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Abstract: Busemann’s supersonic biplane airfoil can reduce wave drag through shock interactions at
its designed freestream Mach number. However, a choking phenomenon occurs with a decrease in the
freestream Mach number, and the drag coefficient increases significantly, resulting in an aerodynamic
problem with a discontinuous change in the performance function. In this study, an uncertainty
analysis method, the divided inexpensive Monte Carlo simulation (IMCS), is proposed to solve
discontinuous problems efficiently and is applied to Busemann’s biplane airfoil. In the divided
IMCS, the discontinuity point is determined using a simple sampling method. The uncertainty input
space is divided at the detected discontinuity point, and a surrogate model is constructed for each
space. Uncertainty analysis was performed using the constructed surrogate models, and the results
of the divided IMCS showed qualitative agreement with those of the conventional Monte Carlo
simulation, which is the most straightforward uncertainty analysis method. Moreover, the divided
IMCS significantly reduced the computational cost of the uncertainty analysis. A robust design
optimization of the supersonic biplane airfoil was performed using the divided IMCS, yielding more
robust designs than Busemann’s biplane airfoil. The usefulness of the divided IMCS for uncertainty
analysis of discontinuous problems was confirmed.

Keywords: supersonic biplane airfoil; robust design optimization; uncertainty analysis; CFD

1. Introduction

Several institutions and companies worldwide are engaged in the development of
the next-generation supersonic transport (SST). Lockheed Martin X-59 Quiet Supersonic
Technology is an SST model that aims to achieve low-boom flight. Boom Technology’s Boom
Overture is also being developed to achieve low-drag and low-boom SST. Busemann’s
supersonic biplane airfoil configuration is well known [1–8]. It comprises two triangle
airfoils and can reduce wave drag by shock interactions at the design’s freestream Mach
number (in this study, M∞ = 1.7). However, a choking phenomenon occurs with a decrease
in the freestream Mach number (for example, M∞ = 1.6), and the drag coefficient (Cd)
increases significantly, which results in an aerodynamic problem with a discontinuous
change in the performance function (referred to as a discontinuous problem in this paper).
Figure 1 shows pressure visualizations at M∞ = 1.6 and 1.7. This discontinuity makes
it difficult to accurately estimate the uncertainties in the aerodynamic performance with
respect to uncertain inputs.

Considerable attention has been paid to uncertainty analysis [4,5,7–16], particularly
in the field of computational fluid dynamics (CFD). Conventional numerical analyses
deterministically evaluate performance with respect to defined input conditions. How-
ever, several sources include uncertainties in the input conditions, such as manufacturing
tolerances and fluctuations in the operating conditions. Therefore, it is important to per-
form an uncertainty analysis to evaluate the mean, standard deviation, and probability
density function (PDF) of the output functions with respect to uncertain inputs. Robust
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design optimization (RDO) can be performed by applying uncertainty analysis to design
optimization [4,7,10,11,17–23]. Several studies have been conducted on RDO. Pisaroni et al.
presented a novel approach for the robust optimization of aerodynamic shapes based on
a combination of single- and multi-objective evolutionary algorithms and a continuation
multilevel Monte Carlo methodology [20]. Zhao et al. provided a comprehensive review
of robust aerodynamic design optimization methodologies, including uncertainty model-
ing, uncertainty quantification, and robust optimization [22]. Schaefer et al. presented a
gradient-enhanced robust design strategy using spatially accurate polynomial chaos that
was applied to the NASA X-59 QueSST aircraft to increase the robustness of its sonic boom
performance [23].
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(L/D) than those of Busemann’s biplane airfoil. However, the DDF is not a highly accurate 
method for discontinuous problems because the discontinuous change in the performance 
function of Busemann’s biplane airfoil cannot be captured. In [8], Kawai et al. proposed 
edge detection-based multielement polynomial chaos expansion (EDME-PCE), in which 
the uncertain space is adaptively decomposed by edge detection [24,25]. EDME-PCE can 
capture the discontinuity of the choking phenomenon; therefore, it is effective for the dis-
continuous problem of Busemann’s biplane airfoil. However, its computational cost is ap-
proximately 14-times higher than that of deterministic CFD analysis, and it is expensive 
to apply to RDO. In [26], Liem et al. proposed several methods to improve the accuracy of 
surrogate models for aerodynamic performance prediction (but not for Busemann’s bi-
plane airfoil). The mixture-of-experts approach divides the input space into subspaces to 
build local surrogate models. In [27], Bettebghor et al. developed a surrogate modeling 
approximation approach using a mixture of experts for discontinuous problems. The sur-
rogate models constructed using this approach were able to express discontinuities well; 
however, this approach required several high-fidelity computations to construct the sur-
rogate models, which resulted in high computational costs. 

Figure 1. Pressure visualizations around Busemann’s biplane airfoil. (a) M∞ = 1.6; (b) M∞ = 1.7.

