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Abstract: Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their
effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied
on recursive techniques, combining a limited number of high-fidelity (HF) samples with multiple low-
fidelity (LF) datasets structured in hierarchical levels to generate a precise HF approximation model.
However, challenges arise when dealing with non-level LF datasets, where the fidelity levels of LF
models are indistinguishable across the design space. In such cases, conventional methods employing
recursive frameworks may lead to inefficient LF dataset utilization and substantial computational
costs. To address these challenges, this work proposes the extended hierarchical Kriging (EHK)
method, designed to simultaneously incorporate multiple non-level LF datasets for improved HF
model construction, regardless of minor differences in fidelity levels. This method leverages a unique
Bayesian-based MFSM framework, simultaneously combining non-level LF models using scaling
factors to construct a global trend model. During model processing, unknown scaling factors are
implicitly estimated through hyperparameter optimization, resulting in minimal computational costs
during model processing, regardless of the number of LF datasets integrated, while maintaining
the necessary accuracy in the resulting HF model. The advantages of the proposed EHK method
are validated against state-of-the-art MFSM methods through various analytical examples and an
engineering case study involving the construction of an aerodynamic database for the KP-2 eVTOL
aircraft under various flying conditions. The results demonstrated the superiority of the proposed
method in terms of computational cost and accuracy when generating aerodynamic models from the
given multi-fidelity datasets.

Keywords: multi-level multi-fidelity surrogate modeling; non-hierarchical low-fidelity data; extended
co-Kriging; hierarchical Kriging; LRMFS

1. Introduction

Surrogate models have played an increasingly important role in different areas of
aerospace engineering, such as aerodynamic data construction, aerodynamic shape opti-
mization, structural design, multi-disciplinary optimization, and aircraft design, which re-
quire extensive physical tests or simulations. A precise and complete aerodynamic database
is needed explicitly for aircraft design optimization and flight simulation to provide the
aerodynamic coefficients of vehicles for various flying conditions and vehicle configu-
rations throughout the entire mission. However, due to expensive and time-consuming
computing, it is challenging to generate an enormous database using HF analysis methods
like flight testing, wind tunnel testing, or Ansys Fluent RANS CFD simulation. Moreover,
employing a simplified or LF model of the actual system may lead to reduced accuracy
in the generated data. Therefore, surrogate models have emerged as effective solutions
for constructing approximation models with limited HF data samples, enabling precise
predictions of specific data points while maintaining cost efficiency.
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Renowned single-fidelity surrogate modeling methods include polynomial response
surface modeling (RSM) [1–3], radial basis function (RBF) neural networks [4,5], Krig-
ing [6–8], and artificial neural networks (ANNs) [9–11]. They are often used to construct
an approximation model from a single sampling set. The efficacy of surrogate models is
notably contingent upon the density of training sample points. Converged accuracy in sur-
rogate models demands a specific quantity of well-distributed training samples. However,
acquiring an adequate number of training samples for precise surrogate fitting typically
entails substantial costs, primarily driven by the necessity for conducting numerous tests
or simulations. To address the challenge, prior studies [12–16] have focused on the de-
velopment of an adaptive sampling strategy. This strategy aims to enhance the efficient
construction of surrogate models in the context of surrogate-based design optimization
problems, emphasizing the optimal selection of new data points over multiple iterations of
model updates. Additionally, multi-fidelity surrogate models (MFSM), “variable fidelity
models” (VFM), or “data fusion” are the next-level solutions for the problem, which allow
for combining a small number of HF samples with lower-accuracy models or massive LF
samples to generate an accurate approximation of an HF model. Here, the LF data can be
exploited in significant quantities from simplified models or low-cost analyses.

In the realm of design optimization problems, numerous MFSM frameworks have
emerged over the past two decades. These frameworks can be categorized into three
popular types: bridge-function-based (BF), space mapping (SM), and Bayesian approaches.
These methodologies have gained widespread acceptance within the engineering com-
munity [17,18]. First, in bridge-function-based approaches, the discrepancies between
the HF and LF models are calibrated using bridge functions. Bridge functions can take
the form of multiplicative, additive, or hybrid functions. For instance, Nguyen et al. [19]
suggested using the trust region method with the modified variable complexity model
(MVCM) to create a practical framework for interdisciplinary aircraft conceptual design.
Both multiplicative and additive functions are constructed using neural network models in
a comprehensive bridge-based framework. Tyan et al. [20] proposed global variable fidelity
modeling (GVFM), in which the bridge functions are constructed using RBF models. The
second approach, known as space mapping (SM), seeks the optimal conversion functions
to map the design domain of the HF model to that of the LF model. Bandler et al. [21] first
proposed the original SM method, which assumes a linear mapping between the inputs of
the HF and LF models. Lastly, Kennedy and O’Hagan [22] and Quian et al. [23] developed
the Bayesian-based MFSM frameworks, or co-Kriging models, allowing for additional
flexibility, albeit the most sophisticated. Gratiet et al. [24] proposed a recursive co-Kriging
model in which a fast cross-validation procedure was presented. Han et al. [25] proposed a
hierarchical Kriging (HK) model, providing a faster and more efficient method to construct
an MFSM than traditional co-Kriging. Jiang et al. [26] proposed a combination between the
space mapping and Bayesian-based MFSM approaches, namely the space-mapping-based
variable fidelity model (SM-VFM), in which a Gaussian process (GP) model is constructed
for the LF model. Then, the VFM model is constructed by taking the predicted information
from the LF model as prior knowledge and directly mapping it in the output space of the HF
model. Tian et al. [27] proposed a transfer-learning-based variable-fidelity surrogate model
(TL-VFM) for shell bulking prediction, which employs a two-stage training process to train
deep neural networks (DNN) with multi-fidelity data. Xu et al. [28] employed the TL-VFM
to develop a digital twin for a hierarchical stiffened plate. Meng et al. [13] proposed multi-
fidelity deep neural networks (mDNNs) learning from multi-fidelity data to solve function
approximation and inverse partial differential equation problems. Liu et al. [29] proposed
a generative adversarial network for multi-fidelity data fusion (GAN-MDF) to develop a
digital twin for a structured steel plate.

In order to reduce the number of HF simulations as much as possible, Le Gratiet [30]
proposed multi-level co-Kriging (MCK) to recursively incorporate multiple datasets into
the framework featuring a hierarchical scheme of fidelity levels. Han et al. [25,31] proposed
a multi-level hierarchical Kriging (MHK) framework for efficient aerodynamic shape opti-
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mization incorporating three or more levels of fidelity. Bu et al. [32] utilized MHK for an
efficient aerostructure optimization of helicopter rotors toward aeroacoustic noise reduc-
tion. Pham et al. [33] proposed adaptive multi-fidelity data fusion strategy to incorporate
multiple MFSM methods to efficiently handle data fusion problems featuring non-uniform
aerodynamic data.

The majority of prior research within this list primarily involves MFSM methods that
employ recursive MFSM frameworks tailored to multi-level datasets. These frameworks
typically deal with fidelity levels that are absolutely distinguishable across the design
space. For example, various aerodynamic study methodologies, such as wind tunnel
experiments, 3D simulations, 2D simulations, panel methods, and empirical approaches,
exhibit diverse fidelity levels that span the spectrum from high to low. However, there is
another scenario to consider involving non-level LF datasets, where an exact delineation of
fidelity levels across the entire design space is impractical. In these situations, it becomes
highly advantageous to comprehensively harness the information from all LF datasets to
construct the HF model. This scenario frequently arises in engineering design problems
but has been relatively underexplored in the existing literature.

To address these challenges, we propose an extended hierarchical Kriging (EHK)
method that efficiently accommodates non-level datasets, extending the existing body of
research in this domain. The EHK method introduces innovative techniques to decrease the
size of the correlation matrix and minimize the number of scaling factors, independent of
the quantity of LF models involved. As a result, it substantially reduces the computational
expenses associated with model processing while upholding superior accuracy levels in
comparison to established methods.

In that regard, this work contributes to the progress of the research field in the follow-
ing aspects.

• This work proposes an EHK framework to incorporate multiple non-level LF models
that are taken as the trend functions and assembled by allocating different scaling
factors. Subsequently, a Gaussian process model is employed to formulate the discrep-
ancy function, representing the variance between the HF model and the ensembled LF
models.

• In the model-processing phase, a strategy is employed so that the implicit estimation
of scaling factors occurs concurrently with the optimization of other hyperparameters
within the discrepancy model. Essentially, these scaling factors are formulated as
functions of the discrepancy model’s hyperparameters. This approach effectively
diminishes the number of independent parameters subject to optimization, irrespective
of the quantity of LF models integrated.

• Furthermore, it is worth noting that the computational complexity of the EHK algo-
rithm is inferior to that of other rivals. Multiple investigations carried out in this study
substantiate that the EHK model offers reduced computational costs compared to other
competing methods, all the while meeting the necessary level of accuracy standards.

Through numerical analysis, the following findings can be drawn.

