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Abstract: Focusing on the large maneuver penetration of the hypersonic glide vehicle with multiple
constraints and uncertain disturbance, a robust integrated guidance and control law, which can
achieve the snake-shape maneuver, is designed. A snake-shape maneuver acceleration command,
in the framework of sine function, determined by the altitude, target declination of the line of sight
and the missile-target distance, is discussed. The integrated guidance and control law includes the
terminal guidance law with multiple constraints, attitude control law and angular velocity control
law. In the terminal guidance law design, the sliding mode control is adopted while the adaptive
technique is applied to estimate the disturbance. The selected sliding mode surface has variable
gain determined by the estimated time-to-go. With the designed terminal guidance law, using the
snake-shape maneuver acceleration command as the bias item, the angular rate of the line of sight
will converge to zero and the line of sight angle will converge to the expected value, simultaneously.
The attitude control law and angular velocity control law are designed to track the expected attack
and bank angles. The stability of the whole system is proved with the application of the Lyapunov
theorem. The effectiveness and robustness of the proposed integrated guidance and control law is
verified by simulation.

Keywords: hypersonic glide vehicle; large maneuver penetration; fall angle constraint; integrated
guidance and control; snake-shape maneuver

1. Introduction

The growing anti-missile technology has a greater threat for the penetration mission
of the hypersonic glide vehicles (HGVs) [1–3]. The large maneuver penetration in dive
trajectory is an effective strategy to decrease the interception probability of the anti-missile
technology and improve the fight efficiency [4,5]. Theoretically, the large maneuver pen-
etration of the HGV will force the interception weapons to cost more kinetic energy by
making the line of sight (LOS) angular velocity and the required overload of the intercep-
tion weapons change periodically. Therefore, it is beneficial for HGVs to achieve the large
maneuver during the flight. Meanwhile, the guidance law with impact angle constraint
has become a key solution to improving the damage capability of HGV [6–8].

At present, large maneuver penetration trajectories include spiral maneuver, jump
maneuver and snake-shape maneuver [9]. There are three strategies to achieve the large
maneuver penetration.

Firstly, the method based on the motion trajectory for a virtual target is discussed in
Refs. [10–13]. With this strategy, at each moment, a virtual target point on the expected
trajectory is defined and the guidance law is designed to track the expected trajectory of
the virtual target point. A logarithmic-type spiral trajectory is adopted as a virtual target
trajectory in Ref. [10] and an adaptive proportional guidance law is designed to achieve
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tracking to the virtual target trajectory. Focusing on the HGV’s spiral trajectory optimization
problem with impact angle constraint, different spiral trajectories with different impact
angles are obtained in Ref. [11] with the application of the continuous second-order cone
programming (SOCP) method, in which the optimal target is to achieve the maximum
falling velocity. Ref. [12] transforms the trajectory optimization problem of the HGV
penetrating two interceptor weapons and reaching the target area to a SOCP problem and a
penetration strategy, which only requires the initial LOS angular velocity information of the
interceptors. It follows that a maneuver trajectory to penetrate two interceptor weapons is
described. Some optimized trajectories are applied in deep neural network (DNN) training
in Ref. [13] and the trained DNN is used as a maneuver command generator to achieve the
real-time control. The problem of penetrating to two interceptor weapons is solved.

Another way to achieve penetration is to add an extra weighted maneuver overload
on a traditional homing guidance law. As depicted in Ref. [14], a screw angular velocity is
defined and a spiral maneuver overload command is generated. It is essentially a three-
dimensional bias proportional guidance law. In Ref. [15], a sine-type overload command,
designed on longitude and lateral planes, respectively, is treated as a bias item on a
traditional overload command which is used to zero the LOS angular velocity. In Ref. [16],
the principle of HGV penetration is firstly analyzed and the penetration model of the
HGV and the interceptor is established. It transforms the HGV penetration problem into
a trajectory optimization problem and the solver can be used to generate the overload
command directly.

The periodic control based on the LOS angular velocity can also be applied to achieve
the maneuver motion. A sliding mode guidance law, considering the auto-pilot dynamic
performance simultaneously, is designed in Ref. [17] such that the LOS angular velocity can
track certain sine-type signals and the snake-shaped maneuver is achieved. In Ref. [18], a
kind of spiral trajectory, satisfying angle constraint, is designed, which can be transformed
as the maneuver commands of the LOS angle and angular velocity. Furthermore, based
on the feedback linearization technique, a sliding mode controller is designed to achieve
the spiral maneuver guidance. Considering the terminal speed constraint, Ref. [19] estab-
lishes the relationship between the terminal speed and the maneuver amplitude based on
predictive correction and the terminal multi-constraints maneuver guidance is achieved.

Although maneuver penetration is achieved in the mentioned references, there still
exists some limitations. Refs. [10,12,13] do not consider the impact angle constraint after
the penetration. The falling angle can be controlled in Ref. [11]; however, the azimuth
angle constraint is not considered. The trajectory discussed in Ref. [14] seems to be fixed
due to its non-adjustable maneuver amplitude. The spiral motion depicted in Ref. [15]
is achieved based on the fixed lines in inertial reference, which limits the ability of the
HGV large-range maneuver and target tracking. The feedback linearization in Ref. [18]
decreases the robustness of the system due to the nonlinearities and uncertainties of the
HGV. Furthermore, the penetration will make the coupling of the translation and rotation
stronger and further increase the uncertainty of the system. However, the attitude control
problems are ignored in Refs. [10–13,16,17].