The uncertainty analysis of Busemann’s biplane airfoil was also investigated. Tabata
et al. optimized the 2D cross-sectional shape of Busemann’s biplane airfoil by applying
the uncertainty analysis method of a divided difference filter (DDF) [7]. Optimal designs
were obtained with a higher mean and smaller standard deviation of the lift-to-drag ratio
(L/D) than those of Busemann’s biplane airfoil. However, the DDF is not a highly accurate
method for discontinuous problems because the discontinuous change in the performance
function of Busemann’s biplane airfoil cannot be captured. In [8], Kawai et al. proposed
edge detection-based multielement polynomial chaos expansion (EDME-PCE), in which
the uncertain space is adaptively decomposed by edge detection [24,25]. EDME-PCE can
capture the discontinuity of the choking phenomenon; therefore, it is effective for the
discontinuous problem of Busemann’s biplane airfoil. However, its computational cost is
approximately 14-times higher than that of deterministic CFD analysis, and it is expensive
to apply to RDO. In [26], Liem et al. proposed several methods to improve the accuracy
of surrogate models for aerodynamic performance prediction (but not for Busemann’s
biplane airfoil). The mixture-of-experts approach divides the input space into subspaces to
build local surrogate models. In [27], Bettebghor et al. developed a surrogate modeling
approximation approach using a mixture of experts for discontinuous problems. The
surrogate models constructed using this approach were able to express discontinuities
well; however, this approach required several high-fidelity computations to construct the
surrogate models, which resulted in high computational costs.

This research aims to develop a highly accurate uncertainty analysis method with a
low computational cost for discontinuous problems. The choking phenomenon of Buse-
mann’s supersonic biplane airfoil was investigated as a discontinuous problem. For a
highly accurate uncertainty analysis of discontinuous problems, detecting the discontinuity
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position with high accuracy is necessary. In this study, an uncertainty analysis method,
divided inexpensive Monte Carlo simulation (IMCS), is proposed for efficiently solving
the discontinuous problem. In the divided IMCS, the discontinuity position is detected
using a simple sampling method, and the uncertainty input space is divided at the detected
discontinuity position. The proposed sampling method for detecting the discontinuity
position has the advantage of being applicable not only to Busemann’s biplane airfoil
problem but also to other discontinuous problems, such as other SSTs or other engineering
fields. Another advantage of the proposed sampling method is that uncertainty analysis
of discontinuous problems can be performed at low computational cost. To confirm the
usefulness of the proposed method, a one-dimensional uncertainty analysis problem of
Busemann’s biplane airfoil was considered. The input uncertainty is included in M∞ as a
normal distribution. The results of the divided IMCS were compared with those of MCS,
DDF, and IMCS. RDO of the 2D cross-sectional shape of the supersonic biplane airfoil was
performed using the divided IMCS to obtain more robust airfoil shapes.

The remainder of this paper is organized as follows. In Section 2, the uncertainty
analysis methods, including the proposed method, are described. The numerical schemes
are described in Section 3. In Section 4, the proposed method is compared with other
uncertainty analysis methods, and the characteristics and advantages of the proposed
method are described. Section 5 presents the results of applying the proposed method
to RDO. Finally, Section 6 presents the conclusions of this study. To demonstrate its
extensibility to practical problems with multiple input uncertainties, Appendix A presents
an example of applying the proposed method to a two-dimensional uncertainty analysis
problem.

2. Uncertainty Analysis Methods
2.1. MCS (Monte Carlo Simulation)

The most straightforward approach for evaluating uncertainty is MCS; however, the
number of samples required for statistical calculations is large, which results in a high
computational cost. In the MCS, the mean value µ of a function f with respect to uncertain
input variables

→
r is calculated by the following equation:

µ
(

f→
r

)
=

∫
· · ·

∫ (
f
(
→
r )

φ
(
→
r )

)
dr1 · · · drn (1)

where n is the number of uncertain inputs, and all uncertain inputs are assumed to be
independent. Equation (1) shows the general equation of the MCS; however, in this study,
only one uncertain input was considered. φ is the PDF of

→
r . When samples

→
r i are generated

based on the distribution of φ, the mean µ and standard deviation σ of f are predicted
using the following equations:

µ
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where N is the number of samples for the MCS. A Latin hypercube sampling (LHS) method
is utilized for generating the samples in this study.

2.2. DDF (Divided Difference Filter)

In DDF, µ and σ of f are predicted as follows [7,9–11]

µ
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where n is the number of uncertain inputs, and all uncertain inputs are assumed to be
independent. Equations (4) and (5) show the general equations of the DDF; however,
in this study, only one uncertain input was considered.

