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Abstract: In order to improve the problem of overly relying on situational information, high com-
putational power requirements, and weak adaptability of traditional maneuver methods used by
hypersonic vehicles (HV), an intelligent maneuver strategy combining deep reinforcement learning
(DRL) and deep neural network (DNN) is proposed to solve the hypersonic pursuit–evasion (PE)
game problem under tough head-on situations. The twin delayed deep deterministic (TD3) gradient
strategy algorithm is utilized to explore potential maneuver instructions, the DNN is used to fit to
broaden application scenarios, and the intelligent maneuver strategy is generated with the initial
situation of both the pursuit and evasion sides as the input and the maneuver game overload of the
HV as the output. In addition, the experience pool classification strategy is proposed to improve
the training convergence and rate of the TD3 algorithm. A set of reward functions is designed to
achieve adaptive adjustment of evasion miss distance and energy consumption under different initial
situations. The simulation results verify the feasibility and effectiveness of the above intelligent
maneuver strategy in dealing with the PE game problem of HV under difficult situations, and the
proposed improvement strategies are validated as well.

Keywords: hypersonic vehicle; pursuit–evasion problem; deep reinforcement learning; twin delayed
deep deterministic gradient strategy; experience pool classification strategy; deep neural network;
reward function design; intelligent maneuver strategy

1. Introduction

A hypersonic vehicle (HV) refers to a vehicle that flies through the atmosphere between
20 km and 100 km at a speed above Mach 5, which possesses the characteristics of special
flight airspace and high flight speed [1]. In recent years, with the continuous development
of anti-hypersonic technology, it has become necessary for the HV to solve the pursuit–
evasion (PE) problem [2–4] between itself and the interceptor.

The PE problem of HV is capable of describing a scenario where the interceptor called
pursuer aims at capturing the HV called evader, while the evader struggles to avoid getting
caught [2].

In the past, hypersonic aircraft mainly used traditional solutions, including unilateral tra-
jectory planning [5–11] and bilateral game maneuvering [12–19], to deal with the PE problem.

Unilateral trajectory planning is achieved by pre-planning a trajectory and optimizing
it to bypass the interceptor using optimal control [5–8] or other algorithms [9–11]. In the
trajectory optimization strategy mentioned above, the literature [5] considers the optimiza-
tion of hypersonic glide vehicle (HGV) evasion trajectory as a nonconvex optimal control
problem and solves the second-order cone programming (SOCP) problem by state-of-the-
art interior-point methods. In the study [9], the improved pigeon-inspired optimization
algorithm (PIO) is proposed to adjust the anticipated control parameters and to achieve the
ideal trajectory for hypersonic vehicles.

Contrary to the unilateral design, game maneuvering considering the capabilities
of both offensive and defensive sides generates maneuvering instructions by differential
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games [12–14], game theory [15–17], or other methods [18,19] to evade interceptors and im-
plement target strikes. Among them, the most representative ones are the reference [13,15].
According to the article [13], PE problems for the spacecraft in an uncompleted environment
can be solved by switching methods based on differential game theory. Another study [15]
used game theory and the speed advantage of hypersonic aircraft for capability gaming to
design a broad evasion strategy for the cruise phase of the air-breathing hypersonic vehicle
(AHV). The references [18,19] all utilize an adaptive dynamic program (ADP), which is a
unique solution method belonging to the differential game to solve the hypersonic PE game
and keep track of the control system. The above methods each have their own advantages;
the requirements, however, of the detection of current excessive situation information of
both the pursuer and the evader as well as of computing power of missile-borne computers,
make the traditional solutions unsuitable for practical engineering applications.

Nowadays, with the increasing artificial intelligence technology, the development
direction of the solutions of the HV’s PE problem is shifting from traditional maneuver
solutions to intelligent game maneuver strategies [20]. That is, obtaining interceptor motion
information through external data links or self-detectors, and generating corresponding
game maneuvers by intelligent algorithms at the intersection critical point based on the
guidance method characteristics. The intelligent game maneuver adopts a closed-loop
maneuver scheme of “interceptor movement-situational awareness-maneuver strategy
generation-maneuver control implementation” that realizes timely maneuvering to increase
miss distance and increase evasion probability. The key to intelligent game maneuver lies
in the selection of intelligent algorithms