• The proposed EHK method offers enhanced capabilities for constructing more effective
approximation models, particularly for multi-fidelity and high-dimensional datasets,
in comparison to traditional methodologies. One notable advantage is the reduction
in the size of the correlation matrix within EHK, leading to decreased algorithmic
complexity and, consequently, significantly reduced computational processing time.

• In the EHK method, the optimization of scaling factors, which encapsulate the influ-
ence of LF models on HF model predictions, is implicitly performed during model
processing. As a consequence, EHK model construction exhibits substantially lower
computational costs while still maintaining the requisite level of accuracy. This advan-
tage becomes particularly pronounced when a considerable number of LF models are
integrated into the framework employed for constructing the HF model.
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The structure of this paper is organized as follows: Section 2 presents an extensive
literature review, offering insights into related works within the same research domain.
Section 3 provides a succinct exposition of both the original HK method and the proposed
EHK method, rooted in the comprehensive HK framework. Section 4 is dedicated to the
evaluation of the EHK method, encompassing a spectrum of multi-dimensional analytical
examples and two practical engineering case studies. These particular case studies pertain
to the construction of an approximation model for the fluidized bed process and for
an aerodynamic database of an electric vertical take-off and landing (eVTOL) vehicle
designed for urban air mobility, denoted as KP-2, under diverse flight conditions. Finally,
Section 5 encapsulates this research with a conclusive summary, highlighting the technical
contributions and significant insights derived from this research endeavor.

2. Related Work

Prior publications have proposed multi-level MFSM frameworks for incorporating
non-level data based on the weighted average of statistical surrogate models [34–38].
Several LF models were created in this scenario by utilizing various methods to simplify
the HF model, leading to non-level LF models with varying degrees of correlation to the
HF model in the subregion of the design space. Parallelly, Chen et al. [39] proposed three
non-hierarchical multi-model fusion approaches based on spatial-random-process, denoted
as WS, PC-DIT, PC-CSC, to incorporate multiple non-level LF datasets with an HF dataset
in different Bayesian frameworks. Zhang et al. [37] proposed a linear-regression-based
multi-fidelity surrogate model (LRMFS) that can incorporate multiple non-level LF models
into the HF model at a low computational cost. M. Xiang et al. [36] proposed extended
co-Kriging (ECK) to incorporate non-level LF models to improve the HF model’s accuracy.
Zhang et al. [38] proposed an improved version of ECK, called NHLF-co-Kriging, featuring
a different strategy to obtain optimal scaling factors of the LF models.

A summary of related works in the literature, previously mentioned in the article’s
introduction, including (i) characteristics of low-fidelity levels, and (ii) types of MFSM
frameworks, is shown in Table 1.

Table 1. Summary of multi-level MFSM methods.

Methods
Granularity of

LF Datasets MFSM Framework
TypeMulti-Level Non-Level

Co-Kriging, 2000 [22,24,30]
√

Bayesian
HK, 2012 [25]

√
Bayesian

MCK, 2012 [24]
√

Bayesian
IHK, 2018 [12]

√
Bayesian

MVCM, 2015 [19]
√

BF
GVFM, 2015 [20]

√
BF

co-BRF, 2017 [40]
√

Bayesian
MFGP, 2018 [41]

√
Bayesian

POD-co-Kriging, 2018 [42]
√

Bayesian
SM-VFM, 2018 [26]

√
SM, BF

MHK, 2020 [31,32]
√

Bayesian
MDNN, 2020 [13]

√
BF

GCK, 2020 [43,44]
√

Bayesian
TL-VFSM, 2021 [27]

√
BF

GAN-MDF, 2022 [29]
√

BF
MMGP, 2021 [45]

√
Bayesian

WS, PC-DIT, PC-CSC, 2016 [39]
√

Bayesian
ECK, 2018 [36]

√
Bayesian

LRMFS, 2018 [37]
√

BF
VWS-MFS, 2021 [46]

√
Bayesian

NHLF-co-Kriging, 2022 [38]
√

Bayesian
Our work

(EHK)
√

Bayesian
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Based on the previous summary, most existing methods utilize Bayesian discrepancy
frameworks to construct the HF model based on prior information from LF models. How-
ever, these methods often require an increasingly high computational cost with a large
number of LF datasets incorporated due to the increase in the number of hyperparameters
to be estimated. Furthermore, the cost of model processing increases exponentially with
sample size, dimensionality, and the number of LF models, primarily due to the complex
calculations involved in inverting the correlation matrix and tuning a large number of
hyperparameters. Although the LRMFS method addresses this issue by using a low-order
polynomial to construct the discrepancy model and solving sets of linear equations to
obtain scaling factors and model coefficients quickly, it still suffers from limitations related
to matrix inversion and data with intricate landscapes.

3. Proposed Methodology
3.1. Preliminaries

In this section, the comparison between existing multi-level MFSM methods will be
discussed to evaluate the pros and cons of each approach for dealing with data fusion prob-
lems featuring multiple non-level LF datasets. For an m-dimensional problem, the sampling
plan of the HF datasets, xHF, and the corresponding responses, yHF, are denoted by

xHF =
{

x(1)HF, x(2)HF, . . . , x(nHF)
HF

}T
(1)

yHF =
{

yHF

(
x(1)HF

)
, yHF

(
x(2)HF

)
, . . . , yHF

(
x(nHF)

HF

)}T
(2)

The sampling plans and the corresponding observations of the L levels of LF datasets
are denoted by

xLF,i =
{

x(1)LF,i, x(2)LF,i, . . . , x(nLF,i)
LF,i

}T
, i = 1, L (3)

yLF,i =
{

fLF,i

(
x(1)LF,i

)
, fLF,i

(
x(2)LF,i

)
, . . . , fLF,i

(
x(nLF,i)

LF,i

)}T
, i = 1, L (4)

where nHF and nLF,i, i = 1, L are the number of samples in HF and LF datasets. It is usually
assumed that nLF,i is large enough to construct the correct LF models (nLF,i ≫ nHF, i = 1, L).

Conventional multi-level MFSM methods assume that LF datasets can be easily distin-
guished based on their fidelity levels across the design space. In these methods, the ultimate
HF model is constructed recursively, typically involving L stages where LF models are
sequentially built from LF datasets until the final HF model is obtained. The information
from LF models is transmitted sequentially between adjacent fidelity levels, and the accu-
racy of the HF model are directly influenced by the Lth-level model, f̂LF,L(x). One example
of such an approach is the HK modeling method proposed by Han and Gortz [31,32]. How-
ever, these recursive MFSM frameworks are not suitable for scenarios involving multiple
non-level LF datasets, where the importance of LF datasets is similar or the fidelity levels
between LF datasets are challenging to identify. Furthermore, the influence of LF models
on the ultimate HF model primarily relies on the LF model in Lth-level, f̂LF,L(x), limiting
the efficient incorporation of information from other LF models.

In contrast, the ECK method proposed by Xiao et al. [36] offers a more reasonable
approach in such scenarios by employing a non-recursive framework and combining non-
level LF models using scaling factors. This approach directly enhances the accuracy of the
HF model by incorporating information from all LF datasets. However, the scalability of
the ECK method becomes challenging when incorporating a large number of LF datasets
since the estimation of numerous scaling factors increases computational complexity and
modeling costs.

To address these challenges, the proposed EHK method adopts a non-recursive frame-
work while introducing a strategy to derive unknown scaling factors from the correlation
hyperparameters of the discrepancy mode. This approach reduces the number of tun-
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ing hyperparameters required in the construction of the discrepancy model, resulting in
decreased computational costs and modeling complexity.

Multi-Level Hierarchical Kriging Model

The two-level HK method operates under the assumption that sample points can be
categorized into two levels: HF and LF datasets. The HF sample points are derived from
expensive methods and provide highly accurate information. On the other hand, the LF
sample points are obtained from less computationally demanding methods, resulting in
lower accuracy but higher accessibility in terms of quantity. In this approach, the LF model
is utilized to capture the global characteristics of the HF model, while the HF samples
are employed to correct any errors in the model. The HK framework can be written in
the form:

f̂HF(x) = ρ0 f̂LF(x) + Zd(x) (5)

Here, f̂LF(x) is a Kriging model of LF samples. ρ0 is an unknown constant scaling
factor indicating the influence of the LF model on the behavior of the HF model. Zd(x) is a
stationary random process having zero mean and a covariance σ2

d , denoting the discrepancy
model between f̂HF(x) and ρ f̂LF(x).

Cov
[
Z(x), Z

(
x′
)]

= σ2
d R

(
x, x′

)
(6)

where R(x, x′) is the spatial correlation matrix of observed data. The HK predictor at an
untried point x has the form as:

f̂HF(x) = ρ0 f̂LF(x) + r(x)TR−1
(

yHF − ρ0F̂LF

)
(7)

where ρ0 =
(

F̂LF
TR−1F̂LF

)−1
F̂LF

TR−1yHF and F̂LF =
[

f̂LF

(
x(1)HF

)
, . . . , f̂LF

(
x(nHF)

HF

)]
are

the vectors of estimated responses of the LF model at the training HF sample points. yHF
is the vector of the HF samples’ responses. r(x) = R(x, xHF) is a vector of the estimated
correlation between the untried point x and the HF training samples xHF.