Recently, integrated guidance and control (IGC) technique has attracted much attention
due to its strong ability to deal with the coupling of the guidance and control systems
of the missile. To solve the uncertainty problem and the full state constraints of the
system, a dynamic surface control based IGC technique is proposed in Ref. [20]. A fuzzy
adaptive fault tolerant IGC is discussed in Ref. [21] to deal with the actuator fault and
multiple coupling uncertainties. An adaptive dynamic surface control with radial basis
function neural network (RBFNN) estimating the uncertainties and external disturbances
is proposed in Ref. [22]. A three-dimensional robust IGC, given in Ref. [23], has been
proposed considering the impact angle constraint and input saturation, with the application
of the extend state observer. However, it does not consider the penetration problem
in dive phase. Ref. [24] proposes a high-order sliding mode observer to estimate the
unknown uncertainties and states. The results of the observer can be used to compensate
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the disturbance. However, the above-mentioned techniques have great difficulties in
engineering practice due to their complex structure.

In summary, as for the HGV’s large maneuver penetration in dive phase and the
impact angle constraints, an innovative snake-shape maneuver IGC method is proposed.
To begin with, a novel snake-shape maneuver model, whose amplitude is self-adjustable
according to its height, is designed. With the height of the HGV becoming smaller, the
maneuver amplitude becomes smaller to decrease the kinetic energy cost and guarantee
the terminal speed requirement. Furthermore, the LOS declination constraint is considered
in the snake-shape trajectory design which helps to achieve the snake-shape penetration and
terminal impact angle constrained control. The proposed IGC, based on adaptive sliding mode
control, can effectively deal with the strong coupling, uncertainties and disturbances of system
caused by the large angle maneuver, which will increase the robustness of the system.

2. Preliminaries

In this section, the snake-shape maneuver model is firstly designed in the frame of
sine-type function. Then, the nonlinear six degree-of-freedoms (DOF) dynamic model of
the HGV is firstly given followed by the three-dimensional relative motion of the HGV
and the target. Combining these two models, the integrated guidance and control model
(IGCM), with strict-feedback form is then derived, fully considering the coupling of the
aerodynamic and channels.

2.1. Snake-Shape Maneuver Model

In this manuscript, the snake-shape maneuver model is achieved in the frame of the
sine-type function, which can be described as in Equation (1).

mcommand = A(h) sin
[
v(η f , R)

]
A(h) =

{
A0(h− hs)/(h0 − hs) h ≥ hs

0 h < hs

v(η f , R) =
2π(p+η f /2π2)

R0
|R0 − R|

(1)

In Equation (1), h is the current height of the HGV and R is the relative distance of the
HGV and the target. h0 is the initial height when the snake-shape maneuver starts and hs
is the terminal height when the snake-shape maneuver stops. mcommand is the command
control force to achieve the snake-shape maneuver. The amplitude of the control force,
A(h), is determined by its current height h. The snake-shape maneuver is achieved only
when h ≥ hs. The constant A0 determines the amplitude of the control force at the initial
height h0. Note that usually the atmosphere density become larger while A(h) will become
smaller, with h becoming smaller. Therefore, the designed snake-shape maneuver model
will cost less energy. Let R0 be the initial distance of R, the phase of the control force,
v(η f , p), is determined by the target LOS declination η f . p is a positive integer, indicating
the cycle number of the trajectory.

2.2. Six DOF Dynamics of HGV

The adopted air-to-surface HGV in this assumed to be a rigid airframe in an plane-
symmetric configuration [25]. The six-DOF system dynamics of the HGV is combined
by translational and rotational dynamics, which can both be described by six differential
equations. The translational dynamics of the can be given by [26]:
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.
x = V cos θ cos ϕ
.
y = V sin θ
.
z = −V cos θ sin ϕ

m
.

V = −D−mg sin θ

mV
.
θ = L cos γv − N sin γv −mg cos θ

−mV cos θ
.
ϕ = L sin γv + N cos γv

(2)

where x, y and z are components of the position vector of the HGV in the inertial reference
frame. m is the mass and V is the velocity value of HGV. θ and ϕ are the flight path angle
and heading angle. γv is bank angle. g is the gravity acceleration. D, L and N are the
aerodynamic drag, lift and lateral forces, which can be given by

D = CDqS
L = CLqS
N = CNqS

(3)

in which CD, CL and CN are the aerodynamic drag, lift and lateral force coefficients,
respectively. q = 0.5ρV2 is the dynamic pressure and S is the reference size. ρ denotes the
atmosphere density.

The angle of attack α, sideslip angle β, bank angle γv and the three-axis angular
velocities, ωx, ωy, ωz are adopted to describe the rotational dynamic model of the HGV,
which can be given by:

.
α = ωz − tan β(ωx cos α−ωy sin α) + mg cos θ cos γv−L

mV cos β.
β = ωx sin α + ωy cos α + mg cos θ sin γv+N

mV.
γv = sec β(ωx cos α−ωy sin α) + L(tan β+tan θ sin γv)+N tan θ cos γv−mg cos θ tan β cos γv

mV
.

ωx =
Iyy Mx+Ixy My

Ixx Iyy−I2
xy

+
Ixy(Izz−Ixx−Iyy)

Ixx Iyy−I2
xy

ωxωz +
I2
xy+I2

yy−Iyy Izz

Ixx Iyy−I2
xy

ωyωz

.
ωy =

Ixy Mx+Ixx My

Ixx Iyy−I2
xy

+
Ixy(Ixx+Iyy−Izz)

Ixx Iyy−I2
xy

ωxωz +
Ixx Izz−I2

xx−I2
xy

Ixx Iyy−I2
xy

ωyωz
.

