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Abstract: Recently, artificial intelligence and data science have witnessed dramatic progress and
rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov
Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-end Recurrent
Neural Network (RNN) toolkits were developed with higher speed and accuracy that can often
achieve a Word Error Rate (WER) below 10%. These toolkits can nowadays be deployed, for instance,
within aircraft cockpits and Air Traffic Control (ATC) systems in order to identify aircraft and
display recognized voice messages related to flight data, especially for airports not equipped with
radar. Hence, the performance of air traffic controllers and pilots can ultimately be improved by
reducing workload and stress and enforcing safety standards. Our experiment conducted at Tangier’s
International Airport ATC aimed to build an ASR model that is able to recognize aircraft call signs
in a fast and accurate way. The acoustic and linguistic models were trained on the Ibn Battouta
Speech Corpus (IBSC), resulting in an unprecedented speech dataset with approved transcription that
includes real weather aerodrome observation data and flight information with a call sign captured
by an ADS-B receiver. All of these data were synchronized with voice recordings in a structured
format. We calculated the WER to evaluate the model’s accuracy and compared different methods
of dataset training for model building and adaptation. Despite the high interference in the VHF
radio communication channel and fast-speaking conditions that increased the WER level to 20%, our
standalone and low-cost ASR system with a trained RNN model, supported by the Deep Speech
toolkit, was able to achieve call sign detection rate scores up to 96% in air traffic controller messages
and 90% in pilot messages while displaying related flight information from ADS-B data using the
Fuzzy string-matching algorithm.

Keywords: ATC; ASR; HMM; DNN; RNN; WER; VHF; ADS-B; METAR; GMTT; speech corpus; deep
speech; call sign detection; levenshtein distance; fuzzy string matching

1. Introduction

The purpose of Air Traffic Control (ATC) is to ensure the safe and efficient movement
of aircraft within a specific controlled airspace. It helps prevent collisions between different
aircraft and between aircraft and the surrounding obstacles, maintaining the order of
air traffic and allowing quick support and collaboration in case an aircraft declares an
emergency [1].

Air traffic controllers monitor the position of any aircraft assigned to their airspace
and ensure aircraft separation and distancing using primary or secondary radars. The
communication with pilots is ensured via Very High Frequency (VHF) radio equipment.
Any change in the aircraft’s heading or assigned flight level is subject to ATC approval,
which ensures the appropriate horizontal and vertical separation between aircraft on the
ground or in the controlled airspace is thoroughly respected.
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L. Rabiner [2] defined ASR as “as a technology that involves the conversion of speech
signals into a sequence of words by a computer program”. Every ASR system should
consider the type of speech recognizer, which can be speaker-dependent or speaker-
independent. The first type requires prior training for each user to create voice patterns for
hypothesis comparison. This kind of system is more accurate and has better performance.
It can be designed for voice command solutions with limited vocabulary pronounced in
the flight cockpit. Our application, dedicated to Air Traffic Control Officers (ATCOs), aims
to recognize the pilot’s spoken message and display flight data captured by the ADS-B
receiver. It is a multi-user system or a speaker-independent recognizer, where the imple-
mentation is more complex considering the variety of accents and mispronunciations. It
thus requires more hardware capabilities, such as memory and processor speed. In the
given conditions, such systems could not achieve an accuracy lower than 10% word error
rate (WER) [3].

In this paper, we introduce an ASR based on DNN, a new end-to-end RNN, and the
Fuzzy string-matching algorithm to enhance ATC efficiency by reducing cognitive work-
load in dense traffic situations, especially in airports not equipped with radar. We use an
Automatic Dependent Surveillance-Broadcast (ADS-B) receiver to provide captured flight
data of all surrounding aircraft synchronized with recorded VHF voice communication.
After training the ATC datasets and generating both acoustic and language models, the
ASR system was able to recognize, with a reasonable WER, the spoken pilot message by
matching it with the decoded call sign from ADS-B data. This threshold rate matching
enables the call sign detection and display of flight-related information for ATCOs, such as
speed, heading, altitude, distance, and bearing to the airport.

2. Related Work

D. Becks [4] briefly reviewed the state of the art of automatic speech recognition
systems with types and modes of operation. Additionally, Georgescu [5] provides a
comparison study between ASR performance and hardware requirements.

Recently, the FAA’s (Federal Aviation Administration) final report on ASR method-
ologies [6] concluded that transformers have had a significant impact on audio and NLP
fields, and their innovative architecture has been successfully integrated into various
algorithms [7].

Since 1980, considerable progress has been made in ASR and applied to the ATC
domain. A good description of the state-of-the-art ASR systems and their application for
ATC was provided by Van Nhan Nguyen [8].