→
r 0 = (µr1 , · · · , µri , · · · , µrn)

and
→
r i± = (µr1 , · · · , µri ± ∆ri, · · · , µrn) are referred to as sigma points. The weight

coefficients G0, Gi, and ∆ri are defined by the following equations:

G0 = 1 −
n

∑
i=1

1
Kri

(6)

Gi =
1

2Kri

(7)

∆ri = σri

√
Kri (8)

where Kri and σri are, respectively, the kurtosis and standard deviation of the i-th uncertain
input variable. The PDF of the i-th uncertain input variable determines Kri . For normal
distributions, Kri is set to 3. The PDF of f cannot be evaluated. The computational cost of
DDF is significantly lower than that of MCS, because the number of evaluated samples is
only 2n + 1.

2.3. IMCS (Inexpensive Monte Carlo Simulation)

IMCS replaces a large number of exact evaluations of MCS with functional estimations
on a surrogate model. Therefore, IMCS can reduce the computational cost of uncertainty
analysis [12–16]. Because the accuracy of IMCS depends on the accuracy of the surrogate
model, it tends to be less accurate for discontinuous problems. In this study, a surrogate
model was constructed using ordinary Kriging (OK).

2.4. Divided IMCS

The divided IMCS was proposed to solve the uncertainty analysis of discontinuous
problems efficiently. In this study, to confirm the usefulness of the proposed method for the
discontinuous problem, a one-dimensional uncertainty analysis problem for Busemann’s
biplane airfoil was investigated. The one-dimensional uncertainty analysis problem can be
explained as follows. Figure 2 shows a flowchart of the divided IMCS. In the divided IMCS,
the discontinuity point is detected using a simple sampling method, and the uncertainty
input space is divided at the detected discontinuity point. The simple sampling method
for detecting discontinuity points has the advantage of being easily applicable, not only
to Busemann’s biplane airfoil problem but also to other discontinuous problems. In the
sampling method, two initial samples selected at both ends of the uncertainty input space
were first evaluated. In this study, the freestream Mach number M∞ is the uncertain
input. The difference in the performance function (Cd) of the two samples is calculated,
and if the difference is higher than a threshold value ∆Cd (in this study, ∆Cd = 0.05), a
discontinuity exists between the two samples. Figure 3 shows an example of adding
samples to detect the discontinuity point. An additional sample was defined at the center
of the two samples and evaluated. The discontinuity range is defined as the distance
between the two samples in which a discontinuity exists. Additional samples are iteratively
generated until the discontinuity range becomes smaller than a threshold value ασ, where
α is a user-defined coefficient, and σ is the standard deviation of the uncertain input. When
the iterative calculation is completed, the center of the discontinuity range is set as the
final discontinuity point. The uncertainty input space was divided into two clusters at
the discontinuity point. If a cluster does not have three samples, additional samples are
selected at outward locations of the initial sample (at intervals of ασ). Additional samples
are evaluated until each cluster contains three samples. A surrogate model of OK is
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constructed in each divided uncertainty input space. Then, each sample point for the IMCS
is evaluated using the surrogate model constructed for the region to which the sample
point for the IMCS belongs. In this study, OK was utilized as a standard surrogate model;
however, arbitrary surrogate models can be adopted based on the needs or preferences of
users. The samples evaluated for the detection of the discontinuity point were also used to
construct surrogate models; therefore, the proposed method has the potential to reduce
computational cost.
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3. Numerical Schemes

Figure 4 shows the Busemann’s biplane airfoil configuration. The thickness ratio
of the upper and lower airfoils was 0.05, and the distance ratio between the upper and
lower airfoils was 0.5. The angle of attack was set to 2.0 degrees. The 2D compressible
Euler equations were solved using a gridless method [28,29]. Computational points were
distributed referring to the Mach angle calculated from the condition of M∞. Therefore, the
distribution of the computational points was changed with the variation in M∞ , as shown
in Figure 5. Approximately 16,000 computational points were used in the study. In [6], the
design optimization of a supersonic biplane airfoil was discussed, and a convergence study
for the computational point resolution was performed. The resolution of the computational
points in this study was selected by considering the computational load. The numerical
flux at the intermediate position of the two computational points was calculated using
Roe’s approximate Riemann solver, which has second-order spatial accuracy. Temporal
discretization was performed using a four-stage Runge–Kutta scheme.
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4. Comparison of Uncertainty Analysis Methods

In this section, the proposed divided IMCS is compared with the MCS, DDF, and
IMCS. The input uncertainty is provided on M∞ as a normal distribution. The mean µ of
M∞ is set to 1.70, and the standard deviation σ is set to 0.05. Therefore, the sigma points
for the DDF are defined at M∞ of 1.613, 1.70, and 1.787 from Equation (8). In the divided
IMCS, three cases are investigated with the user-defined coefficient α of 0.1, 0.5, and 1.0.
The two initial samples for the divided IMCS are defined at M∞ of 1.55 and 1.85, which
means µ ± 3σ of M∞. In the conventional IMCS, a surrogate model is constructed over the
uncertainty input space using the sample points obtained in the divided IMCS (α = 1.0).
IMCS was performed using 1000 samples for both the conventional IMCS and divided
IMCS. For comparison, MCS was also performed using 1000 samples.