Among the intelligent algorithms associated with hypersonic aircraft, deep learning
(DL)and reinforcement learning (RL) are the first to bear the brunt [21–32]. Due to its strong
nonlinear fitting ability, the deep neural network (DNN) in DL has been widely used in the
PE problems of hypersonic aircraft [21–23]. Among these, the most prevalent study [21]
resolves the tension between the accuracy and speed of the IPP by building an IPP neural
network model after using the ballistic model to create training data. And the algorithms
of reinforcement learning, especially deep reinforcement learning (DRL), provide a new
approach to the design of HVs’ evasion strategies [24–32]. As an unsupervised heuristic
algorithm without an accurate model, RL and DRL can generate actions based on the inter-
action with the environment, that is, conduct intelligent maneuvering games based on both
attack and defense sides. It was suggested in references [24,25] to create a new guidance law
based on proximal policy optimization (PPO) and meta-learning for an exo-atmospheric
interception because interceptors using IR seekers can only gather angle information. The
study [26], based on DRL, created a maneuver evasion guidance method considering both
guidance accuracy and evasion capabilities with a focus on the terminal evasion scenario.
Another study [27] transformed the problem into a Markov decision process (MDP) and
proposed the anti-interception guidance law utilizing a DRL algorithm consisting of an
actor–critic framework to solve it. The research [28] improved the reinforcement learning
algorithm to a certain extent to achieve the interception of the maneuvering target. In the
study [29], the RL was used to solve the optimal attitude-tracking problem for hypersonic
vehicles in the reentry phase. Another study [30] based on the RL algorithm and deep
neural network (DNN), generated the HV’s three-dimensional (3D) trajectory in the glide
phase. One paper [31] designs the HV’s autonomous optimal trajectory planning method
based on the deep deterministic policy gradient (DDPG) algorithm, where the trajectory
terminal position errors with satisfying hard constraints are minimized by the design of the
reward function. It is worth noting that the reference [32] carefully designed offensive and
defensive adversarial scenario, namely the standard head-on scenario, where the speed
advantage of HV was offset, and directly applied the twin delayed deep deterministic (TD3)
gradient strategy to solve the hypersonic PE problem under the standard head-on scenario
but ignoring the shortcomings of the algorithm itself, such as the weak generalization and
slow training speed.
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In addition to references [5,32,33] also believe that the PE game problem of HV should
be considered and solved in head-on situations, and reference [5] distinguishes the head-on
situations from other situations in detail through illustrations. Among various offensive
and defensive confrontation situations, the head-on situation is the toughest challenge for
the HV to deal with, because the interceptor can intercept HV in the head-on situation
easily and successfully. On the one hand, under the head-on situation, the speed difference
between HV and interceptor is greatly eliminated, which is significantly beneficial for the
low-speed interceptor. On the other hand, the interceptor’s seeker can stably track the
target from the front until successful interception is achieved. In other words, considering
existing interception technologies, the pursuer is most likely to adopt the head-on impact
strategy [28,34] to achieve a successful intercept.

Motivated by the above research status and research difficulties, an intelligent maneu-
ver strategy combining TD3 and DNN algorithms is studied to solve the hypersonic PE
game problem. The attack and defense confrontation scenarios expand from the standard
head-on situation in reference [32] to approximate head-on situations. The twin delayed
deep deterministic (TD3) gradient strategy algorithm is used to explore potential maneuver
instructions, the DNN is used to fit to broaden application scenarios, and an intelligent
maneuver strategy is generated with the initial situation of both the pursuit and evasion
sides as the input and the maneuver game overload of the HV as the output. In order to
increase the training convergence, the study proposes the experience pool classification
strategy to improve the TD3 algorithm. The study designs a set of reward functions to
achieve adaptive adjustment of evasion miss distance and energy consumption under
different initial situations. The numerical simulation results show the effectiveness of the
proposed method.

Compared with the existing literature, the benefits of the proposed method are as
follows: The proposed intelligent maneuver is based on DRL, which is generated through
continuous interaction between the pursuer and evader, two parties in the game of con-
frontation and is more suitable than the unilateral penetration trajectory optimization [5]
under the highly dynamic adversarial situation. And the intelligent method proposed
does not occupy awful onboard computer resources and does not require intercepting
information from the pursuer at all times in the PE procedure compared with the differ-
ential game method [12]. In addition, compared with the DDPG algorithm used in the
study [27], the TD3 algorithm owns better performance by improving the shortcoming of
overestimation of DDPG. And the proposed method further improves the TD3 algorithm in
the training stage. In addition to the above algorithm improvement, the biggest difference
from reference [32] is that the TD3 algorithm in the proposed method does not directly
output overload instructions but serves as the data generator; using DNN instead of the
actor network to merge and output overload instructions. The computational complexity
has been further reduced and the generalization has been improved.

Accordingly, the main novelties of this study are as follows:

1. The study constructs the adversarial model of both pursuer and evader under the most
difficult head-on scenarios and proposes the maneuver strategy based on improved
TD3 and DNN to achieve intelligent game maneuvers under the above model.

2. In order to improve the rate and stability of convergence of the TD3 algorithm, the
study proposes the experience pool classification strategy, which classifies and stores
samples in different experience pools and adaptively adjusts the number of samples
taken in training.

3. The study designs a set of reward functions considering both successful evasion
and energy consumption and introduces NN to improve the generalization of the
algorithm. The intelligent maneuver strategy can achieve successful evasion and
maneuver overload adaptively adjustment under different scenarios.

The research arrangement is as follows: Section 2 provides a model for the PE problem
of the HV and the interceptor under the head-on situation. In Section 3, the intelligent
maneuver strategy based on the “offline training + online application” framework is
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designed. In Section 4, simulations are conducted to validate the algorithms and methods
derived from the intelligent maneuver strategy. The conclusion is drawn in Section 5.

2. PE Problem Modeling
2.1. The HV and the Interceptor Modeling

The centroid kinetic and centroid kinematic models of HV and pursuer are created
through a coordinate transformation in accordance with the flight dynamic features of HV.

dVi
dt = g(nxi − sin θi)

dθi
dt = g

Vi
(nyi − cos θi)

dψvi
dt = − g

Vi cos θi
nzi

(1)


dxi
dt = Vi cos θi cos ψvi
dyi
dt = Vi sin θi
dzi
dt = −Vi cos θi sin ψvi

(2)

where i = H, I and the letters H and I stand for the HV and interceptor, respectively;
V stands for velocity; θ and ψv stand for the ballistic inclination and deflection angles,
respectively, in the ballistic coordinate system. In the same system, the aircraft’s three
axes overload are indicated by nx, ny and nz, respectively, while the distance traveled by
HV flying in three directions is represented by x, y, and z respectively, according to the
geographic coordinate system.