The HK model for multiple hierarchical levels of fidelity is defined in a recursive
manner as [31,32]:

f̂i(x) =
{

ρi−1 + Zi−1(x) i = 1
ρi−1 f̂i−1 (x) + Zi−1(x) i = 2, . . . , L, L + 1,

(8)

Here, L is the number of LF simulation models with varying degrees of fidelity and
computational expense. i denotes the ith level of fidelity, with “i = 1” and “i = L + 1”
representing the lowest and highest and fidelity levels, respectively.

3.2. The Proposed EHK Method

The EHK framework integrates the data from an HF dataset and L non-level LF
datasets. The formula of the EHK model for the approximation of the HF model can be
written as

f̂HF(x) =
L

∑
i=1

ρi f̂LF,i(x) + Zd(x) (9)

The EHK model can also be written in an alternative form as

f̂HF(x) = ρT f̂LF(x) + Zd(x) (10)

where f̂LF(x) =
[

f̂LF,1(x), . . . , f̂LF,L(x)
]T

is a vector of non-level LF models, which can be
built directly by a Kriging method or other approximation methods with LF datasets. The
LF models are scaled by the unknown constant scaling factors ρ = [ρ1, ρ2, . . . , ρL]

T, serving
as the global trend model. Zd(x) is a stationary random process having zero mean and a
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covariance σ2
d , denoting the discrepancy model between the HF model and the ensembled

LF models. Hence, the prediction of the EHK model at any untried x can be obtained:

f̂HF(x) = ρT f̂LF(x) + r(x)TR−1
(

yHF − ρTF̂LF

)
(11)

where F̂LF =
[̂
fLF

(
x(1)HF

)
, . . . f̂LF

(
x(nHF)

HF

)]
∈ RL×nHF is the matrix of the estimated re-

sponses of LF models at HF samples, R(xHF, x′HF) is the correlation matrix between HF
samples, Equation (12), and r(x) = ϕ(x, xHF) is a vector of the estimated correlation be-
tween the untried point x and the HF training samples. ϕ(x, x′) is the spatial correlation
function, which only depends on the Euclidean distance between two sides x and x′. Com-
pared to the previous original publication, this article adopted the well-known Gaussian
exponential function with second order, as shown in Equation (13), to reduce the computa-
tional complexity of model construction while still maintaining the critical features of the
HK model in the proposed EHK model. θ = [θ1, θ2, . . . , θm] ∈ Rm is a vector of unknown
hyperparameters in the Gaussian exponential function.

R
(
xHF, x′HF

)
=

(
ϕ
(
xHF, x′HF

))
i,j ∈ RnHF×nHF (12)

ϕ
(
x, x′

)
=

m

∏
k=1

exp
(
−θk

∣∣∣x(k) − x′(k)
∣∣∣2) (13)

The predicted error of the EHK model for an untried point can be written as

ŝ2(x) = σ2
{

1− rTR−1r +
(

F̂LF
TR−1r(x)− f̂LF(x)

)T(
F̂LF

TR−1F̂l f

)−1(
F̂LF

TR−1r(x)− f̂LF(x)
)}

(14)

To estimate the hyperparameters ρ, θ, and σ2
d , the maximum likelihood estimation

(MLE) method is used to maximize the likelihood function given by

L
(

ρ, σ2
d , θ

)
=

1
√(

2πσ2
d
)nHF |R|

exp

−1
2

(
yHF − ρTF̂LF

)T
R−1

(
yHF − ρTF̂LF

)
σ2

d

 (15)

Taking the natural logarithm of the likelihood function, the simplified form is achieved
for being maximized.

ln{L(θ)} = −nHF ln
(

σ2
d

)
− ln|R| −

(
yHF − ρTF̂LF

)T
R−1

(
yHF − ρTF̂LF

)
σ2

d
(16)

The derivatives with respect to ρ and σ2 are set to zero. The MLEs of the unknown
scaling factors and the process variances are analytically calculated as

ρ∗(θ) =
(

F̂LF
TR−1F̂LF

)−1
F̂LF

TR−1yHF (17)

σ2
d (θ) =

1
nHF

(
yHF − ρTF̂LF

)T
R−1

(
yHF − ρTF̂LF

)
(18)

Here, the vector of scaling factors is ρ, which is transformed into a function of hy-
perparameters θ. Substituting Equations (17) and (18) into Equation (16), the following
expression is left to be maximized:

ln{L(θ)} = −nHF ln
(

σ2
d

)
− ln|R| −

(
yHF − ρTF̂LF

)T
R−1

(
yHF − ρTF̂LF

)T

σ2
d

(19)
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The unknown hyperparameters θ are found by maximizing Equation (19). Since there
is no closed-form solution for θ, it has to be found by numerical optimization, which has
the form.

θ = argmax[ln{L(θ)}] (20)

Note that the scaling factors ρ = [ρ1, ρ2, . . . , ρL] are implicitly tuned during tuning of
the hyperparameters. Thus, it is worth noting that the optimization problem associated
with model processing in the EHK method consistently features a variable count equivalent
to the number of dimensions, irrespective of the number of incorporated LF models.
Consequently, the EHK method exhibits a more concise set of hyperparameters compared
to the ECK model [36]. In this study, the genetic algorithm (GA) function from the Global
Optimization Toolbox in MATLAB was employed to tackle the optimization problems
related to hyperparameters and avoid the problem of local optimum solutions. Additionally,
the range of hyperparameters, θ, was constrained within the bounds of

[
10−2, 103]. In all

testing cases within this study, the GA solver was implemented with a population size
of 200 and a maximum number of generations equal to 100 × nhyp, where nhyp presents
the total count of tuning hyperparameters. A comprehensive algorithm for the model-
processing procedure is elaborated with a flowchart and a pseudocode, as delineated in
Figure 1 and Algorithm 1, respectively.
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Algorithm 1: Algorithm of EHK model construction

Input: The LF sampling datasets SLFi =
{

xLF,i, yLF,i

}
, i = 1, L and HF sampling data

SHF = {xHF, yHF}.
Output: the predictor of the EHK model f̂HF(x).

1: Begin
2: f̂LF,i(x)← Construct LF models from LF datasets using Kriging.
3: f̂LF(x)← Construct vector of LF models
4: F̂LF ← Calculate the matrix of the estimated responses of LF models at HF samples.
5: R(xHF, x′HF, θ)← Construct the correlation matrix of HF samples containing unknown

hyperparameters θ, as in Equation (12).
6: ρ(θ)← Construct the vector of the scaling factors as a function of unknown

hyperparameters θ, as in Equation (17).
7: σ2

d (θ)← Construct the covariance of the discrepancy model as a function of unknown
hyperparameters θ, as in Equation (18).

8: ln{L(θ)} ← Construct the logarithm form of the likelihood function as a function of
unknown hyperparameters θ, as Equation (19).

9: θ← Solve Equation (20) for the optimal solution of θ using GA solver.
10: R−1 ← Calculate inverse matrix of the correlation matrix from resulting θ.
11: ρ← Calculate the vector of the scaling factors from resulting θ.
12: f̂HF(x′)← Calculate the prediction of the EHK model at the new point x′, using

Equation (11)
13: End.

3.3. Computational Complexity and Cost Analysis

While it is feasible to enhance the predictive capacity of the proposed EHK model
through the integration of numerous non-level LF models or by augmenting the HF sample
size, the computational complexity of the model processing is fundamentally contingent
on the inversion of the correlation matrix, denoted as R−1. Furthermore, the challenges
associated with dimensionality, large dataset sizes, and a multitude of LF models render
the estimation of hyperparameters a complex high-dimensional optimization endeavor.
The computational expenses incurred during the process of hyperparameter estimation
stem from the following key factors:

1. The number of training samples: As the quantity of training samples rises, it invariably
augments the size of the correlation matrix, a fundamental component in many
Gaussian-process-based modeling methodologies. Consequently, this amplifies the
computational complexity required for the inversion of the correlation matrix. The
consequence is a substantial demand for computational resources and an increase in
computational time, resulting in heightened costs.

2. The number of tuning hyperparameters: Various MFSM methods necessitate distinct
quantities of tuning hyperparameters due to their particular model formulations.
Typically, these hyperparameters encompass:

• Correlation parameters: The quantity of correlation parameters is contingent
upon the chosen correlation function inherent to each MFSM method. In the case
of the proposed EHK model, the Gaussian exponential function is employed,
resulting in the number of correlation parameters equating to the number of
dimensions within the dataset.

• Scaling factor: The number of scaling factors corresponds to the number of
integrated LF datasets.

• Other parameters: Some methodologies incorporate supplementary parameters
into their models.

3. The optimization algorithm: In this study, the GA is utilized to optimize hyperparam-
eters, which is especially effective for high-dimensional problems. The computational
cost associated with running a GA, typically quantified in terms of computation time
or the number of function evaluations, notably escalates as the number of tuning
hyperparameters increases.
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To mitigate the impact of programming techniques and computational resources, the
computational cost is measured using the number of function evaluations (FEs) of the
likelihood function, which serves as an efficient metric during model processing. The
cost of evaluating the likelihood function is primarily associated with the inversion of the
correlation matrix. Taking these factors into account, it becomes evident that increasing
the number of integrated datasets, data dimensions, and size leads to a greater number of
tuning hyperparameters, consequently escalating the FEs as well as the computational cost
when utilizing GA.