Figure 6 shows the surrogate models of Cd and L/D obtained by the conventional IMCS
and divided IMCS (α = 0.1, 0.5, and 1.0). The exact response and PDF of the uncertain input
M∞ are also shown in Figure 6. The surrogate model of the conventional IMCS showed
an oscillatory response and did not show qualitative agreement with the exact response.
By contrast, the surrogate models of the divided IMCS show qualitative agreement with
the exact response and can successfully capture the discontinuous behavior. It can be
confirmed that the accuracy of the surrogate model is improved by appropriately dividing
the uncertainty input space. Table 1 shows a comparison of the mean and standard
deviation of Cd and L/D, as well as the computational cost. The computational cost was
defined by considering the cost of one deterministic CFD analysis as a unit. Computational
costs other than those for CFD analyses (for example, construction of surrogate models)
were not considered because such computational costs are significantly lower than those
of CFD analyses. The numbers of samples for the divided IMCS at α = 0.1, 0.5, and
1.0 are, respectively, eight, seven, and six. Although the statistics provided by the DDF
include the influence of the choking phenomenon as the choking phenomenon occurs
at the sigma point at M∞ = 1.613, the accuracy of the statistics is lower than that of the
divided IMCS. The statistics provided by the conventional IMCS did not show qualitative
agreement with those of the MCS because of the oscillatory response of the surrogate
models. The statistics provided by the divided IMCS show qualitative agreement with those
of MCS, demonstrating the effectiveness of the divided IMCS detecting the discontinuity
point. The divided IMCS algorithm estimates the discontinuity point as the center of two
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samples between which a discontinuity exists. Therefore, the estimated discontinuity point
includes a maximum error of ασ/2, which is one of the limitations of the divided IMCS.
Smaller values of α mean that more samples are required, and the computational cost
increases. However, the discontinuity point is detected more accurately. There is a trade-off
relationship between the computational cost and accuracy of uncertainty analysis, and
users can define the coefficient α depending on whether low computational cost or high
accuracy is more important. Cases with smaller values of α show better agreement with
the MCS. Even in the case of the largest α (α = 1.0), significantly better results than those
with the conventional IMCS are obtained. Therefore, the user-defined coefficient α = 1.0 is
utilized for RDO in the next section. The computational cost of the MCS was 1000, whereas
that of the divided IMCS was 6–8. Therefore, the divided IMCS was 125-times more efficient
than the MCS. It was confirmed that the divided IMCS is useful for uncertainty analysis
problems including discontinuous functional variations.
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Table 1. Comparison of mean and standard deviation (std) of Cd, L/D, and computational cost.

Method
Cd L/D Computational

Cost 1Mean Std Mean Std

MCS 1.46 × 10−2 0% 2.45 × 10−2 0% 15.3 0% 4.52 0% 1000
DDF 2.10 × 10−2 44% 3.22 × 10−2 31% 14.4 −6% 5.89 30% 3
IMCS 3.09 × 10−2 112% 2.98 × 10−2 22% 12.4 −19% 5.18 15% 6

divided IMCS (α = 0.1) 1.45 × 10−2 −1% 2.44 × 10−2 0% 15.3 0% 4.48 −1% 8
divided IMCS (α = 0.5) 1.55 × 10−2 6% 2.50 × 10−2 2% 15.1 −1% 4.56 1% 7
divided IMCS (α = 1.0) 1.79 × 10−2 22% 2.89 × 10−2 18% 14.1 −8% 5.00 11% 6

1 Cost of one deterministic CFD analysis is considered as the unit.
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5. Robust Design Optimization (RDO) Problem
5.1. Definition of the Optimization Problem

The 2D cross-sectional shape of Busemann’s biplane airfoil was optimized using the
uncertainty analysis method of the divided IMCS to confirm its usefulness in RDO. The
input uncertainty is provided on M∞ as a normal distribution. The mean and standard
deviation of the uncertain input M∞ are set to 1.7 and 0.05, respectively. From Section 4,
it is confirmed that cases with smaller values of α show better agreement with the MCS.
Even in the case of the largest α (α = 1.0), significantly better results than that of the
conventional IMCS were obtained. Therefore, the user-defined coefficient α was set to
1.0 for the RDO. The other parameter settings were the same as those described in the
previous section. Because the objective of optimization is to design high-performance airfoil
shapes with high robustness, the optimization problem was set to maximize the mean of
L/D and minimize the standard deviation of L/D, as shown in Equation (9), to discuss
the trade-off relationship. The geometrical constraints were also defined in Equation (9)
and given for the total cross-sectional area and cross-sectional area of the upper airfoil
to prevent the design of very thin airfoils. In Equation (9), STnew, STorig, SUnew, and SUorig,
respectively, indicate the total sectional area of a newly designed airfoil, total sectional
area of Busemann’s biplane airfoil, sectional area of a newly designed upper airfoil, and
sectional area of the upper airfoil of Busemann’s biplane. Since it is known from Licher’s
biplane airfoil configuration that the thickness of the upper airfoil tends to be reduced to
improve aerodynamic performance [30], the cross-sectional area of the upper airfoil was
set to be larger than half of SUorig.

