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Abstract: In the last decade, parameter-free approaches to shape optimization problems have matured
to a state where they provide a versatile tool for complex engineering applications. However,
sensitivity distributions obtained from shape derivatives in this context cannot be directly used as
a shape update in gradient-based optimization strategies. Instead, an auxiliary problem has to be
solved to obtain a gradient from the sensitivity. While several choices for these auxiliary problems
were investigated mathematically, the complexity of the concepts behind their derivation has often
prevented their application in engineering. This work aims to explain several approaches to compute
shape updates from an engineering perspective. We introduce the corresponding auxiliary problems
in a formal way and compare the choices by means of numerical examples. To this end, a test case
and exemplary applications from computational fluid dynamics are considered.

Keywords: shape optimization; shape gradient; steepest descent; continuous adjoint method;
computational fluid dynamics

1. Introduction

Shape optimization is a broad topic with many applications and a large variety of meth-
ods. This paper focuses on gradient-based shape optimization methods designed to solve
problems that are constrained by partial differential equations (PDE). These arise, for exam-
ple, in many fields of engineering such as fluid mechanics [1–3], structural mechanics [4,5]
and acoustics [6,7]. Since they may be trapped in a local optimum, gradient-descent
methods are favorable in globally convex optimization problems or when an improved con-
figuration is sought based on an already existing design. The latter is frequently the case in
many engineering-scale applications, in which the initial design usually corresponds to an
existing model that is already functional. However, in cases where a numerical estimation
of the gradient is either insufficient or impractical to obtain, a promising alternative can be
found in gradient-free methods. For a detailed discussion of these methods, we refer the
reader to [8,9].

In order to computationally solve a PDE constraint of an optimization problem, the do-
main under investigation needs to be discretized, i.e., a computational mesh is required. In
this paper, we are particularly concerned with boundary-fitted meshes and methods, where
shape updates are realized through updates of the mesh. However, it is worth mentioning
that alternatives to mesh morphing-based methods, such as immersed boundary or level-
set methods, have been investigated in the context of shape or predominantly topology
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optimization [10,11]. However, additional analytic effort is required to differentiate the
adjoint method up to the immersed boundary representation. Moreover, it is well known
that in level-set approaches an adaptive concept for the spatial resolution is indispensable.

In the context of boundary-fitted meshes, solution methods for gradient-based shape
optimization problems may be loosely divided into parameterized and parameter-free
approaches. With parameterized, we refer to methods that describe the shape through a
finite number of parameters. The parameterization is prescribed beforehand and is part
of the derivation process of suitable shape updates, see, e.g., [12]. Parameter-free refers
to methods that are derived on the continuous level independently of a parameterization.
Of course, in an application scenario, also parameter-free approaches finally discretize the
shape using the mesh needed for the solution of the PDE.

In general, optimization methods for PDE-constrained problems aim to minimize
(or maximize) of an objective functional that depends on the solution (also called the
state) of the PDE, e.g., the compliance of an elastic structure [4] or dissipated power in
a viscous flow [2]. Since a maximization problem can be expressed as a minimization
problem by considering the negative objective functional, we only consider minimization
problems in this paper. An in-depth introduction is given in [13]. In this paper, we are
concerned with iterative methods that generate shape updates such that the objective
functional is reduced. In order to determine suitable shape updates, the so-called shape
derivative of the objective functional is utilized. Typically, adjoint methods are used to
compute shape derivatives, when the number of design variables is high. This is the case
in particular for parameter-free shape optimization approaches, where shapes are not
explicitly parameterized (e.g., by splines) and after a final discretization, the number of
design variables typically corresponds to the number of nodes in the mesh that is used to
solve the constraining PDE. Adjoint methods are favorable in this scenario, because their
computational cost to obtain the shape derivative is independent of the number of design
variables. For every objective functional, only a single additional problem, the adjoint
problem, needs to be derived and solved to obtain the shape derivative. For a general
introduction to the adjoint method, we refer the reader to [14,15].

Despite the merits of the adjoint methods in the context of efficiently obtaining a shape
derivative, there are also shortcomings. For example, in unsteady problems the complete
time history of the primal problem is required since the adjoint problem depends on it in
each timestep. This creates high memory demands for engineering-scale applications. How-
ever, several techniques have been successfully utilized to overcome this drawback. This
includes check-pointing strategies, where the primal solution is stored only at a number
of optimally placed check-points in time, see, e.g., [16,17]. Further, compression strategies
have been employed to minimize the memory footprint of storing the complete time history.
These strategies are usually classified as lossy or non-lossy depending on whether the
exact solution can be reconstructed from the compressed data or not, respectively [18].
Furthermore, several problems require the optimization of more than one objective func-
tional. While the adjoint method is most prominent for computing the derivative of a
single objective with respect to the control, it can also be utilized for the optimization of
multiple objective functionals. In such a case, a usual practice is to define a single objective
functional as the weighted sum of the individual quantities of interest. This technique
has also been used in conjunction with adjoint methods for robust optimization problems,
in which the minimization of the statistical moments of a quantity of interest is desired, see,
e.g., [19,20].

In the continuous adjoint method, the shape derivative is usually obtained as an
integral expression over the design boundary identified with the shape and gives rise to a
scalar distribution over the boundary, the sensitivity distribution, which is expressed in
terms of the solution of the adjoint problem. As an alternative to the continuous adjoint
method, the discrete adjoint method may be employed. It directly provides sensitivities at
discrete points, likely nodes of the computational mesh. A summary of the continuous and
the discrete adjoint approach is given in [21].
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Especially in combination with continuous adjoint approaches, it is not common to use
the derived expression for the sensitivity directly as a shape update within the optimization
loop. Instead, sensitivities are usually smoothed or filtered [22]. A focus of this work lies in
the explanation of several approaches to achieve this in such a way that they can be readily
applied in the context of engineering applications. To this end, we concentrate on questions
such as How to apply an approach? and What are the benefits and costs? rather than How can
approaches of this type be derived?