Table 2 lists the computational complexity of calculating R−1 for each three investi-
gated MFSM methods in the second column; additionally, the last two columns provide the
number of independent hyperparameters, including ns scaling factors and nc correlation
parameters. Hence, the total number of hyperparameters is Nhyp = ns + nc. For general
single-output multi-fidelity models, the computational complexity is O

(
n3) [47]. In the case

of the EHK model, it requires calculating the inverse of an nHF × nHF correlation matrix
(Equation (12)) leading to a computational complexity of O

(
n3

HF
)
. Only the correlation

parameters θ = [θ1, θ2, . . . , θm] ∈ Rm are the independent hyperparameters in the EHK
model and the scaling factors can be derived from the correlation parameters. On the other
hand, the ECK, WS, PC-DIT, and PC-CSC models require calculating the inverse of an
N × N

(
N = ∑L

1 nLF,i + nHF

)
correlation matrix, leading to a computational complexity

of O
(

N3). Additionally, all scaling factors ρ and correlation parameters θ are adopted as
the independent hyperparameters in the ECK model. For the LRMFS model, the model
processing required calculating the inverse of the augmented design matrix [37], which has
a size depending on the number of scaling factors and polynomial coefficients.

Table 2. The characteristics of different models, including the computational complexity of R−1 and
the number of hyperparameters to be inferred.

Model R−1 ns nc

EHK O
(
n3

HF
)

0 m

EHK O
(
n3

HF
)

0 m

ECK O
(

N3) L (L + 1)×m

LRMFS O
(
(L + p)3

)
L p

WS O
(

N3) L (L + 1)×m + 1

PC-DIT O
(

N3) 0 (L + 1)×m + 1

PC-CSC O
(

N3) 0 (L + 1)×m + 1

In summary, the computational complexity of the EHK model is markedly reduced in
comparison to the ECK, WS, PC-DIT, and PC-CSC models, primarily attributed to the EHK
model’s utilization of a smaller-sized correlation matrix and fewer tuning hyperparameters.
Additionally, the EHK model maintains an advantage by requiring hyperparameters solely
for the correlation basis function, irrespective of the number of LF models incorporated.
Consequently, the EHK method features a smaller number of tuning hyperparameters in
comparison to other referenced techniques, thereby resulting in a reduced computational
cost for hyperparameter estimation.

In contrast to Bayesian models, LRMFS model parameters can be estimated without
the need for an optimization process, which significantly reduces computational costs,
particularly in low-dimensional problems. However, it is important to note that in high-
dimensional data cases, the number of polynomial coefficients, p, may increase substantially,
resulting in a significant rise in the computational complexity of the LRMFS model.

Due to the above reasons, the proposed EHK modeling method is more appropriate
for incorporating multiple non-level LF datasets compared with the existing multi-level
MFSM methods.
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4. Numerical Settings and Experiments

In this section, several multi-dimensional analytical examples were used to validate the
proposed EHK model. Furthermore, an engineering case study of modeling an aerodynamic
database of high-speed aircraft was used to illustrate the merits and effectiveness of the
proposed EHK model, by comparing it with conventional approaches using Kriging, ECK,
HK, and LRMFS. The relative root mean square error (RRMSE) and relative maximum
absolute error (RRMAE) were adopted to validate the surrogate model’s global and local
accuracy, respectively. The smaller the RRMSE and RMAE, the more accurate the model is.
The expressions of these two metrics [12] are

RRMSE =
1

STD

√
1

ntest

ntest

∑
i=1

(
yi − f̂i

)2
(21)

RMAE =
1

STD
max

∣∣∣yi − f̂i

∣∣∣, i ∈ 1, ntest (22)

STD =

√
1

ntest

ntest

∑
1
(yi − yi)

2 (23)

where ntest is the total number of testing points, f̂i is the predicted response of the testing
points, yi is the true responses of the testing points, and yi and STD are the mean and
standard deviation of all testing points, respectively.

4.1. One-Dimensional Example

In this work, a one-dimensional numerical example is used to test the approximation
capability of the EHK model. In this example, the analytical function in Equation (24)
represents the HF function, and two LF functions [39] are given in Equations (25) and (26).

fHF(x) = sin x (24)

fLF1(x) = sin x + 0.1(x− π)2 (25)

fLF2(x) = 1.2sinx + 0.1(x− π)2 − 0.2 (26)

Using the Latin hypercube sampling (LHS) method, two LF sampling plans were
generated, denoted as xLF1 and xLF2 , along with one HF sampling plan, xHF, as shown
in Table 3. A demonstration of various testing models and sampling sets is shown in
Figure 2. It can be observed that the two LF models only partially captured the trends
exhibited by the HF model within specific localized regions of the design space. On a
global scale, determining which LF model better represented the correct trends of the HF
model posed a challenge. Hence, in this scenario, the fidelity levels of the LF models were
indistinguishable, classifying them as non-level LF models.

Table 3. The x locations of the HF and LF sample plans [39].

Datasets Sample Points

xHF {1.0226, 2.2300, 5.5210}T

xLF1 {3.6236, 1.928, 1.853, 2.6127, 4.578, 0.4317, 0.7170, 5.9766, 5.4798, 4.3535}T

xLF2 {3.6236, 1.928, 1.853, 2.6127, 4.578, 0.4317, 0.7170, 5.9766, 5.4798, 4.3535}T

Next, all multi-fidelity training datasets were used to generate different approximation
models using the EHK, ECK, LRMFS, and MHK methods. Table 4 shows the assignments
of training datasets for different models. In this stage, the EHK, ECK, and LRMFS models
were constructed using the HF dataset SHF and two LF datasets SLF1 and SLF2 without
identifying the fidelity levels between LF datasets. Additionally, two models MHK1 and
MHK2 were constructed using the MHK method with all datasets, SHF, SLF1 and SLF2 . In
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this example, the fidelity levels between training datasets in the MHK1 and MHK2 models
were distinctly identified. In the MHK1 model, SHF was labeled as the HF data, SLF1 was
labeled as the middle-fidelity (MF) data, and SLF2 was labeled as the LF data. In contrast,
SLF1 was labeled as the LF data and SLF2 was labeled as the MF data in the MHK2 model.
Both MHK1 and MHK2 aimed to construct the final model of the HF data in a recursive
manner, as shown in Equation (8).
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Table 4. Training datasets in different models.

Dataset EHK ECK LRMFS MHK1 MHK2 Kriging

SHF = {xHF, yHF}
√

(HF)
√

(HF)
√

(HF)
√

(HF)
√

(HF)
√

(HF)
SLF1 =

{
xLF1 , yLF1

} √
(LF)

√
(LF)

√
(LF)

√
(MF)

√
(LF) ---

SLF2 =
{

xLF2 , yLF2

} √
(LF)

√
(LF)

√
(LF)

√
(LF)

√
(MF) ---

Figure 3a presents a comparative analysis of the constructed models with respect to
the prediction of the HF model. In this instance, an additional step was taken to conduct
extrapolations within limited regions of [0.0, 1.0] and [5.5, 6.5]. An HF validation dataset
(red diamonds) was employed to validate the performance of the resultant models. The
pointwise errors between the resulting models and the validation data are illustrated in
Figure 3b,c. Given the minuscule pointwise errors of the EHK and ECK models, which
are challenging to discern in comparison to other models in the same figure, Figure 3c
represents the pointwise errors of the resulting models using a logarithmic scale on the
y-axis. The results unequivocally demonstrate the superior performance of the EHK model
in capturing the HF function with the lowest pointwise error. Conversely, the LRMFS
model exhibited the poorest performance, failing to accurately capture the tendency of
the HF data. Additionally, the LRMFS model did not accurately represent the HF input
sample at x = 2.23, leading to a substantial error at x = 2.23, as depicted in Figure 3b. This
occurrence signified an underfitting phenomenon within the LRMFS model, a result of
the limited number of training HF samples and the occurrence of a singular matrix issue
during model construction [37], leading to a reduction in the LRMFS model’s accuracy
compared to other models.
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It is imperative to emphasize that the MHK1 and MHK2 models depended on the
tendencies exhibited by the MF datasets to function as trend models for capturing the
global behavior of the HF model. However, they failed to optimally exploit the information
made available by the LF datasets at their disposal. Consequently, the construction of the
HF model became heavily contingent on the necessity for accurate and subjectively labeled
fidelity levels between LF datasets. In contrast, the EHK model adeptly integrated and
concurrently fused information derived from both LF models, facilitating the creation of a
substantially more robust trend model that effectively encapsulated the behavior of the HF
model. This proficiency led to the EHK model achieving higher accuracy in comparison to
the MHK1 and MHK2 models.