ωz =
Mz
Izz

+
Ixy
Izz

(
ω2

x −ω2
y

)
+

Ixx−Iyy
Izz

ωxωy

(4)

where Ixx, Iyy, Izz are the inertia moment of the HGV around x, y, z axes of the body
reference frame and Ixy is the inertia product around the xy plane. Mx, My, Mz are the
three-axis aerodynamic control torque elements which can be modeled as

Mx = qSlCmx
My = qSlCmy
Mz = qSlCmz

(5)

in which l is the reference length.
Cmx, Cmy and Cmz are rolling, yaw and pitch torque coefficients, respectively. The

aerodynamic force and torque coefficients, CL, CN , Cmx, Cmy and Cmz are usually obtained
by wind tunnel experiment or computational fluid dynamics (CFD) simulation. For conve-
nience, these coefficients are curve fitted by a smooth formula, given in Appendix A, which
is determined by Mach number Ma, angle of attack α, sideslip angle β, and three-axis fin
deflections δx, δy and δz. These aerodynamic coefficients can be generally denoted generally,
according to Appendix A, as

CD = CD0(Ma) + CD1(Ma, α, β) + Cx
D2δx

CL = CL0(Ma) + CL1(Ma, α, β) + Cz
L2δz

CN = CN0(Ma) + CN1(Ma, α, β) + Cy
N2δy

Cmx = Cmx0(Ma) + Cmx1(Ma, α, β) + Cx
mx2δx + Cy

mx2δy + Cz
mx2δz

Cmy = Cmy0(Ma) + Cmy1(Ma, α, β) + Cx
my2δx + Cy

my2δy + Cz
my2δz

Cmz = Cmz0(Ma) + Cmz1(Ma, α, β) + Cx
mz2δx + Cy

mz2δy + Cz
mz2δz

(6)
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in which Ci0(i = L, N, M, mx, my, mz) are the items only related to the constant item
and Mach number Ma. Ci1(i = L, N, M, mx, my, mz) are the items related to the angle of
attack α and sideslip angle β, while Cj

i2(i = L, N, M, mx, my, mz; j = x, y, z) denote the
corresponding aerodynamic derivatives with respect to the fin deflections δx, δy and δz.
According to the aerodynamic theorem, the angle of attack α and sideslip angle β play major
roles in producing the aerodynamic force while the fin deflections the aerodynamic torque.

2.3. Missile-Target Relative Motion Model

To begin with, we give the definition of the line of sight (LOS) reference frame to
describe the relative motion of the HGV and the target. As described in Figure 1, the origin
point of the LOS reference frame lies in the mass center of the HGV. xs-axis points to the
target. ys-axis is perpendicular to xs-axis, lying on the vertical plane. zs-axis completes the
right-hand reference frame.
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To describe the strike process to the target of the HGV, the relative motion between
the hypersonic vehicle and the target will be given in the LOS reference frame. The three-
dimensional relative motion can be given as [26]

 ..
R
..
ε
..
η

 =

 R
.
ε

2
+ R

.
η

2 cos ε cos ε

−2
.
R

.
ε/R− .

η
2 cos ε sin ε

2
.
ε

.
η tan ε− 2

.
R

.
η/R

+

1 0 0
0 −1/R 0
0 0 1/R cos ε

axs
hv

ays
hv

azs
hv

 (7)

where R is the relative distance between the HGV and the target. ε is the LOS elevation
angle and η is the LOS azimuth angle. axs

hv, ays
hv, azs

hv are the components of the acceleration
of the HGV in the LOS reference frame. Let Cg

v be the rotation matrix of the ground inertial
reference frame relative to the ballistic reference frame while Cs

g the rotation matrix of the
LOS reference frame relative to the ground inertial reference frame. Then, the acceleration
components, axv

hv, ayv
hv, azv

hv in ballistic reference frame, can be calculated according to the
following relationship axs

hv
ays

hv
azs

hv

 = Cs
v

 axv
hv

ayv
hv

azv
hv

 =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 axv
hv

ayv
hv

azv
hv

 (8)

where Cs
v = Cs

gCg
v is the rotation matrix of the ballistic reference frame relative to the LOS

reference frame and Tij(i = 1, 2, 3; j = 1, 2, 3) is the corresponding element of Cs
v. According

to Figure 1, one can obtain that

Cs
g =

 cos ε cos η sin ε − cos ε sin η
− sin ε cos η cos ε sin ε sin η

sin η 0 cos η

 (9)
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and Cg
v can be given by [26]

Cg
v =

 cos θ cos ϕ − sin θ cos ϕ sin ϕ
sin θ cos θ 0

− cos θ sin ϕ sin θ sin ϕ cos ϕ

 (10)

Combining Equations (9) and (10), Tij can be calculated as

T11 = cos ε cos η cos θ cos ϕ + sin ε sin θ + cos ε sin η cos θ sin ϕ
T12 = − cos ε cos η sin θ cos ϕ + sin ε cos θ − cos ε sin η sin θ sin ϕ
T13 = cos ε cos η sin ϕ− cos ε sin η cos ϕ
T21 = − sin ε cos η cos θ cos ϕ + cos ε sin θ − sin ε sin η cos θ sin ϕ
T22 = sin ε cos η sin θ cos ϕ + cos ε cos θ + sin ε sin η sin θ sin ϕ
T23 = − sin ε cos η sin ϕ + sin ε sin η cos ϕ
T31 = sin η cos θ cos ϕ− cos η cos θ sin ϕ
T32 = − sin η sin θ cos ϕ + cos η sin θ sin ϕ
T33 = sin η sin ϕ + cos η cos ϕ

(11)

Since the sideslip angle of the HGV approximates zero when BTT maneuver is adopted,
the lateral force N on the HGV can be ignored, which will be treated as uncertainty in
control law design. An equivalent principle of the guidance law can be summarized as that
the LOS elevation angle velocity

.
ε and LOS azimuth angle

.
η converge to zero. Therefore,

we mainly focus on the dynamics of the LOS elevation angle ε and LOS azimuth angle η.
Thus, rearranging Equation (7), considering Equations (2), (8) and (11), will lead to[ ..