2.1. ASR in ATC

Van Nhan Nguyen [8] described three ASR systems. The Hidden Markov Model
(HMM) approach has been the most widely used technique for the last two decades. It
is a simple and efficient solution with automatic training, but its main weakness lies in
discarding information about time dependencies. A hybrid approach was introduced to
overcome this weakness of HMM. This approach combines an Artificial Neural Network
and a HMM. A recognition accuracy rate of 94.2% was achieved by Wroniszewska [9]
using the K-Nearest Neighbor (KNN) classifier and Genetic Algorithms (GAs). Finally, an
interesting approach was proposed by Beritilli [10] using Dynamic Time Warping (DTW)
and Vector Quantization-Weighted Hit Rate (VQWHR), which is a robust solution for noisy
environments such as ATC.

Although the hybrid approach combines different algorithms and techniques, chal-
lenges in ASR systems still exist. To address issues such as poor signal quality from
VHF communication, ambiguity in commands and instruction values, or the use of non-
standard phraseology and mispronunciation in different accents (native and non-native
speakers) [11], a new approach based on utilizing contextual information is introduced
to improve the performance and accuracy of ASR in ATC as a post-processing approach
based on syntactic, semantic and pragmatic analysis.
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2.2. Contextual Knowledge in ATC

Syntactic and semantic analyses [12,13] consist of parsing the result of recognized
words from ASR systems and eliminating invalid sentences or words by respecting gram-
matical rules highly inspired by ICAO standard phraseology. It helps correct misrecognized
out-of-vocabulary words with similar ones from valid words of the ATC vocabulary. Se-
mantic analysis is the process of testing the meaning of sentences. It can help resolve
ambiguity and recognize words despite background noises [14].

2.3. Call Sign Detection (CSD)

The ability of an ASR system to detect accurate call signs in ATC communication is
measured by the CSD rate. In 2018, in collaboration with IRIT (Institute for Research in
Informatics of Toulouse) and Safety Data-CFH, Airbus organized a challenge for 22 teams
for automatic speech recognition in ATC and call sign detection [15]. The Airbus dataset
consisted of 40 h of manually transcribed voice communication with various accents
and a high speech rate over noisy radio channels. The best result achieved was a 7.62%
WER and 82.44% CSD rate, scored by the VOCAPIA-LMSI team. In 2020, the ATCO2
project [16] added an NLP module to extract the call sign from a recognized spoken
utterance matched with surveillance data (ADS-B and radar) and improved the WER from
33% to 30%. The results showcased in [17,18] reported up to 60.4% relative improvement
in call sign recognition by boosting call sign n-grams with the combination of ASR and
NLP methods to use surveillance data. Finally, by leveraging surveillance information,
Blatt, A et al. [14] significantly improved the accuracy of call-sign recognition in noisy air
traffic control environments. The model showed a 20% improvement compared to existing
methods. The study by Shetty et al. 2022 [19] focused on command extraction, including
the recognition of call signs as part of the semantic meanings of ATCo utterances. Their
study emphasized the importance of correctly interpreting various command components,
showing that call sign recognition can be achieved within 20 ms after full call sign has
been uttered, making it feasible for live data use. The research used gold transcriptions to
achieve call sign recognition rates above 95% and error rates below 2.5%. With automatic
transcriptions, they obtained recognition rates between 92 and 98% and error rates below
5% for most datasets. Finally, Garcia et al. 2023 [20] focus on how ASR can assist air traffic
controllers (ATCos) and flight crews (FCs) in their communication. It describes a project
under the SESAR2020 solution for ASR in call sign recognition, which was a collaboration
between Enaire, Indra, CRIDA, and EML Speech Technology GmbH. The ASR highlights
call signs on the ATCo screen to improve situational awareness and safety. The recognition
rates for this system were around 84–87% for controllers and 49–67% for flight crews.

3. Automatic Speech Recognition Pipelines
3.1. Conventional Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the assignment of transducing raw audio sig-
nals of spoken language into text transcriptions. It is based on statistical pattern-matching
using a combination of acoustic and language models, which depends on the complexity of
the application. This discussion covers the history of ASR models, from Gaussian Mixtures
(GMMs) and Hidden Markov Models (HMMs) to attention-augmented DNNs. The ASR
architecture is represented in Figure 1.
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Figure 1. ASR architecture.

3.1.1. Acoustic Model

With reduced vocabulary, the acoustic model converts pronounced words into phonemes
as minimal digital units. The speech processor compares the latter with stored word
patterns until it matches the spoken utterance. However, in a complex situation, as in
connected or continuous speech recognition, the analog voice signal is converted to digital
format, typically using a 16 kHz sampling frequency. For feature extraction, the digital
signal is transformed into the frequency domain using the Fast Fourier Transform (FFT).
Subsequently, standard techniques [21], such as Linear Predictive Coding (LPC) and Mel
Frequency Cepstral Coefficients (MFCCs), are applied. The feature numbers are determined
by comparing the resulting frequency graph with stored known sounds, which allows the
referencing of each phoneme found.