Table 5 shows an additional numerical comparison to further demonstrate the ad-
vantages of the proposed EHK method compared with other methods. Three metrics
were utilized in the comparison: (1) RRMSE, (2) RMAE, and (3) FEs. The RRMSE and
RMAE served as accuracy indicators, measuring the overall and local errors of the sur-
rogate models in relation to the validation data, respectively. The FE metric represented
the computational cost associated with hyperparameter optimization, with higher values
indicating a more resource-intensive process. Since the EHK, ECK, MHK, and Kriging
models are Bayesian-based methods, their unknown hyperparameters were optimized
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by maximizing the likelihood function using a genetic algorithm solver. Conversely, the
LRMFS model, based on polynomial regression, estimated its parameters directly through
the minimization of the sum of squared errors [37], thereby bypassing a tuning process.
Consequently, the FE metric was not applicable to the LRMFS model. Additionally, the
estimated scaling factors ρ of different resulting models were also presented.

Table 5. The numerical comparison of different surrogate models.

EHK ECK LRMFS MHK1 MHK2 Kriging

RRMSE 0.0005 0.1408 2.5575 0.14260 0.22910 0.4121
RMAE 0.0011 0.2670 5.6702 0.82170 0.90930 1.8390

FEs 12,510 28,605 --- 12,966 12,920 5420
ρ [−4.993, 4.995] [−4.892, 4.994] [0.270, 0.387] [0.833, 0.725] [1.200, 0.816] ---

The findings demonstrate that the EHK method excelled in terms of accuracy while
maintaining lower FE values compared to other Bayesian-based modeling methods. Al-
though the LRMFS model exhibited the fastest computational speed, it displayed the
poorest performance among the models investigated.

In conclusion, the one-dimensional example, with its limited number of HF samples,
provided initial evidence of the superiority of the proposed EHK method over other
techniques such as ECK, LRMFS, Kriging, and MHK. The EHK method showcased its
ability to effectively incorporate multiple non-level LF models, enabling the generation
of accurate HF models while keeping the computational cost of model processing at a
reasonable level. However, it is worth noting that further investigations are necessary to
explore the impact of incorporating multiple LF models, dimensionality, and the size of
HF datasets in greater depth. These aspects will be thoroughly examined in subsequent
comprehensive studies.

4.2. Multi-Dimensional Examples
4.2.1. Effect of Incorporating Multiple LF Datasets

In this section, an extensive evaluation of the proposed EHK method was conducted
through the Currin example. The evaluation primarily focused on assessing the computa-
tional cost, specifically in terms of FEs, and its relationship with the number of LF datasets.
To ensure the results’ generality, the modified two-dimensional Currin function was utilized
for this analysis. This choice enabled generating arbitrary sampling points and their corre-
sponding LF responses. Furthermore, the modified Currin function featuring two variables
facilitated a clear and convenient observation of model behaviors, aligning with the study’s
objectives. The analysis addressed several critical aspects simultaneously, including high
dimensionality, the integration of a substantial number of LF datasets, model accuracy, and
computational expense. The HF and LF models are given in Equations (27) and (28) [37,48],
respectively. Multiple coefficient values A, B, and C were randomly sampled in the range
of 0 to 1, resulting in the creation of eight distinct LF models. These LF models were
designed to capture the overall trends exhibited by the HF model, and details can be found
in Table A1.

fHF(x) =
[

1− exp
(
− 1

2x2

)]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 3x1 + 20
(27)

fLF(x) = A[(x1 + 0.05x2 + 0.05) fHF(x) + (x1 + 0.05×max(0, x2 − 0.05)) fHF(x)]
+B[(x1 − 0.05x2 + 0.05) fHF(x) + (x1 − 0.05×max(0, x2 − 0.05)]
+C

(
−5x1 − 7x2

2
) (28)

x = (x1, x2)
T, x ∈ [0, 1]2,

A, B, C ∈ [0, 1]
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Figure 4 demonstrates the responses of fHF(x) and fLF(x) when A = 0.12, B = 0.44,
and C = 0.85. The proposed EHK method underwent evaluation in seven distinct testing
scenarios, each involving the construction of HF models. These HF models were created
using a consistent set of HF samples but varied in the number of incorporated LF datasets.
Detailed descriptions and numerical outcomes of these investigations are provided in
Table 6. In these investigations, three metrics were considered: (1) nhyp, (2) FEs, and
(3) RRMSE.
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Table 6. Description of testing cases and numerical results.

Case
Numb.

LF
Models

EHK ECK LRMFS

nhyp
(nc)

FEs RRMSE Time
(s)

nhyp
(nc+ns)

FEs RRMSE Time
(s) nhyp RRMSE Time

(s)

1 2 2 13,510 0.3931 8.1 2 + 2 13,610 0.4700 31.3 - 1.2291 4 × 10−3

2 3 2 15,220 0.2952 5.1 2 + 3 17,410 0.5201 37.4 - 1.2287 8 × 10−3

3 4 2 14,080 0.2946 13.1 2 + 4 114,210 0.4374 59.8 - 1.2285 5 × 10−3

4 5 2 14,270 0.2953 18.4 2 + 5 133,210 0.3954 120.5 - 1.2288 2 × 10−3

5 6 2 13,510 0.2941 11.7 2 + 6 152,210 0.3900 68.44 - 1.2290 9 × 10−3

6 7 2 12,750 0.2954 10.6 2 + 7 171,210 0.3551 69.2 - 1.2283 8 × 10−4

7 8 2 12,370 0.2943 11.3 2 + 8 190,210 0.9072 90.6 - 1.2281 9 × 10−4

The impact of the number of LF datasets on the constructed models was examined by
incrementally increasing the number of LF datasets from 2 to 8. The HF and LF samples
were generated using the LHS method with nHF = 19 points and nLF = 200 points. An
additional 10,000 HF samples were utilized for validation purposes to assess the accuracy
of the resulting approximation models. Then, the EHK model was compared with the
ECK and LRMFS models. It is worth noting that the FE metric was not considered for the
LRMFS model, and the evaluation of the LRMFS model solely relied on the RRMSE metric.

The findings, as presented in Table 6 and Figure 5, unequivocally establish the superior
performance of the EHK method. Of particular note is the contrast between the EHK model
and the ECK model, wherein the EHK model exhibited a consistent number of hyperpa-
rameters at 2, equivalent to the dimensions of the dataset, regardless of the expanding
number of LF datasets. This observation underscored the efficiency and adaptability of the
EHK method in handling complex LF datasets. Furthermore, the EHK model consistently
maintained a stable number of FEs and computational time, approximately 13,672 s and
11.32 s, respectively, irrespective of the number of LF models. In sharp contrast, the ECK
model experienced a substantial surge in FEs and computational time as the number of LF
models increased. To illustrate, the EHK model realized an impressive cost reduction of
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around 80% with two LF models and a substantial 94% cost reduction with eight LF models
in comparison to the ECK model. This striking outcome highlighted the EHK model’s
capacity to significantly reduce the computational cost of model tuning while concurrently
preserving high levels of accuracy. It is important to note that the LRMFS model also saw
an increase in hyperparameters due to LF models. However, these hyperparameters were
directly estimated, obviating the necessity for an optimization process. Consequently, they
were excluded from the computational cost comparison. While LRMFS emerged as the
most cost-effective method, it lagged in accuracy compared to other models across the
tested scenarios.
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Figure 5a further illustrates the general improvement in accuracy with an increasing
number of LF models, with the exception of the LRMFS model. Among all the cases
investigated, the EHK method consistently achieved the highest accuracy, while the LRMFS
method consistently produced the lowest. Figure 5b graphically represents the computa-
tional costs of the EHK and ECK models in relation to the number of LF models, reinforcing
the quantitative results detailed in Table 6. These findings firmly establish the efficiency
and scalability of the EHK method, solidifying its position as a highly favorable choice
for multi-fidelity modeling. These empirical results robustly corroborate the theoretical
framework presented in Equation (20), highlighting the advantages of the EHK method
in terms of reducing computational costs while concurrently enhancing accuracy, thus
distinguishing it from the existing methods.

4.2.2. Effect of HF Data Size and Dimensionality

The versatility of the EHK method was rigorously examined across eight distinct test-
ing scenarios, each varying in dimensionality and the number of LF models incorporated.
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The primary objective of this investigation was to evaluate the influence of the number
of HF sample points and dimensionality on the model’s accuracy, while also conducting
a comparative assessment between the EHK models, the ECK models, and the LRMFS
models. Comprehensive information regarding the eight numerical examples is available
in Table 7, with mathematical expressions for these examples listed in Table A2.

Table 7. Features of eight test cases [38].