Nevertheless, we would like to point out that there is a large amount of literature
concerned with the mathematical foundation of shape optimization. For a deeper intro-
duction, one may consult standard textbooks, such as [23,24]. More recently, an in-depth
overview on state-of-the-art concepts has been given in [25], including many references. We
include Sobolev gradients in our studies, which can be seen as a well-established concept
that is applied in many studies to obtain a so-called descent direction (which leads to
the shape update) from a shape derivative, see, e.g., [26,27] for engineering and [28–30]
for mathematical studies. We also look at more recently developed approaches such as
the Steklov–Poincaré approach developed in [31] and further investigated in [30] and the
p-harmonic descent approach, which was proposed in [32] and further investigated in [33].
In addition, we address discrete filtering approaches, as used, e.g., in [22,34], in our studies.

The considered shape updates have to perform well in terms of mesh distortion.
Over the course of the optimization algorithm, the mesh has to be updated several times,
including the position of the nodes in the domain interior. The deterioration of mesh
quality, especially if large steps are taken in a given direction, is a severe issue that is the
subject of several works, see, e.g., [34,35], and plays a major role in the present study as
well. Using an illustrative example and an application from computational fluid dynamics
(CFD), the different approaches are compared and investigated. However, we do not
extensively discuss the derivation of the respective adjoint problem or the numerical
solution of the primal and the adjoint problem but refer to the available literature on
this topic, see, e.g., [1,2,36–40]. Instead, we focus on the performance of the different
investigated approaches, which compute a suitable shape update from a given sensitivity.

The remainder of this paper is structured as follows. In Section 2, we explain the shape
optimization approaches from a mathematical perspective and provide some glimpses of
the mathematical concepts behind the approaches. This includes an introduction to the
concept of shape spaces, and the definition of metrics on tangent spaces that lead to the
well-known Hilbertian approaches or Sobolev gradients. These concepts are then applied
in Section 3 to formulate shape updates that reduce an objective functional. In Section 4,
we apply the various approaches to obtain shape updates in the scope of an illustrative
example, which is not constrained by a PDE. This outlines the different properties of
the approaches, e.g., their convergence behavior under mesh refinement. In Section 5, a
PDE-constrained optimization problem is considered. In particular, the energy dissipation
for a laminar flow around a two-dimensional obstacle and in a three-dimensional duct
is minimized. The different approaches to compute a shape update are investigated and
compared in terms of applicability (in the sense of being able to yield good mesh qualities )
and efficiency (in the sense of yielding fast convergence).

2. Shape Spaces, Metrics and Gradients

This section focuses on the mathematical background behind parameter-free shape
optimization and aims to introduce the required terminology and definitions for Section 3,
which primarily focuses on straightforward application. However, we will refer back
to the mathematical section several times, since some information in Section 3 may be
difficult to understand without the mathematical background. In general, we follow the
explanations in [41,42], to which we also refer for further reading. And for application to
shape optimization, we refer to [25,29,43].



Aerospace 2023, 10, 751 4 of 39

2.1. Definition of Shapes

To enable a theoretical investigation of gradient descent algorithms, we first need
to define what we describe as a shape. There are multiple options, e.g., the usage of
landmark vectors [44–48], plane curves [49–52] or surfaces [53–57] in higher dimensions,
boundary contours of objects [58–60], multiphase objects [61], characteristic functions
of measurable sets [62] and morphologies of images [63]. For our investigations in a
two-dimensional setting, we will describe the shape as a plane curve embedded in the
surrounding two-dimensional space, the so-called hold-all domain D ⊂ R2 similar to [64],
and for three-dimensional models, we use a two-dimensional surface embedded in the
surrounding three-dimensional space D ⊂ R3. Additionally, we need the definition of a
Lipschitz shape, which is a curve embedded in R2 or a surface embedded in R3 that can
be described by (a graph of) a Lipschitz-continuous function. Furthermore, we define a
Lipschitz domain as a domain that has a Lipschitz shape as boundary. The concept of
smoothness of shapes in two dimensions is sketched in Figure 1.

(a) (b) (c) (d)

Figure 1. Sketch of shapes in R2 from classes of different smoothness. (a) Infinitely smooth (C∞).
(b) Continuously differentiable (C1). (c) Lipschitz-continuous and C0. (d) Non-Lipschitz-continuous
but C0.

2.2. The Concept of Shape Spaces

The definition of a shape space, i.e., a space of all possible shapes, is required for
theoretical investigations of shape optimization. Since we focus on gradient descent
algorithms, the possibility to use these algorithms requires the existence of gradients.
Gradients are trivially computed in Euclidean space (e.g., Rd, d ∈ N); however, shape spaces
usually do not have a vector space structure. Instead, the next-best option is to aim for a
manifold structure with an associated Riemannian metric, a so-called Riemannian manifold.

A finite-dimensional manifold is a topological space and additionally fulfills the
three conditions.

1. Locally, it can be described by a Euclidean space.
2. It can completely be described by countably many subsets (second axiom of countability).
3. Different points in the space have different neighborhoods (Hausdorff space).

If the subsets, so-called charts, are compatible, i.e., there are differentiable transitions
between charts, then the manifold is a differentiable manifold and allows the definition
of tangent spaces and directions, which are paramount for further analysis in the field of
shape optimization. The tangent space at a point on the manifold is a space tangential to
the manifold and describes all directions in which the point could move. It is of the same
dimension as the manifold. If the transition between charts is infinitely smooth, then we
call the manifold a smooth manifold.

Extending the previous definition of a finite-dimensional manifold into infinite di-
mensions while dropping the second axiom of countability and Hausdorff yields infinite-
dimensional manifolds. A brief introduction and overview about concepts for infinite-
dimensional manifolds is given in ([29] Section 2.3), and the references therein.