Figure 7 shows a flowchart of the RDO. For RDO, the Kriging response surface
approach [31–33] and genetic algorithm (GA) were utilized. We used an in-house real-
coded multi-objective GA developed by referring to [34,35]. First, uncertainty analyses
for the 30 initial samples were performed using the divided IMCS. Among the 30 initial
samples, 1 was the original Busemann’s biplane airfoil, and the other 29 were generated
using the LHS method. In the design variables space, surrogate models for µ of L/D, σ of
L/D, total cross-sectional area, and cross-sectional area of the upper airfoil were constructed
by OK. The GA was utilized to search for global optimal solutions in the surrogate models.
Additional samples were searched using expected improvement (EI) [36] and expected
hypervolume improvement (EHVI) [37]. The surrogate models were updated using the
results of the uncertainty analyses of the additional samples. This process was repeated
until the total number of samples reached 200. The airfoil shapes were represented by
Bezier curves using 13 control points and 15 design variables. Figure 8 shows an example
of a deformed airfoil and the range of each design variable.

Robust Design Optimization


maximize µL/D
minimize σL/D

subject to
STnew ≥ STorig

SUnew ≥
SUorig

2

(9)

Deterministic Design Optimization


maximize L/D

subject to
STnew ≥ STorig

SUnew ≥
SUorig

2

(10)
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5.2. Results and Discussion

Figure 9 shows the performance of all samples obtained in the RDO. In Figure 9, two
types of additional samples are shown: one for samples in which the choking phenomenon
occurs and discontinuity exists (Figure 2, route A), and the other for samples in which the
choking phenomenon does not occur and discontinuity does not exist (Figure 2, route B).
The results for samples with the choking phenomenon showed that the standard deviation
of L/D was larger than that for samples without the choking phenomenon. This was
because the choking phenomenon caused a massive increase in Cd (that is, a massive
decrease in L/D), which increased the standard deviation. There were several samples with
better µ and σ of L/D than those of the original Busemann’s biplane airfoil. This indicates
that the designs explored using RDO are more robust than the original Busemann’s biplane
airfoil.
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From the results of the RDO, five characteristic optimal designs were selected and
referred to as designs A–E. Design A has the smallest σ of L/D, and design E has the largest
µ of L/D. Designs B, C, and D exhibited intermediate performances between designs A
and E. Figure 10 shows the surrogate models of L/D obtained by the divided IMCS. In the
optimal designs A, B, and C, the choking phenomenon was not detected. In the divided
IMCS, the choking phenomenon is detected from the two initial samples defined at M∞ of
1.55 and 1.85. Therefore, the choking phenomenon is not detected when it occurs in the
range of M∞ < 1.55. The choking phenomenon occurred at M∞ = 1.634 with Busemann’s
biplane airfoil, and at M∞ = 1.569 with the optimal designs D and E. Designs D and E
have the same discontinuity point, because the divided IMCS algorithm estimates the
discontinuity point as the center of the two samples between which a discontinuity exists.
The limitation of the divided IMCS is that the estimated discontinuity point includes a
maximum error of ασ/2. In designs D and E, the discontinuity point is located at a lower
M∞ where the PDF of M∞ is sufficiently small so that the negative impact of the choking
phenomenon on the robustness is also sufficiently small. Figure 11 shows the PDFs of L/D
obtained using the divided IMCS. It can be confirmed that the PDF distributions shift to
higher L/D from designs A to E. In the PDF of Busemann’s biplane airfoil, a peak attributed
to the choking phenomenon can be observed in the area of L/D < 5. With respect to the
representative designs A–E, the peak attributed to the choking phenomenon cannot be
observed or is negligibly small. For comparison, deterministic design optimization was
also performed, as defined in Equation (10). In this optimization, M∞ was set to 1.7, and the
fluctuation in M∞ was not considered. The objective of deterministic design optimization
was to maximize L/D. The geometrical constraints and design variables of the airfoil shapes
were identical to those of the RDO. The optimal design obtained by deterministic design
optimization is called the deterministic optimal. The exact off-design performance of the
optimal designs is investigated by additional CFD evaluations with intervals of 0.01 in
M∞, and the results are shown in Figure 12. The choking phenomenon occurred with the
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designs A, B, and C in the region of M∞ < 1.55. The discontinuity points of each optimal
design moved towards larger M∞ from designs A to E, and the deterministic optimal
design had the right-most discontinuity point. The value of L/D at M∞ of 1.7 also increased
from designs A to E, and the deterministic optimal design had the largest L/D at M∞ of
1.7. The deterministic optimal had the highest L/D at the mean condition of uncertain
input (M∞ = 1.7), while it had the poorest performance considering robustness. Additional
IMCSs (referred to as IMCS’) were performed using the results of Figure 12, in which the
surrogate models were defined by the linear interpolation of the CFD results shown in
Figure 12. Table 2 summarizes the mean and standard deviation values of L/D obtained
by divided IMCS, MCS, and IMCS’. In Figure 9b, the results of the MCS are indicated for
Busemann’s biplane airfoil, and the results of the IMCS’ are indicated for representative
designs. Table 2 and Figure 9b indicate that the results of the optimal designs obtained
by the divided IMCS agree well with the results of the IMCS’, regardless of whether the
choking phenomenon is captured. The divided IMCS achieved reasonable uncertainty
analysis, with a lower computational cost of 3–7 compared with the computational cost
of 41–46 for IMCS’. The deterministic optimal had a high mean value of L/D and a large
standard deviation value of L/D. Therefore, in deterministic design optimization, the
highest performance can be realized under the design conditions; however, the robustness
is low. By contrast, it can be confirmed that airfoils with high robust performance can be
designed inexpensively by the RDO using the divided IMCS.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 21 
 