Test No. of Dimension No. of LF Models Initial Sample Sets

1 1 2 3HF|40LF (20 × 2)
2 1 3 3HF|60LF (20 × 3)
3 1 2 3HF|40LF (20 × 2)
4 1 2 3HF|40LF (20 × 2)
5 1 2 3HF|40LF (20 × 2)
6 2 2 9HF|100LF (50 × 2)
7 2 2 9HF|100LF (50 × 2)
8 4 2 21HF|400LF (200 × 2)

For each testing case, the training sets of the HF and LF samples were randomly gen-
erated using the LHS method. The number of validation points varied across the examples,
with 100 points for the one-dimensional case and 10,000 points for the remaining numerical
cases. To ensure the accuracy of the resulting models, the LHS method was repeated
50 times for each number of HF samples, thereby mitigating the influence of the experimen-
tal design on the results. The average relative root mean square error (avgRRMSE) across
all these random runs was used to evaluate the overall error of the constructed models
in relation to the size of the HF dataset. Figure 6 presents a visual representation of the
average RRMSE for the different models as the number of HF samples varies.

Figure 6 reveals the consistent superiority of the EHK models in improving the average
RRMSE as the number of HF samples increases. Specifically, the proposed EHK methods
exhibited significant advantages over other models in tests 1, 2, 3, 4, 5, and 8. In tests 6
and 7, it was more challenging to definitively determine the winner between the EHK and
LRMFS models. Nonetheless, even in these cases, the EHK models consistently showed
smaller averaged RRMSE values compared to the LRMFS models, especially when dealing
with a limited number of HF samples. These compelling findings, derived from multiple
testing scenarios, validated the efficacy of the proposed EHK model in addressing data
fusion challenges involving high-dimensional data and multiple LF datasets. The EHK
model exhibited remarkable potential for enhancing accuracy and performance in such
intricate scenarios.
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4.3. Engineering Examples
4.3.1. Approximation of the Fluidized Bed Process

Dewettinck et al. [49] conducted a comprehensive study involving a physical ex-
periment and the development of associated computer models aimed at predicting the
steady-state thermodynamic operation of a GlattGPC-1 fluidized bed unit. This unit com-
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prised a base featuring a screen and air jump, complemented by coating sprayers positioned
along the unit’s sides. Quian and Wu [23] introduced a Bayesian hierarchical Gaussian
process model designed to concurrently analyze both experimental data and computer
simulations. Chen et al. [39] contributed to the analysis of the same dataset, offering
non-hierarchical multi-model fusion techniques, including WS, PC-DIT, and PC-CSC. In
a parallel effort, Zhang et al. [37] applied their proposed LRMFS approach to address the
same problem.

In this section, a comprehensive comparison was conducted to evaluate the effec-
tiveness of the proposed EHK method against six existing MFSM methods, namely ECK,
LRMFS, WS, PC-DIT, and PC-CSC, utilizing the reported datasets from the fluidized bed
process example. Furthermore, the influence of incorporating different LF datasets was
explored on the outcomes of the analysis.

The focus of this study was the determination of temperature (T2) at the steady-state
thermodynamic operational point within a fluidized bed process. This temperature is
subject to variation due to six key variables: the humidity, the room temperature, the
temperature of the air from the pump, the flow rate of the coating solution, the pressure
of atomized air, and the fluid velocity of the fluidization air. The foundational data for
the investigation has been sourced from prior research [23,49], which meticulously doc-
umented these six input variables and the corresponding responses. This dataset was
collected through a combination of experimental measurements and computer simulations,
encompassing a diverse range of 28 distinct process conditions. Notably, the experiments
featured the use of distilled water as the coating solution at room temperature. The analysis
placed a particular emphasis on several output variables, which were categorized into four
fidelity levels: T2,exp, T2,3, T2,2, and T2,1. Here, T2,exp was designated as the highest-fidelity
experimental response. In contrast, T2,3 reflected the most precise simulation, incorporating
adjustments to account for heat losses and inlet airflow. T2,2 offered intermediate accuracy,
considering adjustments associated with heat losses, while T2,1 represented the lowest level
of accuracy, devoid of any adjustments related to either heat losses or inlet airflow.

In previous research, Quian and Wu [23] limited their analysis to data derived from T2,2
and T2,exp. However, Chen et al. [39] took a more comprehensive approach by incorporating
additional data from a less accurate model, T2,1, to enhance their final predictions compared
to the work of Quian and Wu. The primary focus of this study was the prediction of the
high-fidelity dataset T2,exp using the EHK method, with datasets T2,1 and T2,2 serving as the
low-fidelity counterparts. All 28 runs of T2,1 and T2,2, along with the remaining 20 runs of
T2,exp, were utilized for training the approximation models. To validate the resulting models,
eight specific physical experiment runs, corresponding to T2,exp (specifically runs 4, 15, 17,
21, 23, 25, 26, and 28, as previously employed by Quian and Wu) were reserved as shown
in Figure 7. The correlation coefficients between the computer simulation datasets, T2,1
and T2,2, and the experiment dataset T2,exp were reported as 0.9754 and 0.9774, respectively.
These values indicated that the dataset T2,2 exhibited a slightly stronger correlation with
the experimental dataset T2,exp compared to T2,1.
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Figure 8 demonstrates the predictions of the EHK, ECK, and LRMFS models at eight
reserved validation points against the experimentally observed steady-state outlet air
temperatures. For the majority of validation points, both the EHK and ECK models closely
aligned with the y = x line, indicating a high degree of accuracy in their predictions, which
closely matched the observed values. In contrast, the predictions of the LRMFS model
exhibited lower accuracy.
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For a more in-depth assessment of the model performance, a comprehensive compari-
son of MFSM models with respect to various metrics was provided in Table 8. In addition
to comparing the proposed EHK model with the ECK and LRMFS models, previous works
from Chen et al. were also included for a comprehensive evaluation.

Table 8. Metrics of MFSM models in prediction of T2,exp at eight reserved validation points.

Methods EHK ECK LRMFS
Chen’s

WS PC-DIT PC-CSC

ρ1, ρ2 [0.1806, 0.7715] [0.1813, 0.7718] [0.278, 5.0078] / / /
nhyp 6 20 / 21 19 19
FEs 25,395 97,320 / / / /

+73.90% / / / /
RRMSE 0.0937 0.1084 0.6116 0.1065 0.0990 0.0996

/ +13.56% +84% +12.01% +5.35% +5.92%
RMAE 0.1878 0.2976 1.4323 / / /

/ +36.89% +86.88% / / /

In this example, the EHK model demonstrated a substantial reduction in the number
of tuning hyperparameters compared to other models. It consistently maintained a minimal
set of six hyperparameters, corresponding to the dimensions of the training data, regardless
of the number of incorporated datasets. In contrast, the ECK, WS, PC-DIT, and PC-CSC
models had a significantly higher number of hyperparameters, often exceeding that of the
EHK model by more than three times. This substantial difference in the number of hyperpa-
rameters led to a considerable increase in computational cost, measured in FEs, particularly
for the ECK model, which needed to estimate 20 hyperparameters. Consequently, the EHK
model achieved a notable 73.9% reduction in computational cost compared to the ECK
model, highlighting its computational efficiency. This efficiency can be attributed to the
advanced framework and model-processing algorithm inherent to the EHK method.
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Furthermore, estimated scaling factors, denoted as ρ1 and ρ2, associated with datasets
T2,1 and T2,2, respectively, in different models were provided. It was observed that the val-
ues of ρ2 were considerably larger than ρ1 in all EHK, ECK, and LRMFS models, indicating
that dataset T2,2 was assigned greater weight due to its higher fidelity. This correlation
between the values of scaling factors aligned with the reported values of the correlation
coefficients between the simulation datasets T2,1 and T2,2, and the experimental dataset
T2,exp. Lastly, the metrics of RRMSE and RMAE indicated that the EHK model attained
a slightly higher level of accuracy compared to the other approaches. In contrast, the
LRMFS model exhibited the poorest performance, despite having the lowest cost of model
processing. The EHK model’s reduction in the error metric RRMSE ranged from a maximal
value of 84% to a minimal value of 5.35% when compared with the LRMFS and PC-DIT
models, respectively. Regarding the RMAE metric, the comparison involved only the EHK,
ECK, and LRMFS methods since no estimation of the metric for the WS, PC-DIT, and
PC-CSC models was reported in the original work. The EHK model’s reductions in RMAE
over the ECK and LRMFS models were 36.89% and 86.88%, respectively. These findings
underscored the EHK model’s enhanced accuracy and efficiency in this particular analysis.

In conclusion, the EHK method has demonstrated its prowess as a formidable solution
for approximating the fluidized bed process, even when dealing with six-dimensional
and three-fidelity-level datasets. Its superior performance, when compared to existing
approaches, underscored its potential to revolutionize the field of engineering. EHK’s
precision and efficiency position it as a valuable tool for addressing complex engineering
design problems, offering innovative solutions, and driving progress within the industry.

4.3.2. Generation of Aerodynamic Models for an eVTOL Vehicle for Urban Air Mobility

In this application, the EHK method was employed to develop aerodynamic models of
six aerodynamic coefficients for an eVTOL-KP2 aircraft [50,51], including: drag coefficient
(CD), lift coefficient (CL), pitching moment coefficient (Cm), side force coefficient (CY),
rolling moment coefficient (Cl), and yawing moment coefficient (Cn). The tridimensional
depiction of the KP-2 design is illustrated in Figure 9, accompanied by a comprehensive
overview of its design characteristics provided in Table 9.
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Table 9. Design features of KP-2 aircraft.