In case a manifold structure cannot be established for the shape space in question,
an alternative option is a diffeological space structure. These describe a generalization
of manifolds, i.e., any previously mentioned manifold is also a diffeological space. Here,
the subsets to completely parametrize the space are called plots. As explained in [65], these
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plots do not necessarily have to be of the same dimension as the underlying diffeological
space and the mappings between plots do not necessarily have to be reversible. In con-
trast to shape spaces as Riemannian manifolds, research for diffeological spaces as shape
spaces has just begun, see, e.g., [30,66]. Therefore, for the following section, we focus on
Riemannian manifolds first and then briefly consider diffeological spaces.

2.3. Metrics on Shape Spaces

In order to define distances and angles on the shape space, a metric on the shape space
is required. Distances between iterates (in our setting, shapes) are necessary, e.g., to state
convergence properties or to formulate appropriate stopping criteria of optimization algo-
rithms. For all points m on the manifold M, a Riemannian metric defines a positive definite
inner product gm(·, ·) on the tangent space Tm(M) at each m ∈ M. If the inner product is
not positive definite but at least non-degenerate as defined in, e.g., ([67], Definition 8.6),
then we call the metric a pseudo-Riemannian metric. This yields a family of inner products
such that we have a positive definite inner product available at any point of the manifold.
Additionally, it also defines a norm on the tangent space at m as ‖ · ‖gm =

√
gm(·, ·). If such

a Riemannian metric exists, then we call the differentiable manifold a Riemannian manifold,
often denoted as (M, g).

Different types of metrics on shape spaces can be identified, e.g., inner
metrics [50,53,54], outer metrics [46,50,68–70], metamorphosis metrics [71,72], the Wasser-
stein or Monge–Kantorovic metric for probability measures [73–75], the Weil–Peterson
metric [76,77], current metrics [78–80] and metrics based on elastic deformations [58,81].

To obtain a metric in the classical sense, we also need a definition of distance in addition
to the Riemannian metric. Following [29,42,43], to obtain an expression for distances on
the manifold, we first define the length of a differentiable curve γ on the manifold starting
at m using the Riemannian metric gm(·, ·) as

L(γ) =
∫ 1

0

√
gm(γ̇(t), γ̇(t))dt (1)

and then define the distance function d(m1, m2) as the infimum of any curve length that
starts at m1 and ends at m2, i.e.,

d(m1, m2) = inf
γ

L(γ), with γ(0) = m1 and γ(1) = m2. (2)

This distance function is called the Riemannian distance or geodesic distance, since the
so-called geodesic describes the shortest distance between two points on the manifold.
For more details about geodesics, we refer to [82].

If one were able to obtain the geodesic, then a local mapping from the tangent space
to the manifold would already be available: the so-called exponential map. However,
finding the exponential map requires the solution of a second-order ordinary differential
equation. This is often prohibitively expensive or inaccurate, using numerical schemes.
The exponential map is a specific retraction (cf. e.g., [29,42,43]), but different retractions
can also be used to locally map an element of the tangent space back to the manifold.
A retraction is a mapping from Tm(M)→ M that fulfills the following two conditions.

1. The zero-element of the tangent space at m gets mapped to m itself, i.e.,Rm(0) = m.
2. The tangent vector γ̇(t) of a curve γ : t 7→ Rm(t ξ) starting at m satisfies γ̇(0) = ξ.

Figuratively speaking, this means that a movement along the curve γ is described by
a movement in the direction ξ while being constrained to the manifold M.
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Figure 2. Illustration of two points on a sphere (a manifold), connected by the straight connection
through the sphere (leaving the manifold) and a curve on the sphere.

Example

To illustrate the previous point, we would like to introduce a relatively simple example.
Let us assume we have a sphere without interior (a two-dimensional surface) embedded
in R3 as illustrated in Figure 2. This sphere represents a manifold M. Additionally, let
us take two arbitrary points m1 and m2 on the sphere. The shortest distance of these two
points while remaining on the sphere is not trivial to compute. If one were to use that the
sphere is embedded in R3, then the shortest distance of these two points can be computed
by subtracting the position vector of both points and is depicted by the red dashed line.
However, this path does not stay on the sphere, but instead goes through it. Considering
the above concepts, the shortest distance between two points on the manifold is given
by the geodesic, indicated by a solid red line. Similarly, obtaining the shortest distance
along the Earth’s surface suffers from the same issue. Here, using the straight path through
the Earth is not an option (for obvious reasons). In a local vicinity around point m1, it
is sufficient to move on the tangential space Tm1(M) at point m1 and project back to the
manifold using the exponential map to calculate the shortest distance to point m2. However,
at larger distances, this may not be a valid approximation anymore.

Several difficulties arise when trying to transfer the previous concepts to infinite-
dimensional manifolds. As described in [83], most Riemannian metrics are only weak,
i.e., lack an invertible mapping between tangent and cotangent spaces, which is required
for inner products (we do not go into more detail about this issue, the interested reader is
referred to [84] for more information on this topic). Further, the geodesic may not exist or
is not unique, or the distance between two different elements of the infinite-dimensional
manifold may be 0 (the so-called vanishing geodesic distance phenomenon). Thus, even though
a family of inner products is a Riemannian metric on a finite-dimensional differentiable
manifold, it may not be a Riemannian metric on an infinite-dimensional manifold. Due
to these challenges, infinite-dimensional manifolds as shape spaces are still the subject of
ongoing research.

Metrics for diffeological spaces have been researched to a lesser extent. However,
most concepts can be transferred and in [66] a Riemannian metric is defined for a diffeolog-
ical space, which yields a Riemannian diffeological space. Additionally, the Riemannian
gradient and a steepest descent method on diffeological spaces are defined, assuming a
Riemannian metric is available. To enable usage of diffeological spaces in an engineering
context, further research is required in this field.