ε
..
η

]
= fεη +

[
−1/R 0

0 1/R cos ε

][
T22 T23
T32 T33

][
L cos γv/m
L sin γv/m

]
+ ∆s (12)

where the nonlinear function fεη is

fεη =

[
−2

.
R

.
ε/R− .

η
2 cos ε sin ε

−2
.
R

.
η/R + 2

.
ε

.
η tan ε

]
(13)

and the uncertain disturbance ∆s is

∆s =

[
−1/R 0

0 1/R cos ε

][
T21 T22 T23
T31 T32 T33

] −D/m− g sin θ
−N sin γv/m− g cos θ

N cos γv/m

 (14)

2.4. Integrated Model of Guidance and Control

To facilitate deriving the IGCM and control law, we hoped to rewrite the dynamics of
the HGV in vector form. As for the attitude dynamics, recalling the first three equations of
Equation (4), it can be rewritten as

.
α
.
β
.
γ

 = fαβγ +

− cos α tan β sin α tan β 1
sin α cos α 0

cos α sec β − sin α sec β 0

ωx
ωy
ωz

 (15)

in which

fαβγ =


mg cos θ cos γv−L

mV cos β
N+mgcosθ sin γv

mV
L(tan β+tan θ sin γv)+N tan θ cos γv−mgcosθ tan β cos γv

mV

 (16)
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Similarly, the last three equations of Equation (4) can also be rearranged as

 .
ωx.
ωy.
ωz

 = fωxyz + qSl


Iyy

Ixx Iyy−I2
xy

Ixy

Ixx Iyy−I2
xy

0
Ixy

Ixx Iyy−I2
xy

Ixx
Ixx Iyy−I2

xy
0

0 0 1
Izz


Cx

mx2 Cy
mx2 Cz

mx2
Cx

my2 Cy
my2 Cz

my2
Cx

mz2 Cy
mz2 Cz

mz2


 δx

δy
δz

+ ∆r (17)

where ∆r represents the uncertainty of the IGCM caused by aerodynamic coupling and
external disturbance which can be given as

∆r = qSl


Iyy

Ixx Iyy−I2
xy

Ixy

Ixx Iyy−I2
xy

0
Ixy

Ixx Iyy−I2
xy

Ixx
Ixx Iyy−I2

xy
0

0 0 1
Izz


 Cmx0(Ma) + Cmx1(Ma, α, β)

Cmy0(Ma) + Cmy1(Ma, α, β)
Cmz0(Ma) + Cmz1(Ma, α, β)

 (18)

The nonlinear function fωxyz represents the coupling components of the three-axis
channel coupling with the formulation as

fωxyz =


(

Ixx Iyy − I2
xy

)−1(
Ixy(Izz − Ixx − Iyy)ωxωz + (I2

xy + I2
yy − Iyy Izz)ωyωz

)
(

Ixx Iyy − I2
xy

)−1(
Ixy(Ixx + Iyy − Izz)ωxωz + (I2

xy + I2
yy − Iyy Izz)ωyωz

)
I−1
zz

(
Ixy(ω2

x −ω2
y) + (Ixx − Iyy)ωxωy

)
 (19)

It is shown that Equations (15) and (17) describe the three-dimensional attitude motion of the
HGV with the strict-feedback form considering the coupling of the aerodynamic and channels.

According to parallel approaching method, zeroing the LOS angle velocity will
lead to zero miss distance, i.e., the LOS direction will keep constant ultimately [27].
Additionally, considering the impact angle constraint to enhance the attack effectiveness,
it is usually required that the LOS angle velocity

.
ε and

.
η will eventually converge to zero

while the LOS angle ε and η the desired LOS angle ε f and η f [8]. Therefore, to describe the

integrated dynamics of the HGV succinctly, define x1 =
[
ε− ε f η − η f

]T , x2 =
[ .
ε

.
η
]T ,

x3 =
[
α β γv

]T and x4 =
[
ωx ωy ωz

]T in which ε f and η f are the target LOS eleva-

tion and azimuth angles, respectively. u =
[
δx δy δz

]T is the control input. Rewriting
Equations (12), (15) and (17), the following three-dimensional IGCM can be obtained as

.
x1 = x2.
x2 = fε,η + g1x#

3 + ∆s
.
x3 = fαβγ + g2x4
.
x4 = fωxyz + g3u + ∆r

(20)

where g1, g2 and g3 are control gain matrices defined by

g1 =

[
−1/mR 0

0 1/mR cos ε

][
T22 T23
T32 T33

]
(21)

g2 =

− cos α tan β sin α tan β 1
sin α cos α 0

cos α sec β − sin α sec β 0

 (22)

g3 = qSrLr


(

Ixx Iyy − I2
xy

)−1
Iyy

(
Ixx Iyy − I2

xy

)−1
Ixy 0(

Ixx Iyy − I2
xy

)−1
Ixy

(
Ixx Iyy − I2

xy

)−1
Ixx 0

0 0 I−1
zz


mx,δx mx,δy mx,δz

my,δx my,δy my,δz

mz,δx mz,δy mz,δz

 (23)

and

x#
3 =

[
L cos γv/m
L sin γv/m

]
(24)
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According to Equation (20), the established IGC model has a strict-feedback form with
unmatched uncertainty ∆s and matched uncertainty ∆r. Apparently, if LOS angular rate
vector x2 converges to zero, HGV will fly towards the target. Additionally, HGV will strike
the target with the desired target LOS inclination and declination angles when x1 converges
to zero. Before formulating the control law, the following assumptions are conducted.