Metrics Value

Empty weight 8.2 kg
Wingspan 2 m

Wing platform area 0.705 m2

Aspect ratio 7.19
Mean aerodynamic chord 0.2995

Fuselage length 1.4 m
Cruise speed 25 m/s

The input data consist of two independent variables, representing simulated flight
conditions: the angle of attack and the sideslip angle, denoted as α and β, respectively.
These variables were constrained within the ranges of −20◦ ≤ α ≤ 30◦ and 0◦ ≤ β ≤ 50◦,
while the simulation was conducted at a fixed velocity of 25 m/s. The initial training
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datasets were generated using three distinct analysis methods, each offering varying levels
of fidelity. The LHS method was employed to create sampling plans for the HF and LF
analyses. The HF dataset encompassed 80 sample points produced through CFD analysis
using ANSYS-Fluent 2020 R2 software, while the LF datasets were generated using the
HETLAS [52], AVL [53], and XFLR5 [54] analysis tools, resulting in three LF datasets, each
comprising 1300 sample points. It is worth noting that while HETLAS, AVL, and XFLR5
are considered low-fidelity analysis tools, they offer the advantage of producing a large
volume of data points, spanning a wide spectrum of flight conditions at a relatively modest
computational cost. The EHK method was applied in this study to construct surrogate
models of aerodynamic coefficients using varying numbers of CFD samples, ranging from
9 to 80 data points, as detailed in Table 10. To ensure the accuracy of the constructed
models and mitigate the influence of the design of experiments, the sampling was repeated
10 times for each number of CFD samples, randomly generating different CFD sampling
plans from the pool of 80 generated CFD data points.

Table 10. Domains and analysis methods for aerodynamic coefficients.

Analysis Tool
Variables

Initial Sample Points
α β

HETLAS [−20, 30] [0, 50] 1300
AVL [−20, 30] [0, 50] 1300

XFLR5 [−20, 30] [0, 50] 1300
Fluent [−20, 30] [0, 50] From 9 to 80

Figure 10 shows a 1/4-scale model of a KP-2 aircraft for simulation, and an unstruc-
tured mesh with 10,970,498 cells was applied for the CFD model. For the CFD analysis, a
3D model of the KP-2 aircraft was discretized into the numerical domain using the unstruc-
tured meshing method. The surface mesh was generated through Ansys Fluent meshing,
employing an unstructured triangle mesh. The dimensions of the computational domain,
depicted in Figure 10a, were set to 20 times the length of the fuselage in all directions. In
each simulation case, the aircraft was oriented to the respective α and β. The inlet boundary
condition enforced a constant velocity on the semi-spherical face of the domain and the
lateral wall of the cylinder. Pressure outlet boundary conditions were applied at the end of
the domain.

To enhance flow accuracy near the wall boundary layer, a 20-layer prism mesh with a
Yplus value set to 1 was applied on top of the surface mesh. The Yplus value dictates the
mesh’s ability to capture the boundary layer flow phenomena, representing the distance
of the first layer of the boundary layer mesh. This structured mesh was then extruded
into a volume mesh using a tetrahedral mesh configuration. Subsequently, for increased
convergence rates and reduced mesh size, the unstructured mesh was converted into a
polyhedral mesh using ANSYS Fluent 2020 R2 meshing, as illustrated in Figure 10b.

The three-dimensional compressible fluid flow is simulated using the Reynolds-
averaged Navier–Stokes (RANS) equations, assuming incompressible flow due to the
low Mach number achieved by the aircraft. For stall conditions, where the high angle of
attack may lead to boundary layer separation on certain zones of the aircraft surface, an
appropriate turbulence model capable of accounting for such separation is necessary. In
this analysis, the shear stress transport k–ω turbulent model was employed to simulate
the aerodynamics of the wing and the entire aircraft. The set of governing equations was
solved in Ansys Fluent using the SIMPLE algorithm for pressure–velocity decoupling [55].
The simulations were carried out on a computer featuring a configuration of an Intel®

Xeon® W-2265 CPU @3.50 GHz, 12 cores, and 128 GB of RAM. The total computational time
for the AVL and HETLAS cases amounted to a couple of hours, demonstrating efficient
processing. In contrast, the CFD cases necessitated approximately 320 h for completion,
indicating a significantly longer duration due to their computational complexity.
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Figure 11 illustrates the initial sampling plan with 9 CFD points. Moreover, an ad-
ditional 30 CFD points were randomly selected to validate the accuracy of the resulting
models. An error comparison in terms of average RRMS between the EHK, ECK, and
LRMFS models for aerodynamic coefficients regarding the number of CFD data points is
shown in Figure 12.
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Generally, it is observed that the accuracy of the aerodynamic models by different
methods was improved when the number of CFD points increased. The EHK models
exhibited the best performances in approximating aerodynamic coefficients compared to
the other models. The EHK and LRFMS models performed better than the ECK model
when the number of CFD samples was less than 24 points. However, the LRMFS model’s
accuracy was “saturated” after 24 CFD sample points. In contrast, the accuracy of the
EHK and ECK models continued to be significantly improved when the number of CFD
samples was higher than 24 points. With more than 24 CFD samples, the EHK model was
slightly better than the ECK models in the approximations of CD, CL, Cm, CY. The EHK
models significantly outperformed the ECK models for the approximations of Cn and Cl .
Furthermore, the computational times recorded for the EHK, ECK, and LRMFS models
across all testing cases were as follows: 15.388 s, 68.830 s, and 3.081 s, respectively.

Based on the previous investigations, it was consistently observed that the EHK model
exhibited a lower computational cost during the model processing compared to the ECK
model, primarily attributed to its reduced number of tuning hyperparameters. In the same
training conditions, the EHK models achieved a remarkable reduction in computational
time by 73% while maintaining higher levels of accuracy compared to the ECK models.
The importance of this efficiency gain becomes even more apparent when considering the
scalability and versatility of the EHK method. Whether applied on typical computer setups
or extended to tackle more complex engineering tasks featuring voluminous datasets, high
dimensionality, and the need for iterative model constructions, the EHK method’s efficiency
and computational savings are undeniable.

Figure 13 provides cross-sectional views of the resulting response surfaces for the lift,
drag, and pitching moment coefficients at a constant sideslip angle of β = 0. These surfaces
were constructed using 24 CFD samples and 2600 LF samples. The accuracy comparison
between the EHK model and other models was performed over ten repetitions, each involv-
ing 24 CFD samples. Evaluation metrics such as avgRRMSE and avgRMAE are presented
in Table 11. Remarkably, the LRMFS models achieved the lowest accuracy, despite their sub-
stantially lower computational costs in comparison to the other models. Furthermore, the
EHK models demonstrated a slight edge in accuracy over the ECK model while maintaining
a lower computational cost with an equal number of CFD training points.

In summary, the proposed EHK method stood out as an exceptionally efficient multi-
level MFSM approach, outperforming other state-of-the-art methods, including the LRMFS
and ECK models.
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Figure 12. Average RRMSE of aerodynamic models from 10 repetitions using different modeling
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ing moment coefficient, (d) side force coefficient, (e) rolling moment coefficient, and (f) yawing
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Figure 13. Comparison of prediction models (24 CFD samples and 2600 LF samples) with validation
data. (a) Lift coefficient, (b) drag coefficient, (c) pitching moment coefficient, (d) side force coefficient,
(e) rolling moment coefficient, and (f) yawing moment coefficient.
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Table 11. Accuracy metrics of approximation models from 10 repetitions regarding 24 CFD samples.

Coeff
avgRRMSE avgRMAE

EHK ECK LRMFS EHK ECK LRMFS

CD 0.099 0.102 0.142 0.293 0.364 0.269
+3% +43% +24% −8.2%

CL 0.0705 0.0713 0.221 0.189 0.212 0.588
+1.1% +213% +12% +211%

Cm 0.213 0.227 0.276 0.772 0.857 0.928
+6.5% +29.5% +11% +16%

CY 0.148 0.151 0.284 0.340 0.354 0.384
+2% +92% +4% +13%

Cl 0.220 0.255 0.314 0.456 0.445 0.600
+16% +43% −3% +32%

Cn 0.195 0.201 0.302 0.339 0.301 0.492
+3% +55% −11% +45%

5. Discussion

The aim of this research was to address data fusion problems in the field of aerospace
engineering where the size of the HF dataset is not excessively large, and the cost of the
model processing is manageable in comparison to expensive simulations. In such cases,
MFSM methods are commonly employed to combine multiple large-size LF datasets with
a smaller HF dataset due to the significant expense associated with obtaining HF data.
The primary objective of most MFSM methods is to minimize the number of costly HF
samples required to achieve a surrogate model with the desired level of accuracy. While
the performance of the proposed EHK model has been proven to be efficient across diverse
data scenarios, including multi-fidelity, multi-dimensional, and varying data sizes, the
incorporation of large-size LF datasets during the model construction introduces a certain
level of computational complexity. This complexity stems from the need to invert the
correlation matrix. Furthermore, challenges related to dimensionality, large-size datasets,
and a high number of LF models make the estimation of hyperparameters a non-trivial
task in high-dimensional optimization.