Aerospace 2023, 10, 751 7 of 39

2.4. Riemannian Shape Gradients

The previous sections were kept relatively general and tried to explain the con-
cept of manifolds and metrics on manifolds. Here, we focus specifically on shape op-
timization based on Riemannian manifolds. As in [29], we introduce an objective func-
tional, which is dependent on a shape (we use the description of a shape as an element
of the manifold and as a d − 1-dimensional subset of the hold-all domain D ⊂ Rd

interchangeably). Γ ∈ M, where M denotes the shape space, in this case a Rieman-
nian manifold. In shape optimization, it is often also called shape functional and reads
J : M → R, Γ 7→ J(Γ). Furthermore, we denote the perturbation of the shape Γ as
Γt = Ft(Γ) = {Ft(x) : x ∈ Γ} with t ≥ 0. The two most common approaches for Ft are the
velocity method and the perturbation of identity. Following [23,24], the velocity method
or speed method requires the solution of the initial value problem dFt(x)

dt = vΓ(Ft(x)),
F0(x) = x, while the perturbation of identity is defined by Ft(x) = x + t vΓ(x), x ∈ Γ,
with a sufficiently smooth vector field vΓ on Γ. It is clear that an update from the perturba-
tion of identity is easier to obtain than having to solve an ordinary differential equation,
but better numerical accuracy can be achieved from the velocity method. However, since
only small changes are considered, the advantages of the velocity method may not to
come into effect. We focus on the perturbation of identity for this publication. Reciting
Section 2.1, a shape is described here as a plane curve in two or as a surface in three-
dimensional surrounding space, which means they are always embedded in the hold-all
domain D.

To minimize the shape functional, i.e., minΓ∈M J(Γ), we are interested in perform-
ing an optimization based on gradients. In general, the concept of a gradient can be
generalized to Riemannian (shape) manifolds, but some differences between a standard
gradient descent method and a gradient descent method on Riemannian manifolds exist.
For comparison, we show a gradient descent method on Rd, d ∈ N and on Riemannian man-
ifolds in Algorithms 1 and 2, respectively, for which we introduce the required elements in
the following.

Algorithm 1 Steepest (gradient) descent algorithm in Euclidean space (Rd, ‖ · ‖2)

Require: differentiable function J, initial value x0 ∈ Rd, ε > 0
1: for i = 0, 1, ... do
2: Compute J(xi)

3: Compute gradient ∇J(xi) from ∇J(xi) = ∂J
∂x

∣∣∣
xi

4: Compute ‖∇J(xi)‖2
5: if ‖∇J(xi)‖2 ≤ ε then
6: break
7: end if
8: Compute direction θi = − ∇J(xi)

‖∇J(xi)‖2

9: Determine step size αi

10: Set xi+1 = xi + αi θi

11: end for
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Algorithm 2 Steepest (gradient) descent algorithm on Riemannian manifold (M, g)

Require: shape functional J, initial value Γ0 ∈ M, ε > 0, retractionR on (M, g)
1: for i = 0, 1, ... do
2: Compute J(Γi)
3: Compute shape gradient ∇J(Γi) from gΓi (∇J(Γi), vΓ) = (J∗)Γi (vΓ) ∀vΓ ∈ TΓi (M)

4: Compute ‖∇J(Γi)‖gΓi

5: if ‖∇J(Γi)‖gΓi ≤ ε then
6: break
7: end if
8: Compute direction θi = − ∇J(Γi)

‖∇J(Γi)‖g
Γi

9: Determine step size αi

10: Set Γi+1 = RΓi (αi θi)
11: end for

On Euclidean spaces, an analytic or numerical differentiation suffices to calculate
gradients. In contrast, if we consider a Riemannian manifold (M, g), the pushforward is
required in order to determine the Riemannian (shape) gradient of J. We use the definition
of the pushforward from ([82] p. 28) and ([85] p. 56), which has been adapted to shape
optimization in e.g., [64].

The pushforward (J∗)Γ describes a mapping between the tangent spaces TΓ(M) and
TJ(Γ)(R). Using the pushforward, the Riemannian (shape) gradient ∇J(Γ) of a (shape)
differentiable function J at Γ ∈ M is then defined as

gΓ(∇J(Γ), vΓ) = (J∗)Γ(vΓ) ∀ vΓ ∈ TΓ M. (3)

Further details about the pushforward can be found in e.g., [82,86].
As is obvious from the computation of the gradient in Algorithm 2 in

line 4 → Equation (3), the Riemannian shape gradient lives on the tangent space at Γ,
which (in contrast to the gradient for Euclidean space) is not directly compatible with the
shape Γ. A movement on this tangent space will lead to leaving the manifold, unless a
projection back to the manifold is performed by the usage of a retraction, as in line 10 of
the algorithm and previously described in Section 2.3.

In practical applications the pushforward is often replaced by the so-called shape
derivative. A shape update direction uΓ of a (shape) differentiable function J at Γ ∈ M is
computed by solving

gΓ(uΓ, vΓ) = J′(Γ)(vΓ) ∀ vΓ ∈ TΓ M. (4)

The term J′(Γ)(vΓ) describes the shape derivative of J at Γ in the direction of vΓ.
The shape derivative is defined by the so-called Eulerian derivative. The Eulerian derivative
of a functional J at Γ in a sufficiently smooth direction vΓ is given by

DJ(Γ)(vΓ) = J′(Γ)(vΓ) = lim
t→0+

J(Γt)− J(Γ)
t

. (5)

If the Eulerian derivative exists for all directions vΓ and if the mapping vΓ 7→ J′(Γ)(vΓ) is
linear and continuous, then we call the expression J′(Γ)(vΓ) the shape derivative of J at Γ in
the direction vΓ.

In general, a shape derivative depends only on the displacement of the shape Γ in the
direction of its local normal n such that it can be expressed as

J′(Γ)(vΓ) =
∫

Γ
vΓ · n s(x)dΓ, (6)
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the so-called Hadamard form or strong formulation, where s is called sensitivity distribution
here. The existence of such a scalar distribution s is the outcome of the well-known
Hadamard theorem, see e.g., [23,24,87]. It should be noted that a weak formulation of the
shape derivative is derived as an intermediate result, however in this publication only
strong formulations as in Equaiton (6) will be considered. If the objective functional is
defined over the surrounding domain then the weak formulation is also an integral over
the domain; if it is defined over Γ then the weak formulation is an integral over Γ, however,
not in Hadamard form. Using the weak formulation reduces the analytical effort for the
derivation of shape derivatives. If the objective functional is a domain integral then using
the weak formulation requires an integration over the surrounding domain instead of
over Γ. Further details as well as additional advantages and drawbacks can be found, e.g.,
in [24,29–31].