 

the designs A, B, and C in the region of M∞ < 1.55. The discontinuity points of each optimal 
design moved towards larger M∞ from designs A to E, and the deterministic optimal de-
sign had the right-most discontinuity point. The value of L/D at M∞ of 1.7 also increased 
from designs A to E, and the deterministic optimal design had the largest L/D at M∞ of 1.7. 
The deterministic optimal had the highest L/D at the mean condition of uncertain input 
(M∞ = 1.7), while it had the poorest performance considering robustness. Additional 
IMCSs (referred to as IMCS’) were performed using the results of Figure 12, in which the 
surrogate models were defined by the linear interpolation of the CFD results shown in 
Figure 12. Table 2 summarizes the mean and standard deviation values of L/D obtained 
by divided IMCS, MCS, and IMCS’. In Figure 9b, the results of the MCS are indicated for 
Busemann’s biplane airfoil, and the results of the IMCS’ are indicated for representative 
designs. Table 2 and Figure 9b indicate that the results of the optimal designs obtained by 
the divided IMCS agree well with the results of the IMCS’, regardless of whether the chok-
ing phenomenon is captured. The divided IMCS achieved reasonable uncertainty analy-
sis, with a lower computational cost of 3–7 compared with the computational cost of 41–
46 for IMCS’. The deterministic optimal had a high mean value of L/D and a large standard 
deviation value of L/D. Therefore, in deterministic design optimization, the highest per-
formance can be realized under the design conditions; however, the robustness is low. By 
contrast, it can be confirmed that airfoils with high robust performance can be designed 
inexpensively by the RDO using the divided IMCS. 

 
Figure 10. Surrogate models of L/D obtained by divided IMCS. Figure 10. Surrogate models of L/D obtained by divided IMCS.



Aerospace 2024, 11, 64 13 of 21Aerospace 2023, 10, x FOR PEER REVIEW 13 of 21 
 

 

   
(a) (b) (c) 

Figure 11. PDFs of L/D obtained by divided IMCS. (a) Overall view; (b) enlarged view; (c) further 
enlarged view. 

 
Figure 12. Exact off-design performance of L/D by additional CFD evaluations. 

Table 2. Comparison of mean and standard deviation (std) of L/D. 

Airfoil Shape Divided IMCS MCS IMCS’ 
Mean of L/D Std of L/D Mean of L/D Std of L/D Mean of L/D Std of L/D 

Busemann’s biplane 14.1 5.00 15.3 4.52 15.2 4.59 
Design A 15.0 0.0841 - - 14.9 0.132 
Design B 19.5 0.131 - - 19.5 0.151 
Design C 20.5 0.521 - - 21.6 0.772 
Design D 21.7 1.42 - - 21.8 1.26 

Figure 11. PDFs of L/D obtained by divided IMCS. (a) Overall view; (b) enlarged view; (c) further
enlarged view.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 21 
 

 

   
(a) (b) (c) 

Figure 11. PDFs of L/D obtained by divided IMCS. (a) Overall view; (b) enlarged view; (c) further 
enlarged view. 

 
Figure 12. Exact off-design performance of L/D by additional CFD evaluations. 

Table 2. Comparison of mean and standard deviation (std) of L/D. 