In addition, the study incorporates an autopilot into the control loop and designed it
as a first-order inertial loop. The relationship between the actual overload of HV and the
overload command can be expressed as:

nH(s)
nH_order(s)

=
1

1 + Ts
(3)

where nH_order is the overload command, nH is the actual overload for the HV, and T is the
first-order inertial link’s response time constant.

2.2. The Confrontation Situation Description

In the study, the pursuit–evasion confrontation model is built up based on the standard
head-on situation [32], known as the strict head-on scenario as well, and further expands
to approximate head-on situations.

According to Assumption 1, the relative motion diagram of HV and interceptor on the
two-dimensional plane in the PE problem is shown in Figure 1:
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In Figure 1, rHI is the relative distance between the HV and interceptor, q is the line-of-
sight angle between the HV and the interceptor, ϕ is the missile ballistic angle, which is the
angle between the velocity vector and the horizontal line. And the missile ballistic angle is
equal to the ballistic deflection angle under Assumption 1, namely ϕ = ψv.

According to the reference [32], when the velocity vectors of HV and interceptor
coincide with the line connecting their positions and have opposite directions, it is the strict
head-on scenario between HV and interceptor and the differences between their missile
ballistic angle and line-of-sight angle are equal to 0. In practical engineering applications,
however, it is difficult to strictly equal the above angle to 0. Accordingly, by analogy with
the strict head-on scenario, the study believes that the approximate head-on situations
are constituted between the two sides when the above angles exist but are small, and the
angles’ range in this study is chosen less than 2◦.

The relationship between the above variables can be represented by the following
equation: 

rHI =
√

x2
HI + z2

HI
.
rHI =

.
xHI xHI+

.
zHI zHI√

x2
HI+z2

HI
q = −arctan( zHI

xHI
)

.
q = zHI

.
xHI−xHI

.
zHI

x2
HI+z2

HI

(4)

where xHI represents the projection of the relative distance between the pursuit and
evasion parties in the x-axis direction, and zHI represents the relative distance on the
z-axis. Considering the small-angle hypothesis, the linear equation of the state variable
xHI = [zHI , zHI , nH , nI ]

T in the PE game can be expressed as follows:

.
xHI = AxHI + BHnH + BInI (5)

A =


0 1 0 0
0 0 gcosϕH0 gcosϕI0
0 0 −1/TH 0
0 0 0 −1/TI

, BH =


0
0

1/TH
0

, BI =


0
0
0

1/TI

 (6)

In order to ensure the tracking ability of the interceptor, the study selects the aug-
mented proportional navigation (APN) guidance whose tracking effect is better than the
basic proportional guidance (PN) guidance, which can be divided into longitudinal and
lateral overload commands as follows: nzI = −NVc

.
qz cos θI

g + 1
2 nzH

nyI =
NVC

.
qy

g + cos θI
(7)

where N is the navigation coefficient chosen between 3 and 5 in general, and Vc is the
speed difference of the pursuer and evader. As the pursuit confrontation scenario has been
reduced to a two-dimensional plane, the confrontation process in this scenario will only
use a horizontal overload expression.

2.3. The Design Goal

As a prerequisite for researching the PE problem of HV, it is necessary to define the
concept of successful evasion of HV and propose reasonable assumptions and constraints
based on the HV’s inherent characteristics. In the study, the definition of successful evasion,
according to the literature [33], is that the minimum relative distance between the evader
and the pursuer is greater than the prescribed minimum off-target amount, namely:

r(t f ) > δ (8)
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where δ is the lowest boundary value of the prescribed off-target amount.
The study considers the satisfaction of the off-target distance as a terminal constraint.

Furthermore, we also need to think of process constraint, and in HV’s relevant studies, we
usually regard the constraint on overload as process constraint, namely:

|u(t)|≤ uHmax (9)

Meanwhile, considering practical engineering applications, we should consider the
energy consumed during the entire evasion process as well based on the availability of
HV’s overload and the successful evasion, that is:

t f∫
t0

u2dt (10)

To conclude, the designed goal can be expressed as Problem 1:

Problem 1. Considering the PE game model given by Equation (6), the intelligent maneuver
strategy should be derived to minimize the energy consumption given by Equation (10), while the
miss distance subject to Equation (8) and the control constraint subject to Equation (9).

Assumption 1. Under the head-on situations, the offensive and defensive confrontation model is
reduced to a two-dimensional plane.

Remark 1. Assumption 1 is reasonable. Affected by the inherent characteristics of the HV’s engine,
the HV tends to complete evasion through lateral maneuvering in the horizontal plane. Therefore, it
can be assumed that the pursuer and hypersonic aircraft engage in a PE game confrontation at the
same altitude, which simplifies the confrontation scenario to a two-dimensional plane.

Assumption 2. During the procedure of the PE game, the velocity of HV and interceptor are
considered as the constant values, respectively.

Remark 2. Due to the negligible longitudinal overload nx compared to hypersonic speeds, the
hypersonic lateral maneuver overload nz perpendicular to the speed direction is the main force to
evade the interceptor in the X–Z two-dimension plane, only changing the speed direction without
changing the speed magnitude.

Remark 3. The speed of HV is much higher than that of interceptors, but the overload usually does
not reach half of that of interceptors. According to reference [33], in non-head-on situations, the HV
can easily escape interception by interceptors due to their significant speed disadvantage. In head-on
situations, the speed difference is offset, and the interceptor will utilize the large overload relative to
HV to achieve successful interception. Therefore, when studying the PE problem of HV, we should
build up the difficult adversarial model based on the head-on situation and conduct research on
maneuver strategy based on it.