This article provided evidence that the EHK model significantly reduced the computa-
tional cost of the model processing while maintaining the desired level of accuracy. This
enables the incorporation of a much larger number of LF datasets with HF data compared to
state-of-the-art methods such as EHK, ECK, and LRMFS. Multiple investigations indicated
that the EHK model could effectively handle a considerable number of LF models and up
to 15,000 HF data points within a couple of hours using the GA optimizer on a computer
configuration consisting of an Intel® Xeon® W-2265 CPU @3.50 GHz, 12 cores, and 128 GB
of RAM. The computational time required for the model processing can be tolerated in
comparison to the time required for running simulations and generating HF data.

In situations where the HF dataset is large in size, the utilization of multi-fidelity
modeling methods to construct an accurate surrogate model of the HF data becomes
unnecessary. Instead, single-fidelity modeling methods such as RSM, RBF, and ANNs can
be directly applied to the HF samples to create a continuous approximation model. Notably,
ANN-based modeling methods exhibit high computational efficiency when dealing with
large-size data. However, they require a significant amount of HF data to achieve the
desired level of accuracy compared to conventional modeling methods [29]. Consequently,
selecting the most suitable modeling method to address any given data scenario remains a
challenging task.

To overcome the issue of computational efficiency when incorporating multiple large-
size datasets, the proposed EHK model incorporates the following critical features:

• The construction of LF models can be executed independently of the construction
of discrepancy functions, employing various modeling methods as needed. In this
approach, LF datasets can serve as pre-trained models before the training process with
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HF data commences. This approach results in a substantial reduction in the size of
the correlation matrix and the overall complexity of the model processing. In cases
involving large-size LF datasets, ANN-based modeling methods can be utilized to
construct LF models, thereby leveraging computational power to handle the challenges
associated with such data sizes.

• Scaling factors are transformed into functions of correlation parameters, leading to a
reduction in tuning hyperparameters. In the EHK model, hyperparameters are exclu-
sively related to the correlation parameters of the correlation basis function, regardless
of the number of LF models integrated. This streamlined approach significantly re-
duces computational costs when multiple LF models are incorporated, all without
increasing the algorithm’s complexity.

In conclusion, these pivotal features enhance EHK’s adaptability for future advanced
modeling methods and bolsters its scalability for tackling larger engineering problems.
The proposed EHK modeling method has been demonstrated to be highly efficient for
addressing data fusion problems in aerospace engineering, particularly when the size of
the HF dataset is not excessively large.

6. Conclusions

In this study, a novel EHK surrogate modeling methodology was proposed to construct
a global HF model by integrating original HF data and fusing multiple non-level LF datasets.
The advantages of the proposed EHK method were validated against several state-of-the-
art methods, through comprehensive investigations. These investigations encompassed
ten analytical examples and two engineering examples involving the approximation of
the fluidized bed process and the generation of aerodynamic models for the KP-2 aircraft.
The impact of multiple LF datasets, dimensionality, and the size of the HF dataset were
thoroughly examined. The results consistently demonstrated that the proposed EHK
method outperformed other conventional approaches in several key aspects:

• Accuracy: The EHK method yielded more accurate approximation models for various
testing functions characterized by multi-fidelity, multi-dimensionality, and diverse
landscapes, outperforming the state-of-the-art methods.

• Computational cost: The EHK method effectively addressed the challenge of incorpo-
rating multiple non-level LF models, achieving a more affordable computational cost
while maintaining the desired level of accuracy.

• Aerodynamic modeling: In the specific case of constructing aerodynamic models for
the KP-2 aircraft using multi-fidelity aerodynamic data, the EHK models provided
superior accuracy compared to the ECK and LRMFS models. Additionally, the EHK
model significantly reduced the computational time of the model processing by 73%
compared to the ECK model.

In conclusion, the proposed EHK method holds significant promise for applications in
aerodynamic problems and surrogate-based design optimization using high-dimensional
and multi-fidelity data. It is also well-suited for other research areas where multi-fidelity
computational codes are utilized. Building upon the current EHK method, future work will
focus on developing a multi-output multi-fidelity modeling approach aimed at enhancing
high-fidelity output by leveraging important information from associated low-fidelity
outputs. This approach is particularly relevant for constructing surrogate models for
physical systems with numerous inputs and outputs, commonly encountered in multi-
disciplinary design optimization problems.
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Glossary

Nomenclature
α Angle of attach, deg
β Sideslip angle, deg
σ2

d Process variance of discrepancy model
ρ Vector of scaling factors
ϕ(.) Correlation function, basic functions
µ Correction factor
θ Hyperparameter vector of correlation function
CL Lift coefficient
CD Drag coefficient
CY Side force coefficient
Cm Pitching moment coefficient
Cl Rolling moment coefficient
Cn Yawing moment coefficient
A, B, C Coefficients of Branin functions
f (x) Actual function
f̂ (x) Approximation function
F̂LF Matrix of responses of LF models at HF training points
L Number of low-fidelity datasets
m Number of dimensions
N Total number of training samples
nLF, nHF Number of LF and HF training samples
ns Number of scaling factors
nc Number of correlation parameter
ntest Number of testing points
nhyp Total number of tuning hyperparameters
O Computational complexity
r(x) Correlation vector
R Correlation matrix
S Dataset
ŝ2 Predicted error

T2
Temperature at the steady-state thermodynamic operational point with
Different fidelity levels, ◦C.

U∞ Velocity of free stream, m/s
x, x′ Independent variables
x Sampling plan
y Vector of response
y Mean of responses
Zd(.) Gaussian random process of discrepancy
Abbreviation
avgRRMSE Average relative root mean square error
EHK Extended hierarchical Kriging
ECK Extended co-Kriging
FEs Number of function evaluations of the likelihood function
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GA Genetic algorithm
HF High-fidelity values
MFSM Multi-fidelity surrogate modeling
MHK Multi-level hierarchical Kriging
LRMFS Linear regression multi-fidelity surrogate
LHS Latin hypercube sampling
LF Low-fidelity values
RRMSE Relative root mean square error
RMAE Relative maximum absolute error
STD Standard deviation

Appendix A

Table A1. Values of coefficient for generating LF Currin models.

Coefficient fLF,1 fLF,2 fLF,3 fLF,4 fLF,5 fLF,6 fLF,7 fLF,8

A 0.52 0.07 0.40 0.33 0.55 0.79 0.16 0.12
B 0.40 0.08 0.17 0.19 0.06 0.53 0.92 0.44
C 0.31 0.06 0.16 0.78 0.62 0.22 0.60 0.85

Table A2. Testing functions [35,38,39] used for the investigation in Section 4.2.2.

Case LF Response HF Response Input Range

1 fLF1 (x) = sin x + 0.1(x− π)2

fLF2 (x) = 1.2 sin x + 0.1(x− π)2 − 0.2
fHF(x) = sin x 0 ≤ x ≤ 2π

2
fLF1 (x) = 0.5 fHF(x) + 10(x− 0.5) + 5
fLF2 (x) = 0.4 fHF(x)− x− 1
fLF3 (x) = 0.3 fHF(x)− 10x + 1

fHF(x) = (6x− 2)2 sin(12x− 4) 0 ≤ x ≤ 1

3 fLF1 (x) = 0.5 fHF(x) + 10(x− 0.5) + 5
fLF2 (x) = 0.4 fHF(x)− x− 1 fHF(x) = (6x− 2)2 sin(12x− 4) 0 ≤ x ≤ 1

4 fLF1 (x) = (x−0.5)(x−4)(x−9)
20 + 2

fLF2 (x) = sin(x) + 0.2x + 0.5 fHF(x) = sin(x) + 0.2x + (x−5)2

16 + 0.5 0 ≤ x ≤ 10

5 fLF1 (x) = x(x− 5)(x− 12)/30
fLF2 (x) = (x + 2)(x− 5)(x− 10)/30 fHF(x) = sin

(
πx
5
)

0 ≤ x ≤ 10

6
fLF1 (x) = fHF(0.7x1, 0.7x2) + x1x2 − 65
fLF2 (x) = fHF(0.8x1, 0.6x2) + x4

1 + 32
fHF(x) = 4x2

1 − 2.1x4
1 +

x6
1

3 + . . .

+x1x2 − 4 + 4x4
2

x ∈ [−2, 2]2

7
fLF1 (x) = − sin x1 − e

x1
100 + 10.3 + . . .

+0.03(x1 − 0.3)2 + (x2 − 1)2/10

fLF2 (x) = − sin 0.9x1 − e
0.9x1
100 + 10 + 0.64x2

2/10
fHF(x) = − sin x1 − e

x1
100 + 10 + x2

2/10 x ∈ [0, 1]2

8
fLF1 (x) = 0.79

(
1 + sin x1

10

)
fHF(x)− 2x1 + x2

2 + x2
3 + 0.5

fLF2 (x) = fHF(x) + ex3/2 − x1/10
fHF(x) =

x1
2

(√
1 +

(
x1 + x2

3
)

x4/x20
1

)
x ∈ [0.5, 1]4
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