Airfoil Shape Divided IMCS MCS IMCS’ 
Mean of L/D Std of L/D Mean of L/D Std of L/D Mean of L/D Std of L/D 

Busemann’s biplane 14.1 5.00 15.3 4.52 15.2 4.59 
Design A 15.0 0.0841 - - 14.9 0.132 
Design B 19.5 0.131 - - 19.5 0.151 
Design C 20.5 0.521 - - 21.6 0.772 
Design D 21.7 1.42 - - 21.8 1.26 

Figure 12. Exact off-design performance of L/D by additional CFD evaluations.

Table 2. Comparison of mean and standard deviation (std) of L/D.

Airfoil Shape Divided IMCS MCS IMCS’
Mean of L/D Std of L/D Mean of L/D Std of L/D Mean of L/D Std of L/D

Busemann’s biplane 14.1 5.00 15.3 4.52 15.2 4.59
Design A 15.0 0.0841 - - 14.9 0.132
Design B 19.5 0.131 - - 19.5 0.151
Design C 20.5 0.521 - - 21.6 0.772
Design D 21.7 1.42 - - 21.8 1.26
Design E 22.1 1.84 - - 22.2 1.80

Deterministic Optimal 21.0 4.95 - - 21.3 4.34

Figure 13 shows the 2D cross-sectional shapes of the optimal designs. The upper
airfoils of the optimal designs were thinner than the lower airfoils, and the central vertices
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of the lower airfoil were rounded. The trend of thinner upper airfoils was the same as that
of Licher’s biplane airfoil configuration [30], which was proposed as an efficient biplane
airfoil configuration under lifted conditions. Figures 14–18, respectively, show pressure
distributions around Busemann’s biplane airfoil, deterministic optimal design, and optimal
designs A, C, and E at M∞ of 1.65, 1.70, and 1.75. In Busemann’s biplane airfoil at M∞ = 1.7,
the shock wave from the leading edge of the upper airfoil hits the upstream side of the
center vertex of the lower airfoil, and the static pressure increases significantly, as shown
in Figure 14b. At smaller M∞ (Figure 14a), the shock wave hits further upstream of the
center vertex of the lower airfoil. In the deterministic optimal design, in an off-design
condition of M∞ = 1.65, the shock wave also hits the upstream side of the center vertex
of the lower airfoil, and the static pressure increases significantly, as shown in Figure 15a.
Considering the optimal designs A, C, and E, the shock wave from the leading edge of the
upper airfoil hits the rounded upper surface of the lower airfoil, and the distribution of
the static pressure is not changed significantly, even with the variation in M∞, as shown
in Figures 16–18. In the optimal designs A, C, and E, the upper airfoils are thinner, and
the wedge angles of the leading edge are smaller. The angles of the shock wave from the
leading edge of the upper airfoil decrease, and the shock wave hits the downstream side
of the lower airfoil, decreasing the drag force. Figure 19 shows the relationship between
the performance values obtained by IMCS’ and the minimum distance between the upper
and lower airfoils. In Figure 19, the minimum distance is normalized to that of the original
Busemann’s biplane airfoil, as shown in Figure 4. Additional uncertainty analyses with
variations in the minimum distance of Busemann’s biplane airfoil were also performed
for comparison. From Figure 19, it can be confirmed that the distances of the optimal
designs are larger than those of the original Busemann’s biplane airfoil, and the distance
increases in the following order for the deterministic optimal designs, E, D, C, B, and A.
The mean values of Busemann’s biplane airfoil configurations were approximately constant
with variations in the distance. Although the standard deviation values of Busemann’s
biplane airfoil configurations decreased as the distance increased, the standard deviation
values of the optimal designs obtained by RDO were significantly smaller. This means that
the robustness of the optimal airfoils increased not only with the increase in the distance
between the airfoils but also with the appropriate geometrical deformation of the airfoils,
such as the rounded upper surface of the lower airfoil.
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6. Conclusions

An efficient uncertainty analysis method, divided IMCS, was proposed for discontinu-
ous problems. The choking phenomenon of the Busemann’s biplane airfoil was investigated
as a discontinuous problem. To confirm the effectiveness of the proposed method, a one-
dimensional uncertain input was considered. In the divided IMCS, the discontinuity point
was detected using a sampling method, and the uncertainty input space was divided
at the detected discontinuity point. A surrogate model of OK was constructed in each
divided uncertainty input space, and each sample point for the IMCS was evaluated using
the surrogate model generated for the region to which the sample point belonged. An
uncertainty analysis of the supersonic flow around the 2D sectional shape of Busemann’s
biplane airfoil was performed using the MCS, DDF, conventional IMCS, and divided IMCS.
The input uncertainty was provided on M∞ as a normal distribution. The user-defined
coefficients for the divided IMCS α were set to 0.1, 0.5, and 1.0. The surrogate models of the
divided IMCS showed qualitative agreement with the exact response and could successfully
capture discontinuous behavior, whereas the surrogate model of the conventional IMCS
did not show qualitative agreement with the exact response. In the divided IMCS, the
estimated discontinuity point includes a maximum error of ασ/2, and this is a limitation
of the divided IMCS. Smaller values of α required more samples, while the discontinuity
point was more accurately detected. From the viewpoint of computational cost, the divided
IMCS is significantly more efficient than MCS.