3. Method
3.1. Intelligent Maneuver Strategy Framework

Drawing on the mode of “offline training + online application”, the study proposes an
intelligent maneuver strategy based on DRL and DNN. The framework of the strategy is
shown in Figure 2.

In the process of “offline training”, the strict head-on scenario is selected as the feature
point for the RL agent training using the improved TD3 (ITD3) algorithm. After obtaining
the trained agent, Monte Carlo simulations are performed on different initial parameters
under the approximate head-on scenarios and using the neural network for fitting to
generate the intelligent maneuver model.
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In actual offensive and defensive confrontation scenarios, through the “online applica-
tion” method, we can use the intelligent maneuver model to quickly generate maneuver
commands through the initial situation under the approximate head-on scenarios.

The intelligent maneuver strategy ensures the success of evasion and the generalization
and reliability, meanwhile, are certainly improved and guaranteed.

The rest of Section 3 describes the intelligent algorithms and related methods included
in the intelligent maneuver strategy.

3.2. TD3 Algorithm

The twin delayed deep deterministic policy gradient (TD3) algorithm is a deep rein-
forcement learning algorithm used to solve continuous control problems improved based
on the deep deterministic policy gradient (DDPG) algorithm. In essence, the TD3 algorithm
is designed to solve the overestimation problem of the DDPG algorithm by incorporating
the ideas of the DDQN algorithm. The TD3 algorithm, like the DDPG algorithm, is based on
the actor–critic (AC) framework, learning two networks simultaneously: the actor network
πϕ(s) and the critic network Qθ(s, a). In addition, there are the target networks correspond-
ing to the actor network and critic network respectively. Input the state and action into
the critic network to obtain the corresponding Q value. The relevant action of the state
can be obtained through the actor network as well as the target network is to calculate the
loss function. Accordingly, the algorithm possesses many advantages compared with other
algorithms. The TD3 algorithm with the AC framework is illustrated in Figure 3:
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Based on the DDPG algorithm, the TD3 algorithm solves the overestimation problem
and proposes three key improved technologies: double network, target policy smoothing
regulation, and delayed update.

Double network, which originated from DDQN, adopts two sets of critic networks,
Qθ1 and Qθ2. And the difference between TD3 and DDQN is that when calculating the
target value, the TD3 algorithm takes the smaller value of two critic networks to suppress
the network overestimation problem; that is:

y← r + γmini=1,2Q
θ
′
i
(s
′
, ã) (11)

where y is the target value of temporal difference, r is the reward value, γ is the discount
factor, Q

θ
′
i
(s, a) is the target critic network, ã is the action related to the next state adding

disturbance, which would be introduced in the second improved technology. The TD3
algorithm is composed of six deep neural networks: one actor network, two critic networks,
and their corresponding target networks

Target policy smoothing regulation adds perturbations to the next state actions, making
the value evaluation more accurate when calculating the target value, is:

ã← π
ϕ
′ (s
′
) + ε, ε ∼ clip(N(0, σ̃),−c, c) (12)

where π
ϕ
′ (s
′
) is the target actor network, ε is the small amount of random noise adding to

the target action. To maintain the target action close to the original action, the additional
noise is subject to normal distribution. It is advantageous to smooth the estimated value
and make the critic update less aggressive by using the area surrounding the target action
in Equation (12) to determine the target value.

The delayed update refers to updating the actor network after updating the critic
network multiple times to ensure a more stable training of the actor network. As the
updates of the actor network require the critic networks to evaluate. If the critic network is
quite unstable, the actor network will naturally experience oscillations. It is conceivable to
increase the update frequency of the critic network over the actor network, i.e., wait till the
critic network has achieved more stability before assisting the actor network in updating.
Firstly, this is to update the critic:

θi ← argminθi N
−1∑ (y−Qθi (s, a))2 (13)

Using the mini-batch processing method to update data, the computing complexity
decreases and efficiency increases. For training, the algorithm separates N groups from the
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data gathered from previous interactions with the environment. After that, make updates
to the policy and target network at a relatively low frequency, as follows:

∇ϕ J(ϕ) ≈ N−1∑
i
∇aQθi (s, a)

∣∣∣a=πϕ(s)∇ϕπϕ(s) (14)

θ
′
i ← τθi + (1− τ)θ

′
i (15)

ϕ
′ ← τϕ + (1− τ)ϕ

′
(16)

The update of the actor also involves the critic. The first gradient in Equation (14) is
obtained from the critic, and the second gradient is obtained from the actor. The combina-
tion of two gradients reveals that the improvement of the actor parameter is to obtain a
larger Q value.

3.3. Algorithm Improvement Strategy

The experience reply pool is an important part of the whole TD3 algorithm. After
the training epochs reach the line, the experience pool stores each sample (st, at, rt, st+1)
and provides small batches of samples in subsequent parameter updates. Experience pool
plays a unique role in the training of the agent. In order to improve the rate and steady
convergence in the training process of the TD3 algorithm, the study proposes the experience
pool classification strategy.