2.5. Examples of Shape Spaces and Their Use for Shape Optimization

In order to obtain the shape update uΓ in Equation (4), a specific Riemannian metric gΓ
on the shape space is chosen and then the resulting PDE is solved numerically. This
approach will be used in this paper; however, we would like to mention an alternative
approach to [88], which avoids the solution of an additional PDE. In this publication,
we concentrate on the class of inner metrics, i.e., metrics defined on the shape itself, see
Section 2.3. Different Riemannian metrics yield different geodesics. This leads to a change
in shape update since uΓ is dependent on the Riemannian metric (cf. Equation (4)).

2.5.1. The Shape Space Be

Among the most common is the shape space often denoted by Be from [49]. We avoid a
mathematical definition here and instead describe it as follows. The shape space Be contains
all shapes that stem from embeddings of the unit circle into the hold-all domain excluding
reparametrizations. This space only contains infinitely-smooth shapes (see Figure 1a). It has
been shown in [49] that this shape space is an infinite-dimensional Riemannian manifold,
which means we can use the previously-described concepts to attain Riemannian shape
gradients for the gradient descent algorithm in Algorithm 2 on Be; however, two open
questions still have to be addressed: Which Riemannian metric can (or should) we choose as
g? and Which method do we use to convert a direction on the tangential space into movement on
the manifold? The latter question has been answered in [64,89], where a possible retraction
on Be is described as

RΓi : TΓi (M)→ M, vΓ 7→ RΓi (vΓ) = Γi + vΓ, (7)

i.e., all x ∈ Γi are displaced to x + vΓ(x) ∀x ∈ Γi. Due to its simplicity of application, this is
what will be used throughout this paper.

The former question is not trivial. Multiple types of Riemannian metrics could be
chosen in order to compute the Riemannian shape gradient, each with its advantages
and drawbacks. To introduce the three different classes of Riemannian metrics, we first
introduce an option that does not represent a Riemannian metric on Be.

As has been proven in [49], the standard L2 metric on TΓ(Be) defined as

gΓ : TΓ(Be)× TΓ(Be), (uΓ, vΓ) 7→
∫

Γ
uΓ · vΓ dΓ (8)

is not a Riemannian metric on Be because it suffers from the vanishing geodesic distance
phenomenon. This implies that the entire theory for Riemannian manifolds cannot be
applied; in other words, there is no guarantee that the computed “gradient” with respect to
the L2 metric forms a steepest descent direction.

Based on the L2 metric not being a Riemannian metric on Be, alternative options
have been proposed that do not suffer from the vanishing geodesic distance phenomenon.
As described in [29], three groups of L2-metric-based Riemannian metrics can be identified.



Aerospace 2023, 10, 751 10 of 39

1. Almost local metrics include weights in the L2 metric (cf. [50,54,90]).
2. Sobolev metrics include derivatives in the L2 metric (cf. [50,53]).
3. Weighted Sobolev metrics include both weights and derivatives in the L2 metric (cf. [54]).

The first group of Riemannian metrics can be summarized as

gΓ : TΓ(Be)× TΓ(Be), (uΓ, vΓ) 7→
∫

Γ
Φ uΓ · vΓ dΓ (9)

with an arbitrary function Φ. As described in [50], this function could be dependent, e.g., on
the length of the two-dimensional shape to varying degrees, the curvature of the shape,
or both.

According to [50], the more common approach falls into the second group. In this
group, higher derivatives are used to avoid the vanishing geodesic distance phenomenon.
The so-called Sobolev metric exists up to an arbitrarily high order. The first-order Sobolev
metric is commonly used (see, e.g., [28]).

gΓ : TΓ(Be)× TΓ(Be), (uΓ, vΓ) 7→
∫

Γ
uΓ · vΓ + A∇ΓuΓ · ∇ΓvΓ dΓ (10)

with the arc length derivative ∇Γ and a metric parameter A > 0. An equivalent metric can
be obtained by partial integration and reads

gΓ(uΓ, vΓ) :=
∫

Γ
uΓ · vΓ − A ∆ΓuΓ · vΓ dΓ, (11)

where ∆Γ represents the Laplace–Beltrami operator. Therefore, the first-order Sobolev
metric is also sometimes called the Laplace–Beltrami approach.

The third group combines the previous two; thus, a first-order weighted Sobolev
metric is given by

gΓ : TΓ(Be)× TΓ(Be), (uΓ, vΓ) 7→
∫

Γ
Φ
(

uΓ · vΓ + A∇ΓuΓ · ∇ΓvΓ
)

dΓ, (12)

or equivalently,

gΓ(uΓ, vΓ) :=
∫

Γ
Φ
(

uΓ · vΓ − A ∆ΓuΓ · vΓ
)

dΓ.

As already described in Algorithm 2, the solution of a PDE to obtain the Riemannian
shape gradient cannot be avoided. In most cases, the PDE cannot be solved analytically. In-
stead, a discretizetion has to be used to numerically solve the PDE. However, the discretized
domain Ω ⊆ D in which the shape Γ is embedded will not move along with the shape itself,
which causes a quick deterioration of the computational mesh. Therefore, the Riemannian
shape gradient has to be extended into the surrounding domain. The Laplace equation
∆u = 0 is commonly used for this, with the Riemannian shape gradient as a Dirichlet
boundary condition on Γ. Then, we call u the extension of the Riemannian shape gradient into
the domain Ω, i.e., uΓ denotes the restriction of u to Γ.