However, in circumstances involving a speaker with a specific accent and the noisy
environment of flight cockpits and radio communications, those feature numbers cannot
identify a unique sound to become a particular phoneme. The solution is to use probability
techniques such as Hidden Markov Models (HMMs) that represent each phoneme and use
feature numbers’ probabilities to calculate the transition state’s likelihood (high probability).

Recently, many techniques [22] based on neural networks (NNs) have been deployed
to replace the GMM and HMM by combining recurrent and convolutional neural networks
to predict states efficiently [21].

3.1.2. Language Model

The English language contains 44 phonemes; every word is a sequence of phonemes
with a large number of phonetic spelling possibilities. To overcome this problem, we gener-
ated a pronunciation dictionary of 907 unique words vocabulary from all ATC datasets,
known as a lexicon. All probable words delivered by the acoustic model are compared in a
second N-gram model [23] or an NN called a language model [24], which can predict the
next word from a set of preceding words by following standard grammatical rules. Finally,
a search engine combining all models can decode and continually recognize the most likely
word sequence.

The aim of the speech recognizer engine is to find the most probable word Ŵ given an
acoustic signal X as input.

Ŵ = argmax W P(W|X) (1)

P(W|X) is the probability that the word W was uttered, knowing that the evidence X
was observed.



Aerospace 2024, 11, 32 5 of 17

Equation (1) can be rewritten using Bayes’ law, as shown in Equation (2):

P(W|X) =
P(X|W) · P(W)

P(X)
(2)

P(W) is the probability that the word W will be uttered, P(X|W) is the probability that
the acoustic evidence X will be observed when the speaker speaks the word W, and P(X) is
the probability that X will be observed.

So, P(X) can be ignored as P(X) is not dependent on the selected word string. Conse-
quently, Equation (1) can be written as Equation (3):

Ŵ = argmax W P(W)P(X|W) (3)

where P(W) is determined by the language model, and P(X|W) is determined by the
acoustic model.

3.2. End-to-End Speech Speech Recognition

For optimization purposes and simplification of the training process of different
models, new end-to-end models are deployed for ASR [25]. It typically uses a type of
neural network called deep neural network (DNN) or recurrent neural network (RNN)
architecture. It is trained on large amounts of audio data with corresponding transcriptions.
It has been proven effective at transcription in many cases, especially in a noisy environment,
and can potentially simplify the ASR pipeline. The end-to-end model can directly decode a
feature-extracted X from spoken utterance to a sequence of words Y+ by integrating the
acoustic and the language model in one process, as shown in Figure 2; it is most often used
in a reduced and noisy dataset. Moreover, there is a possibility of including an optional
language model called a scorer to perform the best results.
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We notice that Connectionist Temporal Classification (CTC) [26] is the most popular
training approach.

4. ATC Speech and Contextual Data Specification
4.1. ATC Communication

The standard communication, known as International Civil Aviation Organization
(ICAO) Standard Phraseology, specifies all exchanged messages in Radio Telephony Com-
munication (RTF) between air traffic controllers and pilots in controlled airspace, as well
as in face-to-face communication between pilots and aerodrome staff in addition to the
communication between pilots in the cockpit [27]. Primarily based on English or the
national language, the pronunciation will be distinct between native and non-native En-
glish speakers. In some high-traffic situations, ATCOs must speak quickly to provide
information and instructions for all aircraft in their allocated airspace [28]. Consequently,
any recognizer system will return some broken or missing words due to the high speech
rate and noisy radio signals from VHF transmission [29]. However, in some cases, it is
possible to compensate for incorrect words by using the standard phraseology, as shown
in Table 1, in addition to the structured contextual data such as a Meteorological Airport
Report (METAR) and ADS-B flight information.
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Table 1. Example of ICAO phraseology.

Message

Tower Aircraft (Call Sign) Information Request Instruction

Pilot Tangier Approach ARABIA six four niner Descending flight level seven
zero

Request visual approach
runway 10

Aircraft (call sign) Tower Information Instruction

ATCo ARABIA six four niner Tangier Approach Negative, last wind two seven
zero degrees 25 knots

Report established for ILS
approach runway 28

Table 1 shows the structured and precise nature of aviation communication exchange
between the pilot and ATCO. Initially, the pilot, communicating with the Tangier Approach,
identifies their aircraft as ARABIA six four niner and informs the tower that they are
descending to flight level seventy FL70. The pilot then requests permission for a visual
approach to runway 10. This request is part of standard aviation protocol, where pilots
provide their current status and express their intended maneuvers. In response, the ATCO
addresses the aircraft with the call sign ARABIA six four niner, indicating that the request
is denied, possibly due to wind conditions, which are reported as two seven zero degrees at
25 knots. Instead of the requested visual approach, the ATCO instructs the pilot to prepare
for an Instrument Landing System (ILS) approach for runway 28 and to report back once
established on this approach. This exchange highlights the dynamic and responsive nature
of air traffic communications, where ATCOs provide critical instructions and adjustments
based on real-time conditions and operational requirements, ensuring the safety and
efficiency of aircraft operations. The dialogue reflects the essential characteristics of air
traffic communication: clarity, conciseness, and the conveyance of necessary information
for the safe conduct of flights.