According to Section 2.3, it is easy to judge the agent’s success during the HV’s PE
game. Thus, the samples (st, at, rt, st+1) are classified and stored in the success experience
pool or failure experience pool based on whether the interaction was successful or not
during training. Afterward, according to Equation (17), collect small sample sets Nbatch from
two experience pools to update the network. Equation (17) indicates that in the early stage
of training, high-quality samples need to be extracted to accelerate the learning speed of the
intelligent agent as well as in the later stage of training, to avoid overfitting in the algorithm,
it is necessary to simultaneously extract samples from two experience pools, namely
sampling Nbatch training samples from Nsuccess and N f ailure. The method of “classified
experience pool +adaptive sampling” can improve the rate and steady convergence of the
TD3 algorithm effectively.{

Nbatch = Nsuccess, epoch < e0
Nbatch = λN f ailure + (1− λ)Nsuccess/3, epoch ≥ e0

(17)

where the λ ∈ (0, 1) and when the epoch ≥ e0, N f ailure = Nbatch and Nsuccess = 3Nbatch.
And the schematic diagram of experience pool classification strategy is shown in Figure 4.
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3.4. The Design Related to the Algorithm
3.4.1. State Space and Action Space Design

The input to the actor network in the DRL algorithm should be observable state vectors.
In the HV maneuver scenarios, the state space should select the states of the HV and the
pursuer, namely:

xstate = [rHI/rHI0, q, σ
.
q, VH/VI ] (18)

We should select easily accessible state variables in the scenario environment and
standardize them to achieve better interaction between the agent and the environment.

In the HV’s PE game problem, the output from the actor network should be a lateral
overload nzH of HV within the two-dimensional horizontal plane, namely:

nzH ∈ [−nzH_max, nzH_max] (19)

where nzH_max is the maximum available lateral overload value of HV.

3.4.2. Termination Function and Reward Function Design

In solving the PE game problem, when the simulation and single training are over is
determined by the setting of the termination function, and the learning effectiveness and
convergence are directly impacted by the setting of the reward function. The termination
function needs to conform to the PE problem in specific scenarios, and the reward function
design is the point and difficulty of RL. Therefore, both functions have a great effect on the
simulation.

When setting the termination function of RL, it is necessary to consider the termination
of both successful and failed evasion. According to the experience and actual trend, the
study considers a failed evasion is that the relative distance is less than the minimum
avoidance distance, namely:

r(t f ) ≤ δ→ end (20)

On the contrary, when the relative distance between the HV and the pursuer is always
greater than the minimum avoidance distance and the relative distance begins to increase,
it can be determined that the HV has successfully evaded and the PE game process has
ended, that is:

r(t f ) > δ ∩ dr
dt

> 0→ end (21)

Terminal reward and process reward are both included in the reward function design.
The terminal reward has a direct bearing on the training success and the process rewards
direct the train in the progress. An appropriate reward function is helpful to accelerate the
convergence of the model.

For the offensive side, there are two main purposes: (1) to evade the interception of
interceptors; (2) based on purpose (1) to reduce the loss of mechanical energy from the
maneuver. The reward function is set as follows:

R = r1 + r2 + r3 + r4 (22)


r1 = −c1e−

.
q + 1

r2 = −c2∆E
r3 = c3 log2(R f − 4)

r4 =

{
−10, bad_end
10, good_end

(23)

where r1 is a reward function related to relative angle and r1 introduces punishment based
on the angle information between HV and pursuer, guiding HV to break away from the
head-on situation. r2 represents the overload consumption of the HV and the mechanical
energy loss of the aircraft during the decision-making period and should be dealt with
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standardization processing. r3 indicates that introducing a final distance reward is to guide
the training of intelligent agents to appropriately pursue larger miss distance. r4 is defined
as the termination reward function and corresponding rewards or punishments are given
based on whether they successfully escape each time.

Among them, r1 and r2 belong to process rewards, while r3 and r4 belong to terminal
rewards. In addition, there is a contradiction between pursuing greater miss distance and
reducing energy consumption. Therefore, it is necessary to balance the two by setting
c2 and c3, adjusting, and choosing more suitable parameters based on specific scenarios
and needs.

3.5. DNN Fitting Strategy

The agent trained by the improved TD3 method can achieve HV evasion at the training
point. However, considering the high dynamic characteristics of HV itself, it is necessary to
achieve successful evasion in different initial situations. Therefore, the study introduces
the neural network and utilizes its strong fitting ability to increase the generalization of HV
in PE games.

The trained agent is used to conduct a large number of Monte Carlo simulations and
collect the eligible evasion dataset under different initial situations in the approximate
head-on scenarios. The corresponding initial situation and evasion overload are inputted
into the neural network for training as Figure 5:
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To facilitate the training of neural networks, the form of maneuvering overload should
be handled first before fitting. And the output overload can be approximately equal to a
polynomial of degree 4, that is:

nzH = p1× t̂4 + p2× t̂3 + p3× t̂2 + p4× t + p5 (24)
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According to the above form, the corresponding overload can be obtained by de-
termining the values of p1~p5 and the independent variable t. The initial situation and
corresponding 5 parameters, accordingly, can be classified, respectively, as input and label
using deep neural networks for training.

Through the trained model and the initial situations, the corresponding maneuverable
evasion overload can be obtained online; that is:{

(p1, p2, p3, p4, p5) = f (x, z, q, ϕ, v)
nzH = p1× t̂4 + p2× t̂3 + p3× t̂2 + p4× t + p5

(25)

Remark 4. The design of the reward function in the improved TD3 algorithm aiming at the head-on
situation is an innovative point in the study. When designing reinforcement learning reward
functions, nearly all studies on using reinforcement learning to achieve HV evasion pay too much
attention to how to successfully evade while neglecting the energy consumption during the evasion
process. As a high-speed aircraft, blindly using full overload for evasion without considering specific
scenarios will consume unnecessary energy and have a negative impact on subsequent target strikes.
By introducing Equation (23), perform different maneuvers based on different initial situations. It
can achieve successful evasion while further saving energy.