Subsequently, RDO for the 2D sectional shape of Busemann’s biplane airfoil was per-
formed using the divided IMCS. The objectives of the RDO were maximizing µ of L/D and
minimizing σ of L/D. More robust optimal designs than the original Busemann’s biplane
airfoil were successfully explored using the RDO. A deterministic design optimization
was also performed for comparison, in which L/D at M∞ =1.7 was maximized. The exact
off-design performance of the optimal designs was investigated using additional CFD
evaluations, and additional IMCSs (referred to as IMCS’) were performed using the results
of the exact off-design performance. The results obtained using the divided IMCS were in
good agreement with those obtained using IMCS’. Leveraging deterministic design opti-
mization, the highest performance could be realized under the design conditions, whereas
the robustness was significantly lower. However, airfoils with highly robust performance
can be designed inexpensively by RDO using the divided IMCS. In the robust optimal
designs, the upper airfoil was thinner than the lower airfoil, and the center vertex of the
lower airfoil was rounded to achieve highly robust performance.

In conclusion, the divided IMCS can perform highly accurate uncertainty analysis for
discontinuous problems with a low computational cost and is useful for realizing practical
methods for solving complex uncertainty analysis problems including discontinuities.
Since only a one-dimensional uncertainty analysis problem was considered in this study,
additional algorithm modifications are required for practical problems with multiple input
uncertainties. Appendix A presents an example of applying the divided IMCS to a two-
dimensional uncertainty analysis problem. In future studies, the divided IMCS will be
extended to more practical problems with three- (or more) dimensional uncertainty input
spaces. It can also be applied to more realistic RDO problems such as three-dimensional
Busemann’s biplane wing configurations. Discontinuous problems have also been reported
for structural optimization problems that consider buckling [27] and transonic airfoil
shape optimization problems [38]. The divided IMCS method is also beneficial for such
engineering problems.
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Appendix A

This appendix presents an example of a straightforward application of the divided
IMCS to a two-dimensional uncertainty analysis problem. The input uncertainties are
provided on M∞ and angle of attack as normal distributions. The mean value of M∞ is set
to 1.70, and the standard deviation value σ1 is set to 0.05. The mean value of the angle of
attack is set to 2.0 degrees, and the standard deviation value σ2 is set to 0.333. The divided
IMCS with the user-defined coefficient α of 0.5 is compared with the MCS (1000 samples),
DDF (five samples), and IMCS (using same samples obtained by the divided IMCS).

Figure A1 shows the CFD samples obtained using MCS, divided IMCS, and DDF.
In the divided IMCS, an ellipse is considered with axis lengths of 2 × 3σ1 and 2 × 3σ2.
Four representative directions were considered in the two-dimensional uncertainty inputs
space. Discontinuous positions were searched from eight initial samples placed on the
circumference of the ellipse using the divided IMCS algorithm, and the uncertainty input
space was divided, as shown in Figure A1. Figure A2 shows the surrogate models of Cd and
L/D obtained by the IMCS and divided IMCS. Although the surrogate models of the IMCS
show oscillatory responses, those of the divided IMCS can capture discontinuous behaviors.
Table A1 shows a comparison of the mean and standard deviation values of Cd and L/D as
well as the computational cost. The computational cost was defined by considering the cost
of one deterministic CFD analysis as a unit. Although the computational cost of the DDF is
significantly lower than that of the MCS, the statistics provided by the DDF do not show
qualitative agreement with those of the MCS. The statistics provided by the divided IMCS
show much better agreement with the MCS. The computational cost of the divided IMCS
was 18, whereas that of the MCS was 1000. Therefore, it was confirmed that the divided
IMCS can efficiently solve the uncertainty analysis problem with multiple uncertain inputs.
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Table A1. Comparison of mean and standard deviation (std) of Cd, L/D, and computational cost for
the two-dimensional uncertainty analysis problem.

Method
Cd L/D Computational

Cost 2Mean Std Mean Std

MCS 1.43 × 10−2 0% 2.38 × 10−2 0% 15.2 0% 4.38 0% 1000
DDF 2.11 × 10−2 48% 3.22 × 10−2 35% 14.2 −7% 5.92 35% 5
IMCS 1.08 × 10−2 −24% 2.53 × 10−2 6% 11.6 −24% 3.43 −22% 18

divided IMCS (α = 0.5) 1.48 × 10−2 3% 2.40 × 10−2 1% 15.1 −1% 4.40 0% 18
2 Cost of one deterministic CFD analysis is considered as the unit.
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