4.2. ADS-B Data and Call Sign

Automatic Dependent Surveillance Broadcast (ADS-B) is a technology for monitoring
aircraft via satellite information. It improves the efficiency and safety of aircraft on the
ground as well as in the air. It contains the flight call sign decoded in 3 letters and numbers
for commercial flight, or equal to the aircraft registration number for private and general
flights as shown in Table 2, speed, altitude, vertical speed, heading, and GPS latitude
and longitude, as shown in Table 3. It is becoming the preferred method of real-time
surveillance for ATC. Because of its reduced cost and valuable information on the call sign
code, it is well suited for our application concept of ASR systems as the primary key for
pilot message identification.

Table 2. Call Sign annotation.

Call Sign Annotation Designator Transcription

RAM982 RAM royal air maroc niner eight two/air
maroc niner height two

MAC146T MAC arabia maroc one four six
tango/arabia one four six tango

CNTAV charlie november tango alfa
victor/charlie alfa victor

In Table 2, the provided call sign annotation data showcase the intricate and standard-
ized method of communication in air traffic control, particularly in articulating aircraft call
signs. For instance, the call sign RAM982 is designated as “RAM”, and its transcription
unfolds as “Royal Air Maroc Niner Eight Two”. This transcription method, where numbers
are spoken phonetically, is crucial for clarity, particularly in initial radio communication,
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where precision is paramount. Later, the call sign transcription can be reduced for more
straightforward pronunciation. Similarly, MAC146T, designated “MAC”, is transcribed
as “Arabia Maroc One Four Six Tango”. Each number and the letter ‘T’ (Tango) are pro-
nounced individually, denoting a specific flight or route. The third example, CNTAV,
despite lacking a clear designator, is transcribed using the phonetic alphabet as “Charlie
November Tango Alpha Victor”. Each letter is articulated using a corresponding word from
the phonetic alphabet, ensuring each character is unmistakably understood in potentially
noisy or disrupted communication environments. These examples highlight the critical
importance of standardized and clear communication in aviation, especially in identifying
aircraft, where even minor miscommunications can have significant implications for air
traffic safety and efficiency.

Table 3. Example of ADS-B data.

Date Time Call Sign Radar Alt Speed Head Vertical Lat Lon

6 July 2021 08:42:51 RAM982 5320 9000 ft 580 kt 320◦ 80 ft/min 35.46 −7.48

4.3. METAR

METAR is a weather observation report for an aerodrome and is periodically gener-
ated every 30 min. It contains wind direction and speed data, temperature, dew point,
cloud cover and heights, visibility, and barometric pressure. Aircraft pilots and controllers
primarily use it to determine runway-in-use and flight rules during takeoffs or landing op-
erations.

Table 4: Example of METAR report shows an example of a weather report of Tangier
Aerodrome made on 10/06/2021 at 10:30 UTC. The conditions were 15 kt wind from the
west with gusts up to 30 kt, temperature of 14 ◦C, 84% humidity, a pressure of 1012 hPa,
visibility of 7000 m, and few clouds at a height of 3000 ft. No significant changes occurred
in the next two hours.

Table 4. Example of METAR report.

Aero-Drome Day/Time Wind
Direction/Speed Visibility Clouds Temp/Dew Pressure

GMTT 101,330 Z 27015G30KT 7000 FEW020 14/12 Q1012 NOSIG

5. Methodology and Materials

Our methodology using ASR in the specific domain of ATC involves several steps;
the process begins with dataset collection for training and recording new actual speech
corpus IBSC for testing; this includes communication between pilots and ATCOs, such as
those with ground control and tower control, under different conditions, including varying
levels of clarity, background noise, and accents. Once collected, the audio data need to be
preprocessed. This stage involves cleaning the audio by reducing noise, normalizing audio
levels, and segmenting it into smaller, manageable parts for easier processing. The next step
is the accurate transcription of these audio files. This process is crucial and should include
not only verbal communication but also annotations for non-verbal elements like flight
and metrological information from ADS-B and METAR data, which is especially important
in the context of ATC communications. The core of our research will involve training our
chosen ASR model using the annotated data with two different toolkits based on DNN
and RNN architecture. This process might require substantial computational resources
and time. It is crucial to regularly validate and test the model with a separate dataset to
ensure its accuracy. Special attention will be paid to how the model performs under various
challenging conditions, like heavy accents, rapid speech, and noisy environments. In terms
of evaluation and based on the results of our tests and validations, the model may need to
be refined; this could involve adapting it with ATC data, tweaking the model parameters,
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or experimenting with different sets of features. Finally, the goal in the context of ATC
is to achieve the highest possible accuracy and reliability, particularly under challenging
conditions, due to the critical nature of ATC communications.