Remark 5. The intelligent maneuver strategy is based on “offline training + online application”.
Among them, the TD3 algorithm is used to explore possible maneuvering strategies as the dataset
generator, while the introduced DNN is used as a regression fitting tool and output instruction
generator. Compared with directly using TD3 to generate instructions, the combined strategy not
only improves generalization but also simplifies the neural network structure. The introduced DNN,
regardless of the number of layers or neurons, is much smaller than the deep neural network in
TD3. Simplifying the network structure can effectively reduce computing speed, which is more
suitable for high-speed scenarios, and reduce the amount of onboard computer resources occupied,
which is more available for practical engineering applications. The reason why it can be simplified is
that the input and output of the maneuvering strategy are all simple vectors, without the need for
complex calculation. Only vector fitting needs to be achieved. Therefore, the DNN fitting strategy
can greatly improve computational complexity while improving generalization.

4. Discussion

To solve the PE game successfully, using the intelligent maneuver strategy requires the
following operations: firstly, training the DRL agent under the feature point, then making
the Monte Carlo simulation biasing initial parameters, and finally training the DNN to
obtain the intelligent maneuver model. The simulation software selected is MATLAB
2021a in the study, and the hardware information is Intel (R) Core (TM) i5-10300H CPU
@ 2.50 GHz, RTX 2060 14 GB, DDR4 16 GB, 512 GB SSG. Considering the need for the
application of deep reinforcement learning and deep neural networks, it is recommended
to use software and hardware not lower than the above specifications. Table 1 shows the
parameters used in the entire simulation process. Figure 6 shows the training curve of the
reinforcement learning agent. Figure 7 shows the simulation verification of the trained
agent under the selected feature point. Figure 8 shows Monte Carlo simulation and Figure 9
shows neural network training. Figure 10 shows the simulation verification of the obtained
intelligent maneuvering strategy under several typical situations.

The initial relative positions and pertinent angles determine the strict head-on scenario
between HV and interceptor. Among these, the HV’s initial position is set to (0, 0), and the
pursuer’s initial position is set to (10,000, 0). Set the pursuer’s initial line-of-sight angle to
0 between the HV. The HV’s initial ballistic deflection angle is set to 0, and the pursuer’s
initial ballistic deflection angle is set to −π.

In real engineering practice, due to the limitations of its own characteristics, HV
usually has more speed and less overload during PE games compared to the interceptor.
Therefore, we set the speed of the pursuer to 3 Ma and the speed of the HV to 6 Ma. At
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the same time, the overload capacity of HV is set to 3, and the overload capacity of the
pursuer is set to 6. Accordingly, we need to take advantage of the HV’s high speed and
seize the opportunity and time of maneuvering to achieve successful evasion within limited
overload. And the lowest boundary value of miss distance is set to 5 m.

Table 1. Simulation, TD3, and DNN training conditions.

Simulation Condition Value TD3 Parameter Value DNN Parameter Value

HV velocity 6 Ma Actor network learning
rate 0.005 The type of NN Bp

Interceptor velocity 3 Ma Critic network learning
rate 0.005 Training epoch 1000

HV overload 3 Discount factor 0.9 The goal of minimum
error 0.0001

Interceptor overload 6 Inertial factor 0.99 Learning rate 0.01

HV initial position (0, 0) Soft update rate 0.001 Minimum performance
gradient 10−6

Interceptor initial position (10,000, 0) Experience playback
pool capacity 4000 Damping factor 108

The lowest boundary
value of miss distance 5 Sampling time 0.1 Number of failed

confirmations 20

Navigation coefficient 4 The mean of reward
window length 100 Number of hidden

neurons 10

The initial line-of-sight
angle 0 Attenuation Noise

standard deviation 0.4 Training sample
proportion 70%

HV initial deflection angle 0 Attenuation noise
standard deviation rate 10−5 Testing sample proportion 15%

Interceptor initial
deflection angle −π Small batch sample size 128 Validation sample

proportion 15%
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Set the maximum number of training rounds to 600. To ensure the effectiveness of
training, some initial parameters will be randomly skewed during each training process.

Figure 6a shows that as the number of training updates grows, the average reward
and episode reward gradually rise. The agent continuously engages with the environment
during the iterative training process to modify its approach to maximize reward values. As
training rounds increase, the agent gradually finds the optimal maneuvering strategy. It
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can be seen that after nearly 100 rounds of training, the reward value curve converges to
the highest point, which means that the agent ultimately gets the best solution to the HV’s
PE game problem through continuous interaction with the environment. This indicates
that the entire training process of the DRL algorithm designed in this study is stable and
successful with good convergence.

Figure 6b shows that in contrast to the still fluctuating training process of the DDPG
algorithm after 300 rounds, the TD3 and ITD3 algorithms, which have better performances,
gradually approach a stable optimal solution through training and interaction. In the
comparison between TD3 and ITD3 algorithms, due to the classified experience pool
strategy, the convergence speed of ITD3 is better than the basic TD3′s speed that basic
TD3 algorithm requires 300 rounds to converge to the stable state. In addition, the small
batch sampling during the training process is adaptively adjusted according to the training
rounds, which ensures that the ITD3 algorithm not only has good training speed, but also
has good convergence stability, and the two curves nearly coincide after 300 rounds in
Figure 6b. Through comparison, it is verified that the experience pool classification strategy
proposed in the study can effectively improve the speed of algorithm training and ensure
training convergence.