An alternative approach on Be that avoids the use of Sobolev metrics has been in-
troduced in [31] and is named Steklov–Poincaré approach, where one uses a member of the
family of Steklov–Poincaré metrics gs(·, ·) to calculate the shape update. The name stems
from the Poincaré–Steklov operator, which is an operator to transform a Neumann- to a
Dirichlet boundary condition. Its inverse is then used to transform the Dirichlet bound-
ary condition on Γ to a Neumann boundary condition. More specifically, the resulting
Neumann boundary condition gives a deformation equivalent to a Dirichlet boundary
condition. Let V(Ω) be an appropriate function space with an inner product defined on
the domain Ω. Then, using the Neumann solution operator EN(uΓ) = u, where u is the
solution of the variational problem a(u, v) =

∫
Γ uΓ · vΓ dΓ ∀v ∈ V(Ω), we can combine the

Steklov–Poincaré metric gs, the shape derivative J′(Γ)(v), and the symmetric and coercive
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bilinear form a(·, ·) defined on the domain Ω to determine the extension of the Riemannian
shape gradient with regard to the Steklov–Poincaré metric into the domain, which we
denote by u ∈ V(Ω), as

gs(uΓ, vΓ) = J′(Γ)(vΓ) = a(u, v) ∀ v ∈ V(Ω). (13)

For further details we refer the interested reader to [29]. Different choices for the bilin-
ear form a(·, ·) yield different Steklov–Poincaré metrics, which motivates the expression of
the family of Steklov–Poincaré metrics. Common choices for the bilinear form are

a(u, v) =
∫

Ω
∇u · ∇v dΩ or a(u, v) =

∫
Ω
∇u · D ∇v dΩ, (14)

where D could represent the material tensor of linear elasticity. The extension of the
Riemannian shape gradient u with regard to the Steklov–Poincaré metric gs is directly
obtained and can immediately be used to update the mesh in all of Ω, which avoids the
solution of an additional PDE on Γ. Additionally, the weak formulation of the shape
derivative can be used in Equation (13) to simplify the analytical derivation, as already
described in Section 2.4.

2.5.2. The Shape Space B 1
2

An alternative to the shape space Be has been introduced in [30]. It is denoted as
B 1

2 (Γ0) and it is shown that this shape space is a diffeological space. This shape space con-
tains all shapes that arise from admissible transformations of an initial shape Γ0, where Γ0 is
at least Lipschitz-continuous. This is a much weaker requirement on the smoothness of ad-
missible shapes (compared to to the infinitely-smooth shapes in Be). An overview of shapes
with different smoothness has already been given in Figure 1. Opposed to optimization on
Riemannian manifolds, optimization on diffeological spaces is not yet a well-established
topic. Therefore, the main objective for formulating optimization algorithms on a shape
space, i.e., the generalization of concepts such as the definition of a gradient, a distance
measure and optimality conditions, is not yet reached for the novel space B 1

2 (Γ0). How-
ever, the necessary objects for the steepest descent method on a diffeological space are
established and the corresponding algorithm is formulated in [66]. It is nevertheless worth
mentioning that various numerical experiments, e.g., [31,91–93], have shown that shape up-
dates obtained from the Steklov–Poincaré metric can also be applied to problems involving
non-smooth shapes. However, questions about the vanishing geodesic distance, a proper
retraction and the dependency of the space on the initial shape Γ0 remain open.

2.5.3. The Space of Piecewise-Smooth Shapes Ms(UN)

Very recently a novel shape space has been proposed in [94], which contains (possibly
multiple) piecewise-smooth shapes but at the same time holds a Riemannian manifold
structure. We restrict our description here to one closed piecewise-smooth shape, i.e., s = 1,
which yields the shape space M1(B̃N

e ). Here, B̃e describes the set of simple, open, infinitely
smooth curves, i.e., embeddings of the unit interval [0, 1] excluding reparametrizations into
the hold-all domain. A (closed piecewise-smooth) shape Γ is then built by connecting N of
these curves, where the end of one curve coincides with the start of the following one. The
end of the final curve is connected to the start of the first curve. Kinks can develop at the
connecting points. Since a Riemannian structure similar to the one of Be can be established
for M1(B̃N

e ), this means that the same Riemannian metrics as mentioned for Be can be used.
Further, since the embedding of the unit square [0, 1]2 into R3 is a manifold as well (cf. ([95]
Section 13.1)) an extension of this concept to R3 is also very likely possible, see, e.g., ([57]
Section 2.1).
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2.5.4. The Largest-Possible Space of bi-Lipschitz Transformations W1,∞(Ω,Rd)

On finite-dimensional manifolds, the direction of steepest descent can be described by
two equivalent formulations, see [42], and reads

− ∇J(Γ)
‖∇J(Γ)‖gΓ

= arg min
uΓ∈TΓ(M):‖uΓ‖gΓ=1

J′(Γ)(uΓ). (15)

The source gives the direction of steepest ascent, but the direction of steepest descent is
defined accordingly. Instead of solving for the shape gradient ∇J(Γ), another option to
obtain a shape update direction is to solve the optimization problem on the right-hand
side of Equation (15), but this is usually prohibitively expensive. Introduced in [96] and
applied in shape optimization in [32] as the W1,∞ approach, it is proposed to approximate
the solution to the minimization problem (15) by solving

min
u∈W1,p(Ω,Rd)

∫
Ω

1
p
|∇u|p dΩ + J′(Γ)(uΓ) (16)

while taking p→ ∞ with p > 2, see [97]. Due to the equivalence to the extension equation
as described in [33,96,97] in weak formulation∫

Ω
|∇u|p−2(∇u · ∇v)dΩ︸ ︷︷ ︸

a(u,v)