For call sign detection, we will implement fuzzy string matching, which is particularly
important in fields like automatic speech recognition using the Levenshtein algorithm. This
method centers on calculating the number of edits-insertions, deletions, or substitutions
needed to transform one string into another. This algorithm is readily available in many
programming languages; Python offers libraries like Fuzzy Wuzzy for this purpose [30].
We set a matching threshold based on our accuracy needs—a lower threshold means more
lenient matching, while a higher one requires a closer match. We applied the algorithm
to our dataset, compared each string to our target string ASR hypothesis, and calculated
the similarity score. The results were evaluated and adjusted to finetune the threshold
parameter of the algorithm as necessary.

5.1. Data Collection: The Ibn Battouta Speech Corpus

The Ibn Battouta Speech Corpus is a synchronized dataset of voice communication
between pilots and ATCOs with weather observation data originated from Tangier’s airport
and current activated aircraft flight information [31], which has a very rich pronunciation
accents of native and nonnative speakers thanks to its vital geographic position linking
different airspaces from Morocco (GMMM, GMTT), Spain (LEZL), and Gibraltar (LXGB).
The purpose is to detect and record audio speech with various accents and related captured
ADS-B data plus METAR report provided by the NWS Server [32], as described in Figure 3.
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Figure 3. Ibn Battouta dataset architecture.

The voice recording was obtained with Voice Activity Detection (VAD) [33] at a rate of
16 kHz from the VHF receiver [34] tuned to the airport frequency connected to the worksta-
tion’s audio input. At the same time, the ADS-B receiver provided by AirNav System [35]
logs flight data, as shown in Figure 4, including the call sign code of activated aircraft with
approximately 200 Nm circumference. In addition, a weather report is saved separately
after downloading updated data from the US National Weather Service (NWS) Server.
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5.2. Transcription and Logging

All utterances were transcribed and manually annotated by real pilots and ATCOs who
authored this paper [36]. It is a time-intensive task that requires ten man-hours to transcribe
one hour of speech. In order to estimate the distance and radial information, which are
frequently requested by ATCOs from pilots, we integrated a Python 3 code-based program
into the flight data from the ADS-B receiver using the Haversine formula [37] to calculate
and save the distance and bearing between the aircraft GPS position and D-VOR installed
on the Tangier airport runway. The call sign, date, and time are tagged in transcription files
to enhance context-free grammar. Table 5 summarizes the dataset characteristics.

Table 5. The Ibn Battouta dataset characteristics.

Speaker Gender
Total

Pilot ATCO Female Male

Number of
utterances 992 1500 544 1948 2492

Duration (sec) 5416 10,040 3720 11,736 15,456

Number of words 12,936 22,224 8084 27,076 35,160

Signal Average (dB) 106 95 90 102 101

Aircraft Call Sign 832 1180 440 1572 2012

The Ibn Battouta dataset is a rich and complex collection of communications in the
air traffic control context, encapsulating a wide array of spoken interactions between
pilots and air traffic control officers (ATCOs). It comprises a total of 2492 utterances,
divided between 992 from pilots and 1500 from ATCOs, indicating the more extensive
communicative role of ATCOs in managing airspace. Notably, the dataset reveals a gender
imbalance in communication, with female speakers contributing 544 utterances against
1948 from male speakers, highlighting the male predominance in this sector. The total
duration of these communications is 15,456 s (4 h 20 min), with pilots accounting for 5416 s
and ATCOs for a larger share of 10,040 s, reflecting the extensive and detailed nature of
ATCO communications. Regarding word usage, the dataset records 35,160 words, with a
significant portion (22,224 words) used by ATCOs, further emphasizing the complexity
of their verbal exchanges. The signal strength, measured in decibels, averages 101 dB
across the dataset, with a higher average for pilots (106 dB) compared to ATCOs (95 dB),
possibly due to different communication environments or equipment. The dataset also
includes a diverse array of 2012 aircraft call signs, with pilots using 832 and ATCOs 1180,
adding to the complexity of speech recognition challenges in this domain. Overall, the Ibn
Battouta dataset offers invaluable insights into linguistic characteristics and communicative
dynamics in air traffic control.
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5.3. Datasets of Training and Adapting Models

We collected the following available ATC datasets with different accents and en-
vironments (real operational and laboratory simulation) for model training phases, as
summarized in Table 6.

Table 6. Dataset splitting for model training.