After completing the agent training, we selected a strict head-on scenario for aircraft
pursuit and evasion confrontation and conducted agent scenario testing. The simulation
results are shown in Figure 7:

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 21 
 

 

   

(a) (b) (c) 

Figure 7. Simulation results of DRL verifying: (a) two–dimensional planar trajectory map; (b) rela-

tive distance curve; (c) overload change curve. 

Figure 7a shows the motion trajectories of the attacking and defending sides in a hor-

izontal two-dimensional plane, and Figure 7b shows the variation of their relative distance 

over time. Combining the two figures, it can be seen that both the attack and defense sides 

are initially in the strict head-on scenario. The interceptor is guided by the APN guidance 

law, and the HV uses an intelligent maneuver strategy obtained through reinforcement 

learning training to start game maneuvering. The minimum relative distance during the 

entire evasion process is 8.95219, which met the minimum miss distance requirement for 

evasion. It is judged that the HV successfully evaded in this scenario. Figure 7c shows the 

overload changes between HV and interceptor. It can be seen that the interceptor, based 

on its guidance law, exerts the advantage of large maneuvers within the overload capacity 

range to intercept as much as possible, while HV also successfully achieves maneuver 

avoidance based on intelligent games within the overload capacity range. This indicates 

that the selected state space, action space, and designed reward and termination functions 

are all reasonable. In addition, HV’s overload does not always maintain full overload but 

decreases after 2.5 s, indicating that the intelligent agent is pursuing greater miss distance 

while also minimizing energy consumption, proving that the initial goal can be achieved 

through the designed reward function. 

The agent trained through DRL can already achieve maneuvering evasion in the strict 

head-on scenario. However, to apply the strategy in more scenarios, we pull off the initial 

parameters under the premise of the approximate head-on scenarios, and select different 

initial parameters within the range of the initial line-of-sight angle [0°, 1.8°] and initial 

relative distance [8500, 10,000] for Monte Carlo simulations to collect the dataset full of 

successful samples. The available simulation results obtained are as follows: 

 
  

(a) (b) (c) 

Figure 8. Monte Carlo simulation biasing initial parameters: (a) miss distances at different initial 

distances; (b) miss distances at different initial line-of-sight angles; (c) time spent at different initial 

parameters. 

Figure 7. Simulation results of DRL verifying: (a) two–dimensional planar trajectory map; (b) relative
distance curve; (c) overload change curve.

Figure 7a shows the motion trajectories of the attacking and defending sides in a hori-
zontal two-dimensional plane, and Figure 7b shows the variation of their relative distance
over time. Combining the two figures, it can be seen that both the attack and defense sides
are initially in the strict head-on scenario. The interceptor is guided by the APN guidance
law, and the HV uses an intelligent maneuver strategy obtained through reinforcement
learning training to start game maneuvering. The minimum relative distance during the
entire evasion process is 8.95219, which met the minimum miss distance requirement for
evasion. It is judged that the HV successfully evaded in this scenario. Figure 7c shows the
overload changes between HV and interceptor. It can be seen that the interceptor, based
on its guidance law, exerts the advantage of large maneuvers within the overload capacity
range to intercept as much as possible, while HV also successfully achieves maneuver
avoidance based on intelligent games within the overload capacity range. This indicates
that the selected state space, action space, and designed reward and termination functions
are all reasonable. In addition, HV’s overload does not always maintain full overload but
decreases after 2.5 s, indicating that the intelligent agent is pursuing greater miss distance
while also minimizing energy consumption, proving that the initial goal can be achieved
through the designed reward function.

The agent trained through DRL can already achieve maneuvering evasion in the strict
head-on scenario. However, to apply the strategy in more scenarios, we pull off the initial
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parameters under the premise of the approximate head-on scenarios, and select different
initial parameters within the range of the initial line-of-sight angle [0◦, 1.8◦] and initial
relative distance [8500, 10,000] for Monte Carlo simulations to collect the dataset full of
successful samples. The available simulation results obtained are as follows:
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Figure 8. Monte Carlo simulation biasing initial parameters: (a) miss distances at different initial
distances; (b) miss distances at different initial line-of-sight angles; (c) time spent at different initial
parameters.

By the way, from Figure 8c, it can be found that the reinforcement learning agent
generates maneuver commands while interacting with the environment taking time be-
tween 2.7 s and 3.3 s. If applied to the airborne computer, the ability to generate evasion
commands in real time is questionable. That also indicates that we need the intelligent
evasion strategy can generate evasion commands only from the initial situation.

After the Monte Carlo simulation, input the selected maneuver data into DNNs for
training to generate the intelligent evasion model. The training outcomes of the neural
network are as follows:
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Figure 9. Performance indicators of neural networks: (a–e) DNNs’ MSE values in different datasets;
(f) DNNs’ determination coefficient values.
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As the standard for evaluating network performance, the smaller the mean square
error (MSE) value and the closer the determination coefficient (R2) to 1, the better the
accuracy of the sample data described by the prediction model. Figure 9a–e show that the
MSE values of the training set, validation set, and test set ultimately converge to minimum
values close to 0. Figure 9f shows the determination coefficient of the model, and the
r-squared values of the five coefficients fitted by the model are all greater than 0.9. These
two evaluation criteria demonstrate that the model has a good fitting performance.

To verify the generalization of intelligent evasion strategies, three extreme scenarios
were selected for verification: strict head-on scenario, maximum initial line-of-sight angle
situation, and minimum initial relative distance situation.
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Figure 10. Simulation results of intelligent maneuver strategy under three typical situations:
(a,d,g) two−dimensional planar trajectory map; (b,e,h) relative distance curve; (c,f,i) overload
change curve.