= J′(Γ)(vΓ) ∀v ∈W1,p(Ω,Rd), (17)

this PDE can be solved numerically with iteratively increasing p. In a similar fashion to the
Steklov–Poincaré approach, we can equate the weak form of the extension equation a(u, v)
to the shape derivative J′(Γ)(vΓ) in strong or weak formulation to obtain the shape update
direction. In [33], this approach is called the p-harmonic descent approach. The Sobolev
space for the extension of the shape update direction W1,∞(Ω,Rd) is motivated as the
largest possible space of bi-Lipschitz shape updates. However, it is not yet clear which
additional assumptions are needed in order to guarantee that a Lipschitz shape update
preserves Lipschitz continuity in this manner, see (([30] Section 3.2), and (([98] Section 4.1)
for further details on this topic. Moreover, a theoretical investigation of the underlying
shape space that results in shape update directions from the space W1,∞(Ω,Rd) is still
required. Since neither a manifold structure has been established, which would motivate
the minimization over the tangent space in Equation (15), nor has it been shown that
gs is possibly a Riemannian metric for this manifold (There is no inner product defined
on W1,p(Ω,Rd) unless p = 2 and a(u, v) does not fulfill the condition of linearity in the
arguments unless p = 2 to classify as a bilinear form. A bilinear form is required for
Equation (13) to hold.), it is not guaranteed that Equation (13) yields a steepest descent
direction in this scenario.
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Figure 3. Examples for computational domains and their boundaries (left) and domain transforma-
tion (right).

If we assume W1,∞(Ω,Rd) to be the largest possible space for u that yields shape
updates conserving Lipschitz continuity, then only W1,∞(Ω,Rd) itself or subspaces of
W1,∞(Ω,Rd) yield shape updates conserving Lipschitz continuity. For example, when
working with the Sobolev metrics of higher order and an extension that does not lose regu-
larity, one needs to choose the order p high enough such that the corresponding solution
from the Hilbert space Hp(Ω,Rd) is also an element of W1,∞(Ω,Rd). It follows from the
Sobolev embedding theorem that this is only the case for p ≥ d

2 + 1. Therefore, one would
need to choose at least p = 2 in two dimensions and p = 3 in three dimensions. However,
this requirement is usually not fulfilled in practice due to the demanding requirement of
solving nonlinear PDEs for the shape update direction. Further, already the shape gradient
with respect to the first-order Sobolev metric is sufficient to meet the above requirement
under certain conditions, as described in (([29] Section 2.2.2)).

After introducing the necessary concepts to formulate shape updates from a theo-
retical perspective, we will now reiterate these concepts in the next section with a focus
on applicability.

3. Parameter-Free Shape Optimization in Engineering

In an engineering application, the shape Γ to be optimized may be associated with
a computational domain Ω in different ways, as illustrated in Figure 3. Typically, some
parts of the shape are given and must remain unchanged. We denote by Γd ⊂ Γ the part
of the boundary that is free for design. Independently of this setting, the main goal of an
optimization algorithm is not only to compute updated shapes Γi+1 from a given shape
Γi such that J(Γi+1) < J(Γi), but also to compute updated domains Ωi+1 that preserve
the quality of a given discretization of Ωi. Similar to the updated shape according to the
perturbation of identity, the updated domain is computed as

Ωi+1 =
{

x̃ : x̃ = x + α θ(x) ∀x ∈ Ωi
}

, (18)

which is applied in a discrete sense, e.g., by a corresponding displacement of all nodes by
α θ. Summarizing the elaborations in the previous section, a gradient descent algorithm
that achieves a desired reduction of the objective functions involves four steps that compute

1. the objective function J(Γi) and its shape derivative J′(Γi)(vΓ),
2. the shape update direction θΓ (the negative shape gradient −uΓ),
3. the domain update direction θ (the extension of the negative shape gradient −u),
4. a step size α and an updated domain Ωi+1.

We introduce θΓ and θ here in a general way as shape update direction and domain update
direction, respectively, because not all approaches yield an actual shape gradient according to
its definition in Equation (3). In the remainder of this section, we focus on Step 2–4 starting
with a description of several approaches to compute θΓ in a simplified way that allows for
a direct application. Some approaches combine Steps 2 and 3 and directly yield the domain
update direction θ. For all other approaches, the extension is computed separately as
explained at the end of this section, which includes an explanation of the step size control.



Aerospace 2023, 10, 751 14 of 39

We do not give details about Step 1 (the computation of the shape derivative J′(Γi))
and refer to the literature cited in Section 1 about the derivation of adjoint problems in
order to compute J′(Γ) in an efficient way independently of the number of design variables.
However, we assume that the objective function is given as

J(Γ) =
∫

Ω
jΩ dΩ +

∫
Γ

jΓ dΓ, (19)

which is the case for all problems considered in this work and arises in many engineering
applications as well. Further, we assume that the shape derivative is given in the strong
formulation (see Equation (6)). The main input for Step 2 is accordingly the sensitivity
distribution s.

3.1. Shape and Domain Update Approaches

Before collecting several approaches for the computation of a shape update direction θΓ

from a sensitivity s, we would like to give some general remarks about why the computed
directions are reasonable candidates for a shape update that yields a reduction of J. To
this end, the definition of the shape derivative in Equation (5) can be used to obtain a
first-order approximation

J(Γi+1) ≈ J(Γi) + α J′(Γi)(θΓ). (20)

Using the expression of the shape derivative from Equation (6) and setting θΓ = −n s,
one obtains

J(Γi+1) ≈ J(Γi)− α
∫

Γ
s2 dΓ / J(Γi), (21)

which formally shows that a decrease of the objective function can be expected at least for
small α. However, several problems arise when trying to use θΓ = −n s in practice and
in theory, when used for further mathematical investigations as detailed in Section 2. An
obvious practical problem is that neither n nor s can be assumed to be smooth enough such
that their product and the subsequent extension result in a valid displacement field θ that
can be applied according to Equation (18). All approaches considered here overcome this
problem by providing a shape update direction θΓ, which is smoother than n s. Several
approaches make use of the Riemannian shape gradient uΓ as defined in Equation (4) for
this purpose. A corresponding first-order approximation reads

J(Γi+1) ≈ J(Γi) + α gΓ(uΓ, θΓ). (22)

Setting θΓ = −uΓ, one obtains

J(Γi+1) ≈ J(Γi)− α gΓ(θ
Γ, θΓ), (23)

which shows that also these approaches yield a decrease in the objective function provided
that α is small.