Data Set Accent Environment Utterance Duration Call Sign
Annotation

Training
(103 h)

46,732 utterances

LDC94S14A [38] USA Operational 25,120 60 h No

ZCU_CZ [39] Czech Operational 6435 15 h No

ATCOSIM [40] FR/DE/CH Simulation 8078 8 h No

HIWARE [41] FR/GK/ES/IT Simulation 7099 25 h No

Validation (21 h)
10,024 utterance Mixed/Unseen Mixed Mixed 10,024 21 h No

Test (11 h)
5382 utterances

ATCO2 [42] CZ/DE/CH/AU Operational 2890 6 h 2817

IBSC MAR/ES/FR/EN Operational 2492 5 h 2012

This dataset is specifically tailored for research in automatic speech recognition within
the air traffic control sector, comprising a diverse range of accents, environments, and
operational scenarios. It is segmented into three primary sections: training, validation,
and testing, cumulatively spanning 135 h. The training set, with a substantial 103 h of
audio, incorporates a wide array of utterances from the USA, Czech Republic, and a
mix of countries like France, Germany, Switzerland, Greece, Spain, and Italy, covering
both operational and simulation environments. The validation set offers a 21 h mixed
compilation from unseen sources in varied environments. Lastly, the testing segment,
totaling 11 h, includes specific datasets like ATCO2 and IBSC, representing a range of
Morocco and Spain airspace in operational settings like En route and approach flight
situations. This section is unique as it includes call sign annotation.

5.4. Vocabulary and Accuracy

A limited or medium ATC vocabulary size, estimated at around 500 words, and the
standard phraseology of ATC grammar with its substantial semantic restrictions both allow
better accuracy by increasing the probabilities of valid words and their sequences despite
the noisy environment and high speech rate.

The word error rate (WER) is the standard metric for measuring the accuracy of any
ASR system [43,44]. It is calculated using the formula given in Equation (4):

WER =
I + D + S

N
(4)

where I is the number of insertions, D is the number of deletions, S is the number of
substitutions, and N is the number of words in the sentence.

The Real-Time Factor (RTF) is included to measure the speed of ASR. It can be com-
puted using the ratio expressed in Equation (5):

RTF = P/I (5)

where P is the necessary time to process an input of duration I.

5.5. Fuzzy String-Matching

For call sign detection, we applied a string-matching algorithm called the Fuzzy,
which determines the closeness of two strings. It is a technique used to identify two
elements of text strings that match partially but not precisely. This algorithm is based on the
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Levenshtein distance [45], a metric that evaluate the dissimilarity between two sequences
of words. This measure calculates the least number of modifications required to transform
one sequence of words into another.

Mathematically, the Levenshtein distance between two strings a, b is given by
leva,b(|a|, |b|) in Equation (6), where:

leva,b (i, j) =


max(i, j) i f min(i, j) = 0,

min


leva,b (i − 1, j) + 1
leva,b (i, j − 1) + 1

leva,b (i − 1, j − 1) + 1(ai ̸=bj)

otherwise
(6)

where 1(ai ̸=bj)
is the indicator function equal to 0 when ai = bj, and equal to 1 otherwise.

A threshold value will be determined during the experimentation to assess the simi-
larity ratio of the string matching between ADS-B Call Signs and Hypothesis transcription.

6. Experimentation
6.1. Overview

In our experiment employing the IBSC, we searched for the call sign in recognized
messages in all ADS-B line data stored and synchronized with voice utterances. The call
sign code in ADS-B data was parsed using an airline call sign designator database [46] from
the International Air Transport Association (IATA) and phonetic transcription. The highest
score of string matching allows the appropriate call sign to be identified.

We used the Pocketsphinx toolkit [47] with HMM-DNN topologies and the Deep
Speech recognition toolkit [48] based on a Recurrent Neural Network (RNN) for training,
adapting, and testing the IBSC dataset on an HP Z4 workstation equipped with an Nvidia
GeForce RTX 2070 GPU for training acceleration, and Ubuntu 18.04 as the OS.

Precisely, we implemented the Mozilla Deep speech version 0.9.3; the RNN is fully
connected and has bidirectional layers with 512 hidden units per layer. Initially, it contains
three layers with clipped rectified-linear (ReLU) activation, a Long Short-Term Memory
(LSTM) layer, followed by another layer with ReLU activation. Lastly, it is capped by a soft-
max classifier to predict the most likely alphabet letter at each point in an audio utterance.

6.2. Experimental Setup

First, we trained [49,50] two new acoustic models with five hidden layers using the
Pocketsphinx toolkit and the Deep speech toolkit with TensorFlow. We then adapted [51,52]
each toolkit′s default English model with all ATC datasets, as indicated in Table 6. For
audio data representation, we computed spectrograms of 80 linearly spaced log filter banks
and an energy term. The filter banks were computed over 20 ms windows with strides of
10 ms each. The language model was a 3 g model with a 907 unique words vocabulary
from all ATC datasets, which contained 55,338 utterances with a total duration of 128 h,
and from the AirNav Systems database history, from which the call sign was extracted and
decoded. To enhance and train this language model using the SRLIM toolkit [53], we added
all air waypoints from Morocco, Spain, and Gibraltar’s nearby airspaces and decoded
meteorological reports, in addition to all existing commercial and private company call sign
designator [54]. Finally, it took about 32 h to train each new acoustic model for 200 epochs.