Assumption 1. The uncertainties ∆s and ∆r in the IGC model of HGV are unknown but bounded.
The upper bounds of these uncertainties are also unknown. That is to say, there exist unknown
positive constants Ms and Mr such that ‖∆s‖ ≤ Ms and ‖∆r‖ ≤ Mr, where ‖·‖ represents the
Euclidean norm.

Assumption 2. The control gain matrices g1, g2 and g3 are smooth and bounded.

Assumption 1 is evident when the states of Equation (20) is bounded, which always holds
for bounded control input. As for Assumption 2, the smoothness and boundedness of these
matrices can be guaranteed by smoothness and boundedness of the states of Equation (20).

3. The Maneuver Penetration IGC Design Considering the Terminal Impact
Angle Constraint

The goals of the maneuver penetration IGC design considering the terminal impact
angle constraint can be summarized as follows: firstly, the HGV will hit the target accurately
with a target terminal impact angle; secondly, all states of Equation (20) are bounded, stable
and controllable; finally, the HGV will maintain high-robustness during the whole flight
procedure. Mathematically, according to Equation (20) the above mentioned control goals
can also be described to design the control law for angles of fin deflections u such that
limt→t f x1 = 0 and limt→t f x2 = 0, and all signals in Equation (20) are bounded, when
considering the uncertainties.

As depicted in Figure 2, the control law is accomplished through three-loop control
with the following steps. Firstly, design the terminal guidance law considering impact angle
constraints. According to the relative motion of the HGV and the target, design the target
angle of attack αc and bank angle γvc, which can provide the desired acceleration given in
the guidance law; then, design the attitude control law. Treating the angular velocity vector
ω as the virtual control input ωc, track the target angle of attack αc and bank angle γvc, to
provide the command aerodynamic force. Finally, design the angular velocity control law.
Design the control law for angles of fin deflections u such that the actual angular velocity
will coincide with the expected value ωc.
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3.1. The Guidance Law Design with Snake-Shaped Trajectory Considering Terminal Impact
Angle Constraint

Consider the first two equations of Equation (20) as{ .
x1 = x2.
x2 = fε,η + g1x#

3 + ∆s
(25)
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where x#
3 can be treated as the virtual control input. The sliding mode control technique

is adopted such that limt→t f x1 = 0 and limt→t f x2 = 0 considering uncertainties ∆s.
The sliding mode surface is selected as

S1 =

[ .
ε
.
η

]
+

kls
Tgo

[
ε− ε f
η − η f

]
= x2 +

kls
Tgo

x1 (26)

where kls > 0 is the selected sliding mode gain and Tgo = −r/
.
r is the estimated time-to-go.

It can be analyzed that S1 = 0 will lead to x1 = exp(−kls(t− t0)/Tgo)x1(t0). That is to say,
when the states of Equation (22) come to the sliding mode surface, it will eventually converge
to the equilibrium, i.e.,

.
ε→ 0 ,

.
η → 0 , ε→ ε f and η → η f . Note that in Equation (22), the

variable coefficient factor which varies inversely with the time-to-go is adopted to control
the convergence rate. It is apparent that a greater Tgo will lead to a slower convergence rate.
Therefore, in the first stage of the flight, S1 plays a major role in driving the LOS angular
rate x2 to be zero while in the terminal stage of the flight, with the Tgo becoming smaller,
S1 acts in achieving the terminal impact angle constraint.

If the aerodynamic force is treated as a virtual input firstly, adopting the exponential
reaching law, the adaptive control law can be designed as[

Le cos γve
Le sin γve

]
= mg−1

1

(
− ε1

Tgo
S1 −

K1

Tgo

S1

‖S1‖
− kls

Tgo
x2 − fε,η − M̂s

S1

‖S1‖

)
(27)

where intermediate variables Le and γve represent the expected lift force and bank angle,
respectively, without considering the snake-shape maneuver. Positive constants ε1 and K1
are to be designed control parameters. M̂s is the estimated value of the upper bound Ms of
the disturbance ∆s, which is updated by the following adaptive law:

.
M̂s = ζ1‖S1‖ (28)

in which ζ1 is a positive control parameter to be selected.
To analyze the stability of the system, a candidate Lyapunov function, V11, for the

subsystem Equation (25) is selected as

V11 =
1
2

ST
1 S1 +

1
2ζ1

(M̂s −Ms)
2 (29)

Direct computation yields that

.
V11 = ST

1

.
S1 +

1
ζ1
(M̂s −Ms)

.
M̂s

= ST
1

(
− ε1

Tgo
S1 − K1

Tgo
S1
‖S1‖
− M̂s

S1
‖S1‖

+ ∆s

)
+ (M̂s −Ms)‖S1‖

≤ ST
1

(
− ε1

Tgo
S1 − K1

Tgo
S1
‖S1‖

)
+ Ms‖S1‖ − M̂s‖S1‖+ (M̂s −Ms)‖S1‖

≤ − ε1
Tgo
‖S1‖2 − K1

Tgo
‖S1‖ ≤ 0

(30)

It will eventually come to the conclusion that the subsystem Equation (25) is asymp-
totically stable under the virtual control law Equations (27) and (28), with the application
of Barbalat’s Lemma [28].