Figure 10a–c show the application of intelligent maneuver strategy for HV to achieve
evasion under the strict head-on scenario. Compared with the previous reinforcement
learning maneuvers, both of them can successfully evade, but as the price for improving
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reliability and generalization, the minimum relative distance under the intelligent maneu-
ver strategy has been reduced by 1 m, which is caused by the relevant deviation in the
parameter fitting process. In Figure 10c, the overload curve of HV still takes into account
both successful evasion and energy consumption. Therefore, the study believes that the
performance of the intelligent evasion strategy is acceptable.

Figure 10d–f shows the evasion strategy at the minimum relative distance, which is
also the most difficult initial situation considering the initial position of HV (1500, 0). From
Figure 10e, although HV has successfully evaded, the minimum relative distance is only
5.56498, which is just enough to meet the minimum miss distance. To successfully evade,
HV directly chooses to fully inflate the overload, as shown in Figure 10f.

Figure 10g–i shows the evasion strategy at the maximum initial line-of-sight angle
under the approximate head-on situations we have determined. Due to deviating from the
strict head-on scenario, HV can use speed advantage to achieve relatively easy evasion.
From Figure 10i, HV can significantly reduce overload and energy consumption.

Through the analysis of three typical characteristic scenarios, the study believes that
the proposed intelligent maneuver strategy can generate maneuver overload with the effect
of solving the PE game of HV in the head-on situation.

To further verify the improvement in terms of generalization, the combined dispersion
and Monte Carlo simulation are conducted, respectively, on the proposed method based
on ITD3 and DNN and the TD3 method under approximate head-on situations, with
specific parameter ranges as above. And the simulation results are shown in the following
Figure 11.
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Figure 11. Monte Carlo simulation results under approximate head-on situation: (a) simulation
results based on TD3 algorithm; (b) simulation results based on the intelligent maneuver strategy
combining ITD3 and DNN algorithms.

As the initial situation changes, using the TD3 algorithm solely to evade under certain
harsh initial situations may result in evasion failure, where the minimum relative distance
is less than 5, as shown in Figure 11a. Correspondingly, the proposed method by combining
ITD3 and DNN algorithms utilizes successful sample fitting to replace failed cases, which
can achieve successful evasion against interceptors in different initial situations under
all difficult approximate head-on situations shown in Figure 11b, greatly improving the
generalization of maneuvering strategies. Through comparison, it is verified that the
proposed method can handle more difficult situations, and the application scenarios of the
intelligent maneuver strategy are further expanded.

In addition, the average time consumption would not exceed 1 ms after testing, and
the DNN used during “online application” only occupies approximately 10 kB of storage



Aerospace 2023, 10, 783 18 of 20

space. The above analysis indicates that the intelligent maneuver strategy proposed in this
study has less computational burden and can be executed on modern-borne computers.

Finally, numerical simulations are conducted on the energy consumption issue. In the
study, the accumulation of overload over time is utilized to represent the energy consumed,

namely E =
t f∫
t0

uH(t)dt. The energy consumptions of the proposed ITD3 method and the

TD3 method in the maneuver evasion process are calculated for different initial relative
distances. From Figure 12, as the relative distance increases, the energy consumption of
both methods increases, which is due to the longer maneuvering time. Regardless of the
initial state, the energy consumption of the proposed ITD3 method is lower than that
of the TD3 method, and the energy consumption difference between the two methods
fluctuates between 0.4 and 0.5 g. That proves that the proposed method’s energy-saving
design is effective, and the intelligent maneuvering strategy can effectively balance energy
consumption and evasion miss distance, and adaptively adjust according to the initial
states.
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between TD3 and ITD3 methods.

5. Conclusions

With the development of interception technology, traditional maneuvering strate-
gies cannot effectively cope with the interception of chasers in unfavorable situations of
short distances and high dynamics. Therefore, it is necessary to propose more intelligent
maneuver strategies based on DRL. Under the framework of “offline training + online
application”, this article is based on the improved TD3 algorithm and DNN to generate
maneuver evasion instructions. The effectiveness of the combined strategy was verified
through simulations under different initial situations. The experience pool classification
strategy has been proposed to improve the training convergence rate and speed of the TD3
algorithm, which can be successfully trained in about 100 rounds to achieve convergence.
In addition, a well-designed reward function can achieve adaptive adjustment of miss dis-
tance and energy consumption, rather than blindly pursuing the maximum miss distance.
The combination of an improved TD3 algorithm and DNN simplifies the network structure,
reduces computational time and space consumption, and is more in line with practical
missile-borne computers. In the process of online application, the proposed method only
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needs to chase and escape the initial situation of both parties to generate maneuver in-
structions. Therefore, the proposed maneuver strategy is beneficial for the practice and
application of engineering design. The simulation results show that the minimum distance
between the pursuers and evaders in several typical situations is less than the specified
critical miss distance of 5 m, which can achieve successful evasion. And the feasibility and
effectiveness of the intelligent maneuver strategy are verified when facing a pursuer in
head-on situations.

The reason why an intelligent algorithm can effectively solve hypersonic PE game
problems is that it can grasp the appropriate maneuvering opportunities under high
dynamics and provide the optimal solution.

Next, we will study the three-player PE game problem of one evader to two pursuers
or two evaders to one pursuer, further enriching the pursuit scenarios and maneuvering
strategies.
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