flight test campaigns and
the discovered special modes first, the mass and inertial properties were measured and
calculated with both battery setups (TB47S and TB48S) and a custom Forerunner UAV
payload. Then, the system dynamics (including dynamic and aerodynamic effects) was
identified, including horizontal forces and wind disturbances, hover and vertical forces
and finally, horizontal and yaw torque dynamics based on real flight data.

After identification of the dynamics, the control loops following the structure of OSDK
control possibilities were identified, including also engine dynamics. Vertical, yaw and
horizontal control were considered. Before publishing the model, unused flight and SIL
data-based verification and refinement was completed for vertical, horizontal and yaw
control considering all OSDK control modes except for the horizontal angular rate and
vertical thrust, which are the innermost control levels not required for mission planning
and control and being dangerous when directly excited by a custom controller. Finally,
position kick control (special implementation of horizontal position control by DJI) and the
consideration of horizontal references in a northeast (Earth) coordinate system instead of
the multicopter body were presented. The refinement and validation was successful; the
model covers well all OSDK control modes—even the special ones.

The paper ends with an overview of the resulting high-fidelity simulation and control
model implemented in Matlab Simulink as a Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/aerospace11010079/s1.
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