The control law, given as Equations (27) and (28), is designed based on zeroing LOS
angular rate x2 with a certain terminal impact angle ε f and η f . Therefore, the trajectory of
the HGV is straight. To achieve the snake-shaped trajectory, an additional item is considered
in Equation (27). The new control law is constructed as[

Lc cos γvc
Lc sin γvc

]
=

[
Le cos γve
Le sin γve

]
+ mmc (31)
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where Lc and γvc are the target lift force and bank angle, considering the snake-shape
maneuver problem. The bias item mc is

mc =


[

0 A0
h−hs
h0−hs

sin
(

2π(p+η f /2π2)

R0
|R0 − R|

)]T
h ≥ hs[

0 0
]T h < hs

(32)

Due to the nonlinear relationship between the angle of attack α and the bank angle
γv, the numerical method will be applied to obtain the target angle of attack α and the
bank angle γv. According to the wind tunnel experiment, we can obtain the table of the
lift coefficient cL(α, Ma) with respect to the angle of attack α and the Mach number Ma.
To have a faster convergence rate, Newton-Raphson’s method can be applied in finding the
target angle of attack and bank angle (Algorithm 1).

Algorithm 1: Determine the target angle of attack αc and the target bank angle γvc

Input: the expected aerodynamic forces Fcx = Lc cos γvc, Fcy = Lc sin γvc according to Equation (24);
current Mach number Ma; lift coefficient table cL(α, Ma); iterative tolerance ε > 0; dynamic pressure
q, reference size S.
Output: the target angle of attack αc and the bank angle γvc

1. Initial: α0 = 0;

2. Calculate the expected aerodynamic lift force coefficient cLc =
√

F2
cx + F2

cy/qS;
3. According to Mach number Ma and current angle of attack αk, find the aerodynamic lift
force coefficient cL(αk, Ma) and its differential coefficient c′L(αk, Ma);
4. Update angle of attack: αk+1 = αk −

cL(αk ,Ma)−cLc
c′L(αk ,Ma) ;

5. Determine if |αk+1 − αk| ≤ ε, if not, return to Step 1;
6. Get the target angle of attack αc = αk+1;
7. Calculate the target bank angle γvc = arctan(Fcy, Fcx);
8. End.

3.2. The Attitude Control Law Design

In Section 3.1, the guidance law to achieve the snake-shaped trajectory is designed
and the target angle of attack αc and the bank angle γvc are obtained. For the third equation
of Equation (20), treating the angular velocity x4 as the virtual control input, it is expected
to design an attitude control law x4c =

[
ωxc ωyc ωzc

]T such that x3 will coincide with

x3c =
[
αc 0 γvc

]T .
.
x3 = fαβγ + g2x4 (33)

Define the tracking error as

S2 = x3 − x3c =
[
α− αc β γv − γvc

]T (34)

If the virtual control law is designed as

x4c = g−1
2

(
−ε2S2 − fαβγ +

.
x3c

)
(35)

where ε2 is the control parameter to be designed, then the tracking error S2 will converge
to zero asymptotically.

3.3. The Angular Velocity Control Law Design

In this section, the control law for fin deflections will be designed to track the virtual
angular velocity x4c which has been discussed in Section 3.2. For the last equation of
Equation (20), define the tracking error as

S3 = x4 − x4c =
[
ωx −ωxc ωy −ωyc ωz −ωzc

]T (36)
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whose dynamics can be given by

.
S3 =

.
x4 −

.
x4c = fωxyz + g3u + ∆r −

.
x4c (37)

To achieve the tracking and eliminate the influence of the uncertainties, the adaptive
control law is designed as

u =
[
δx δy δz

]T
= g−1

3

(
−K3

S3

‖S3‖
− ε3S3 − fωxyz − M̂r

S3

‖S3‖
+

.
x4c

)
(38)

where K3, ε3 ∈ R3×3 are two positive definite matrices to be selected and M̂r is the estimate
value of the upper bound Mr of the uncertainty ∆r. The update law of M̂r is

.
M̂r = ζ2S3 (39)

in which ζ2 is a positive control parameter to be selected.
The stability of the subsystem Equation (37) can be proved by selecting a Lyapunov

function as
V13 =

1
2

ST
3 S3 +

1
2ζ2

(M̂r −Mr)
2 (40)

The time differentiation of V13 along the trajectories of Equation (37) can be given as

.
V13 = ST

3 S3 +
1
ζ2
(M̂r −Mr)

.
M̂r

= ST
3

(
−K3

S3
‖S3‖
− ε3S3 − M̂r

S3
‖S3‖

+ ∆r

)
+ (M̂r −Mr)S3

= −λmin(K3)‖S3‖ − λmin(ε3)‖S3‖2 ≤ 0

(41)

Similar to the analysis in Section 3.1, with the application of Barbalat’s Lemma [28],
one can conclude that the designed control law Equations (38) and (39) can guarantee the
asymptotical stability of the subsystem (37).

Remark 1: The stability analysis is proved for the three subsystems. According to Sections 3.1–3.3,
each subsystem is all asymptotically stable with the application of the control law in each stable.
Therefore, the stability of the outer loop subsystem can be guaranteed only when the inner loop
provides the virtual command exactly, i.e., no boundary layer error happens, which cannot be
satisfied due to the dynamic performance of the inner loop subsystem. The stability of the whole
system is analyzed in Appendix C.

Remark 2: The existence of the switch items in Equations (27) and (38) makes the control law
unsmooth, which may lead to the chattering problem. To avoid this, the functions Si/‖Si‖ will all
be replaced by Si/(‖Si‖+ δi), where δi is a small constant. The property that Si/(‖Si‖+ δi) is
continuous and smooth implies that the control law will not encounter chattering.