For call sign detection, we used a pragmatic analysis based on ADS-B data, including
flight information, to detect the call sign in a recognized pilot message that represents
essential information for ATCOs to identify the aircraft; we implemented the fuzzy Wuzzy
Python function using the token_set_ratio () method [55]. It returned the highest similarity
ratio score for fuzzy string matching in all ADS-B data lines stored in the dataset for each
recognized utterance.
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6.3. Results and Discussion

After training, adapting, and following the assumptions given above, our ASR model
was tested on a different corpus from Morocco, Spain, and Gibraltar airspaces to cover
different accents, airspace information, and role speakers, as shown in Figure 5.

In an analysis of two prominent ASR models, PocketSphinx and Deep Speech, applied
to a dataset of air traffic control communications, distinct trends emerge in their perfor-
mance across various metrics. Both models were evaluated under three distinct training
conditions: pretrained English, trained on ATC only, and adapted pretrained English +
ATC on three key metrics:

• word error rate (WER) as defined in (4).
• fuzzy string-matching ratio given by the percentage of similarity between two strings.
• and call sign detection rate which gives the percentage of correct call signs detected

among total transcribed utterances.

The baseline results of model training and adapting ATC data sets are shown in
Table 7.

Table 7. Model training and adaptation.

Model Word Error
Rate

Fuzzy String-Matching
Ratio

Call Sign
Detection Rate

ATCO PILOT Both ATCO PILOT Both ATCO PILOT Both

Pocket
sphinx

HMM-DNN

Pretrained English 83% 91% 87% 17% 09% 13% 0% 0% 0%

Trained on ATC only 14% 20% 17% 68% 60% 64% 94% 84% 89%

Adapted Pretrained
English + ATC 11% 13% 12% 78% 68% 73% 95% 87% 91%

Deep Speech
RNN

Pretrained English 81% 89% 85% 27% 19% 23% 0% 0% 0%

Trained on ATC only 10% 12% 11% 80% 66% 73% 93% 89% 91%
Adapted Pretrained

English + ATC 08% 10% 09% 85% 77% 81% 96% 90% 93%

For PocketSphinx, the pretrained English model trained on approximately 6500 h of
data not related to the ATC condition showed in Table 7 high WERs (83% for ATCO, 91%
for the pilot, and 87% overall) and low fuzzy string-matching ratios (17% for ATCO, 9% for
the pilot, and 13% overall), along with a 0% call sign detection rate across all categories.
However, when trained exclusively on ATC data, there was a substantial improvement
in all metrics, with the call sign detection rate reaching as high as 94% for ATCO, 84% for
the pilot, and 89% overall. The adaptation of pretrained English with ATC data further
enhanced performance, reducing WERs to 11–13% and increasing the fuzzy string-matching
ratio to around 70–78%.

Deep speech mirrored these trends but with consistently better outcomes. Under
the pretrained English condition, it had slightly lower WERs and higher string-matching
ratios than PocketSphinx but still had no call sign detection. Training on ATC data alone
introduced significant enhancements, especially in call sign detection, reaching up to 93%.
The adaptation of pretrained models with ATC data yielded the best results, with WERs
dropping to as low as 8–10%, fuzzy string-matching ratios climbing to 81–85%, and call
sign detection rates peaking at 93–96%.

Overall, these results clearly demonstrate that both PocketSphinx and Deep Speech
significantly improve accuracy and reliability when trained on ATC-specific data, with
Deep Speech showing slightly superior performance in all tested scenarios.

The results show that, in general, for low-resource data, adapting the pretrained
default English model offers better performance [56] than training a new model, and using
the RNN Deep Speech toolkit achieved better results in noisy environments, especially
in-flight cockpit pilot transmission. Because the ATC dataset has a short duration, the
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model does not need to increase the depth parameter, as it may lead to overfitting. For
call sign detection, the similarity ratio of the fuzzy string matching was improved when
the WER was low. This means the better the message recognition accuracy, the better
the fuzzy string-matching score between the decoding call sign in ADS-B data and the
recognized message.

Aerospace 2024, 11, x FOR PEER REVIEW 13 of 17 
 

 

detection, the similarity ratio of the fuzzy string matching was improved when the WER 
was low. This means the better the message recognition accuracy, the better the fuzzy 
string-matching score between the decoding call sign in ADS-B data and the recognized 
message. 

 
Figure 5. Test flight information region. 

Table 8 details an example of a voice message by a Royal Air Maroc company pilot 
during the approach. The ASR hypothesis was confirmed with a WER of 12.5% by deleting 
the unknown word “um.” 

Table 8. ASR hypothesis example. 