4. Numerical Simulation
4.1. Feasibility Simulation

To demonstrate the effectiveness of the proposed snake-shape maneuver integrated
guidance and control (SMIGC) technique, a numerical simulation is conducted for an
HGV whose profile parameters and aerodynamic parameters can be found in Appendix A
and Table A1. Assume that the HGV locates at (L0, B0, H0) = (96◦, 46◦, 30 km) initially
where L0, B0 and H0 are the initial values of the longitude, latitude and height of the HGV.
The longitude, latitude and height of the target are (Lt, Bt, Ht) = (95◦, 45◦, 0). The initial
velocity of HGV is 2200 m/s. The target LOS angles are (ε f , η f ) = (−70◦,−20◦). The initial
attitude and angular velocity are all assumed to be zero. The control parameters are shown
in Table 1. In addition, a comparison with a recent angle constrained integrated guidance
and control (ACIGC) [23] is conducted.
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Table 1. Control parameters.

Parameter Value Parameter Value

Kls diag [5, 15] K1 diag [0.01, 0.01]
K2 diag [0.001, 0.01, 0.001] K3 diag [0.01, 0.001, 0.01]
ε1 diag [10, 10] ε2 diag [15, 32, 10]
ε3 diag [20, 20, 55] A0 1
P 2

To avoid a saturation problem in the simulation, some parameters are limited in certain
ranges as illustrated in Table 2. The simulation will be terminated when the height of the
HGV is lower than zero, i.e., H < 0. The simulation results are shown in Figures 3–9.

Table 2. Parameter limitations.

Parameter Value Parameter Value

Fin
angle limitation [−20◦, 20◦] Fin angle

rate limitation [−100◦/s, 100◦/s]

Angle of attack
limitation [−4◦, 20◦] Sideslip angle

limitation [−5◦, 5◦]

Angle of attack
rate limitation [−20◦/s, 20◦/s] Sideslip angle

rate limitation [−20◦/s, 20◦/s]

Bank angle
rate limitation [−60◦/s, 60◦/s]
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Figure 8. (a) Yaw angular velocity; (b) pitch angular velocity.
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Figure 9. (a) Attitude angles; (b) fin deflections.

From the three-dimensional trajectory of the HGV, as depicted in Figure 3, it is shown
that the HGV achieves snake-shaped penetration and hits the target successfully under the
proposed SMIGC technique. It can also be seen from Figure 3 that the amplitude of the sine-
type maneuver on horizontal plane becomes smaller with the relative distance becoming
smaller. It helps one verify the effectiveness of the proposed method. Accordingly, the HGV
will also hit the target successfully, under the ACIGC, however, its trajectory is straighter
due to lack of the penetration ability. Figure 4a shows the relative distance of the HGV and
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the target under the SMIGC and ACIGC. It can be found that the HGV with SMIGC will
spend more time hitting the target whereas the landing accuracy can still reach to 0.5 m.
Figure 4b indicates that the SMIGC of the HGV will cost more kinetic energy, and therefore
it has a lower terminal velocity. Figure 5 describes the time histories of the flight path
and flight heading angles of the HGV. It can be seen that the existence of the snake-shape
maneuver on the lateral plane will cause periodic changes in the heading angle and the
terminal values of the flight path, and that flight heading angles will converge to the desired
ones. The time histories of the angle of attack, sideslip angle and bank angle are shown in
Figures 6 and 7a. They show that, with the application of the SMIGC and ACIGC, the actual
angles can track the expected angles quickly, whereas SMIGC requires larger overload
when implementing the penetration, hence, the HGV with SMIGC has larger angle of
attack in the early stage of the flight. On the other hand, the sideslip angle remains at the
neighborhood of zero while a periodic tile angle is required to provide the lateral overload.
Furthermore, during the last stage of the flight, the bank angle will exceed 90◦ and reach to
120◦ such that the main lifting surface can provide force to dive. Figures 7b and 8 show the
time history of the three-axis angular velocity while Figure 9a describes the time histories
of the attitude angles and fin deflection angles, which indicates the effectiveness of the
proposed control technique.

4.2. Monte Carlo Simulation

To verify the robustness of the system under the proposed control law, the Monte
Carlo simulation was conducted. In this simulation, the perturbation parameters included
the aerodynamic parameters, the mass, the moment of inertia, the character size, the char-
acter length, the atmosphere density and the wind speed. These perturbation parameters
complied with normal distribution N(µ, σ2), where µ, σ represents the mean value and
standard deviation of the corresponding perturbation parameters, respectively. The mean
value of these perturbation parameters are given as in Appendices A and B, while the range
of these parameters is listed in Table 3. The simulation results of the 800 shooting tests are
described in Figures 10 and 11.

Table 3. The range of the perturbation parameters.

Perturbation Parameters Error Range (3σ) Perturbation Parameters Error Range (3σ)

Aerodynamic parameters 20% Mass 2%
Moment of inertia 1% character size 2%
Character length 1% atmosphere density 20%

Wind speed 15 m/s
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It can be seen from Figure 10a that at each shooting test of the 800 simulations,
under the proposed IGC technique, the snake-shape maneuver can all be achieved. From
Figure 10b, considering the influence of the perturbation parameters, the landing accuracy,
measured by Circular Error Probability (CEP), is better than 1 m. Figure 11 describes
the errors of the inclination and deflection of the trajectory. The control accuracy of the
trajectory inclination and deflection angles reaches 1◦. In summary, according to the
simulation results of the 800 shouting tests, the system shows great robustness to the
perturbation of the parameters listed in Table 3.

5. Conclusions

Focusing on the large penetration problem of the HGV, this paper proposes a robust
IGC method which can help achieve the snake-shape maneuver. Firstly, a novel snake-
shape maneuver acceleration command is designed, in which amplitude and phase are
determined by height and missile-target distance. The maneuver command will be zero
when the height of the HGV is lower than the selected height, indicating that the maneuver
will not influence the hitting accuracy. Secondly, based on the missile-target relative motion
model and the designed snake-shape maneuver acceleration command, a guidance law,
in the framework of sliding mode control, is designed considering the terminal angle
constraints of LOS and the snake-shape maneuver. In what follows, the expected angle of
attack and bank angle are obtained. Finally, the attitude controller and angular velocity are
designed to track expected angle of attack and bank angle, with the application of the adapt
control technique to deal with the external disturbance. With the help of the Lyapunov
theorem, the global asymptotical stability of the whole system is proved. The effectiveness
and robustness of the proposed method are also ensured by feasibility simulation and
Monte Carlo simulation.

Compared with some existing works, the proposed method has the following novelties.
Firstly, a simple but effective snake-shape maneuver command is designed, which balances
the contradictions between the large penetration and the hitting accuracy. Secondly, it
deals with the snake-shape maneuver control problem, satisfying the terminal LOS angle
constraints simultaneously. Last but not least, the whole system has strong robustness
under the proposed control law, with the help of the adaptive and sliding mode control
techniques. Although the proposed IGC can only achieve the snake-shape maneuver on
the lateral plane instead of any other selected plane, it still shows great potential to achieve
the penetration for hypersonic vehicle or other BTT missile.
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Appendix A. Aerodynamic Parameters of HGV

The aerodynamic parameters of HGV are listed as follows:

CD = 3.87935× 10−2 − 6.07087× 10−4Ma− 9.69344× 10−4α− 5.22735× 10−5Ma · α
+1.40614× 10−4α2 − 9.06812× 10−7Ma · α2 + 1.66035× 10−6Ma2 · α
+7.69399× 10−7Ma3 + 5.54004× 10−6α3 + 1.60289× 10−4β

(A1)

CL = −3.39472× 10−2 + 6.31965× 10−5Ma + 1.04573× 10−2α− 4.18797× 10−4Ma · α
+2.17936× 10−4α2 + 4.14144× 10−6Ma · α2 + 9.86629× 10−6Ma2 · α
+1.81592× 10−6α3 + 8.83154× 10−4δz

(A2)

CN = −9.94962× 10−3β + 1.86910× 10−4Maβ− 4.31664× 10−6Ma2β

+2.11233× 10−4δy − 1.58733× 10−5Maδy + 3.92700× 10−7Ma2 · δy
(A3)

Cmx = 4.05443× 10−4β + 2.04880× 10−6Maβ + 3.91986× 10−3δy
−1.25461× 10−6Ma · δy + 2× 6.96636× 10−3δx − 2× 2.43573× 10−6Maδx

(A4)

Cmy = −2.01578× 10−3β− 5.97591× 10−5Maβ + 1.45858× 10−6Ma2β

−1.47621× 10−3δy + 1.11004× 10−5Maδy − 2.74658× 10−7Ma2δy
(A5)

Cmz = −1.18572× 10−2 + 1.12428× 10−5Ma + 2.65247× 10−3α
−6.94789× 10−5Ma · α− 3.76692× 10−5α2 + 7.75403× 10−6Maα2

+1.72599× 10−6Ma2α− 2.48917× 10−6α3 − 1.04605× 10−7Maα3

−1.88603× 10−7Ma2α2 + 1.55695× 10−7α4 + 2× 6.69536× 10−3δz

(A6)

Appendix B. General Parameters of HGV

The general parameters of the HGV are shown in Table A1.

Table A1. The general parameters of HGV.

Variable Symbol Value Meaning

m 2200 kg Mass of HGV
S 6.33 m2 Reference area
L 3.6 m Reference length

Ixx 345 kg·m2 Moment if inertia around x axis
Iyy 4917.1 kg·m2 Moment if inertia around y axis
Izz 4956.6 kg·m2 Moment if inertia around z axis
Ixy 1302.4 kg·m2 Product of inertia

Appendix C. The Analysis of the Stability of the Whole System

It has been proved that the subsystems Equations (25), (33) and (37) are all asymp-
totically stable. What follows will analyze how the boundary layer error will influ-
ence the dynamic performance. Firstly, consider the guidance loop and attitude loop,
i.e., Equations (25) and (33). If the boundary layer error, x#

3 − x#
3c, is taken into account,

Equation (25) can be rewritten as{ .
x1 = x2.
x2 = fε,η + g1x#

3c + ∆s + g1(x
#
3 − x#

3c)
(A7)

Equation (A7) can be treated as a perturbed system and g1(x
#
3− x#

3c) is the perturbation
item. Note that the nominal system (i.e.,

∥∥x#
3 − x#

3c
∥∥ = 0) is asymptotically stable, therefore,

Equation (25) is input-to state stable (ISS, see Chapter 4 of [28] for more detail) with
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respect to the boundary layer error, x#
3 − x#

3c. Referring to cascade system, combining
by Equations (25) and (33), if x4 is treated as the control input for these two subsystems,
according to Lemma 4.7 of [28], it can further come to the conclusion that the cascade
system is asymptotically stable.

Let X1 =
[
xT

1 xT
2 xT

3
]T be the states of the cascade system, Equations (25) and (33),

according to the discussion above, X1 is asymptotically stable if there is no boundary layer
error for x4. Following the same analysis above, if the boundary layer error, x#

4 − x#
4c, is

taking into consideration, the cascade system, Equations (25) and (33), will also be ISS
with respect to x#

4 − x#
4c. Then, with the application of Lemma 4.7 of [28], it can eventually

conclude that the whole system is asymptotically stable.
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