File Name 12120_20200319_170603_170606.trs 
Tracking Date Time March 19, 2020 17:06:03 

Real transcription Tangier AIR MAROC zero seven four roger um continue 
approach 

ASR hypothesis Tangier AIR MAROC zero seven four roger continue 
approach 

Word Error Rate WER 12.5% 

By employing the data captured by the ADS-B receiver, we can assess the similarity 
between each detected call sign shown in Table 9; compared to the result of the ASR hy-
pothesis from Table 8, the fuzzy string-matching score was calculated for each candidate. 
The model returned the call sign leading to the highest score, i.e., 89%. It corresponds to 
the RAM074 flight phonetic transcription (Tangier AIR MAROC zero seven four roger 
continue approach). A threshold of 80% is fixed to avoid the situation when all call signs 
have the same designator or do not concern the ASR hypothesis. 

Table 9. Call sign candidates from ADS-B data. 

Call Sign Phonetic Transcription Score Type Altitude Speed  DME Radial 
BEL271 Beeline two seven one 45% A333 35,000 470 506 225° 

RAM075 Royal Air Maroc zero seven five 79% B738 41,000 430 780 310° 
BAW669 Speed bird six six niner 34% A21N 36,000 460 380 198° 
RAM074 Royal Air Maroc zero seven four 89% B738 3325 210 20 98° 
RYR8073 Ryanair eight zero seven tree 51% B738 30,375 390 240 254° 

Figure 5. Test flight information region.

Table 8 details an example of a voice message by a Royal Air Maroc company pilot
during the approach. The ASR hypothesis was confirmed with a WER of 12.5% by deleting
the unknown word “um”.

Table 8. ASR hypothesis example.

File Name 12120_20200319_170603_170606.trs

Tracking Date Time 19 March 2020 17:06:03

Real transcription Tangier AIR MAROC zero seven four roger um continue approach

ASR hypothesis Tangier AIR MAROC zero seven four roger continue approach

Word Error Rate WER 12.5%

By employing the data captured by the ADS-B receiver, we can assess the similarity
between each detected call sign shown in Table 9; compared to the result of the ASR
hypothesis from Table 8, the fuzzy string-matching score was calculated for each candidate.
The model returned the call sign leading to the highest score, i.e., 89%. It corresponds to the
RAM074 flight phonetic transcription (Tangier AIR MAROC zero seven four roger continue
approach). A threshold of 80% is fixed to avoid the situation when all call signs have the
same designator or do not concern the ASR hypothesis.

Table 9. Call sign candidates from ADS-B data.

Call Sign Phonetic Transcription Score Type Altitude Speed DME Radial

BEL271 Beeline two seven one 45% A333 35,000 470 506 225◦

RAM075 Royal Air Maroc zero seven five 79% B738 41,000 430 780 310◦

BAW669 Speed bird six six niner 34% A21N 36,000 460 380 198◦

RAM074 Royal Air Maroc zero seven four 89% B738 3325 210 20 98◦

RYR8073 Ryanair eight zero seven tree 51% B738 30,375 390 240 254◦
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6.4. Limitations

For private and general flights, the aircraft registration number is used as call sign
instead of flight number in ADS-B data. We can apply the same Fuzzy algorithm based to
search and match the phonetic transcription of aircraft registration number with the ASR
hypothesis, since it is mandatory to exist in every ADS-B information and pronounced in
every standard communication.

For light aircraft not equipped with ADS-B transmitters e.g., in VFR flight, we can only
rely on ASR performance to detect the registration number based on phonetic transcription.

7. Conclusions and Further Work

Although the application of ASR in ATC is more challenging due to the high-security
level required for air traffic management in the aviation domain, it remains possible to
benefit from standard communication, a small vocabulary, and contextual information to
implement simple and low-cost ASR solutions using ADS-B data to minimize the workload
of ATCOs in high-traffic situations located in an airport not equipped with radar.

In our experiment, after training and adapting the ATC dataset using the Deep Speech
toolkit and building the acoustic and language models based on a vocabulary dataset,
we were able to demonstrate the successful detection of multiple aircraft call signs in
recognized voice messages at a string-matching similarity rate starting from 60%. For safety
obligations, we recommend a threshold of 80% for the fuzzy string-matching rate.

Further work in the ATC domain can present us a chance to try Whisper, the new
advanced ASR system developed by OpenAI trained on 680,000 h of multilingual and mul-
titask supervised data collected from the web, known for its high accuracy in transcribing
speech, even in challenging conditions such as noisy environments or with speakers having
different accents. It supports multiple languages, making it versatile for global applications.
Whisper is designed to understand the conversation’s context, which helps provide more
accurate transcriptions.

An NLP module investigates the string position between the call sign and airport
entity name; in addition, grammar rules such as gerund and key verbs like “request” and
“report” in a recognized transmission would allow the detection of the speaker′s role during
standard ATCO and pilot communication.

Airport meteorological information and the runway are usually delivered to the pilot
before takeoff and landing. Decoding the METAR report, extracting the wind direction,
and calculating the runway in use will help confirm the acknowledgment between the pilot
and ATCO communication.
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