Generally, one may be interested in an optimal smoothing of the sensitivity distribution.
As detailed in [99], the iteration according to Equation (18) can be investigated in terms
of its loss in differentiability. An optimal smoothing would recover the original order of
differentiability of the shape. However, recovering the original order of differentiability
is not always desired, e.g., when the optimal shape is a square but the initial shape is a
circle. Accordingly, in the following, the different approaches that yield a shape update
are considered without taking into account the actual optimization problem that they are
finally applied to. Instead, Sections 4 and 5 provide an in-depth numerical investigation of
their performance for different application scenarios. For each application scenario, some
approaches may yield an optimal smoothing in the sense of [99], but others may yield a
decrease or an increase of the order of differentiability with each shape update. Therefore,
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some approaches are not strictly applicable in a continuous sense but only become practical
in combination with a discretization, as already mentioned for the choice θΓ = −ns above
and further explained below.

3.1.1. Discrete Filtering Approaches

Several authors successfully apply discrete filtering techniques to obtain a smooth
shape update, see e.g., [22,26,34]. As the name suggests, they are formulated based on
the underlying discretization, e.g., on the nodes or points xn on Γ and the sensitivity at
these points sn = s(xn). The shape update direction at the nodes, i.e., the direction of the
displacement to be applied there, is computed by

θΓ
n = θΓ(xn) = − ∑

j∈Nn

wn,j sj nj. (24)

Therein, wn,j denotes the weight and Nn is the set indices of nodes in the neighborhood
of node n. We introduce a particular choice for the neighborhoods Nn and the weights wn,j
in Section 4 and denote it as the Filtered Sensitivity (FS) approach.

The discrete nature of a filter according to Equation (24) demands a computation of
a normal vector nn at the nodal positions. Since n(xn) is not defined, a special heuristic
computation rule must be applied. In the example considered in Section 4, the nodes on
Γ are connected by linear edges, and we compute the normal vector nn as the average of
normal vectors ne1 and ne2 of the two adjacent edges,

nn =
1
2
(ne1 + ne2). (25)

An analogue computation rule is established for the three-dimensional problem con-
sidered in Section 5. In this discrete setting, it also becomes possible to directly use the
sensitivity and the normal vector as a shape update direction, even for non-smooth geome-
tries. It is just a special case of (24) using a neighborhood Nn = {n} and weight wn,n = 1,
which results in θΓ

n = −nn sn. The resulting approach is denoted here as the direct sensitivity
(DS) approach.

We would like to emphasize that the corresponding choice in the continuous setting
θΓ = −n s that led to Equation (21) cannot be applied for the piecewise linear shapes that
arise when working with computational meshes—the normal vectors at the nodal points are
simply not defined. The same problem arises for any shape update in the normal direction
and can be considered a severe shortcoming of this choice. However, we include such
methods in our study because they are widely used in the literature and can be successfully
applied when combined with a special computation rule for the normal direction at singular
points like Equation (25). An additional auxiliary problem does not need to be solved,
which constitutes an advantage of discrete filtering approaches of the above type. It is
noted that having computed θΓ according to the FS or DS approach, one needs to extend it
into the domain to obtain θ, as described in Section 3.2.

Finally, we would like to point out that in an application scenario, also the continuously-
derived shape update directions eventually make use of a discrete update of nodal positions
(Section 4) or cell centers (Section 5). Accordingly, all approaches—including those intro-
duced in the following sections—finally undergo an additional discrete filtering.
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3.1.2. Laplace–Beltrami Approaches

A commonly applied shape update is based on the first-order Sobolev metric (see
Equation (10)), which yields the following as an identification problem for the shape
gradient:

Find uΓ ∈ V(Γd), s.t.∫
Γd

A∇ΓuΓ · ∇ΓvΓ + uΓ · vΓ dΓ = J′(Ω)(vΓ) =
∫

Γd
n · vΓ s dΓ ∀vΓ ∈ V(Γd),

(26)

where V(Γd) denotes an appropriate function space on Γd. From a differential-geometric
point of view, this function space represents the tangent space of the shape space, see
Equation (4). However, we avoid the definition of a shape space and its tangent space in
the following and instead refer back to Section 2.5.

We denote the constitutive parameter A as conductivity here. A strong formulation
involves the tangential Laplace–Beltrami operator ∆Γ, suggesting the name for this type of
approach. Formulated as a boundary value problem, it reads

uΓ − A ∆ΓuΓ = n s in Γd, (27)

uΓ = 0 on ∂Γd. (28)

This auxiliary problem yields uΓ on Γd; while on Γ \ Γd, we set uΓ = 0. Means to extend
θΓ = −uΓ into the domain to obtain θ, respectively u, are described in Section 3.2. We
denote this approach as Vector Laplace Beltrami (VLB) in the following. Due to the fact that
∆Γ operates only in the tangential direction, the components of s n are mixed, such that θΓ

is not parallel to n, see [26,34] for further details.
As an alternative, we consider a scalar variant of the VLB approach applied in [37]

and call it Scalar Laplace Beltrami (SLB) in the following. A scalar field ū is computed using
the tangential Laplace Beltrami operator and the sensitivity s as a right-hand side:

ū− A ∆Γū = s in Γd, (29)

ū = 0 on ∂Γd. (30)

As a shape update direction, θΓ = −ū n is taken. As in the VLB case, some smoothness
is gained in the sense that ū is smoother than s. However, this choice has the same shortcom-
ings as any direction that is parallel to the normal direction, as explained at the beginning
of this section. It is further noted that the discrete filtering approach from Section 3.1.1
is equivalent to a finite-difference approximation of the VLB method if the weights in
Equation (24) are chosen according to the bell-shaped Gaussian function, see [22,26].

3.1.3. Steklov–Poincaré Approaches

As mentioned in Section 2, these approaches combine the identification of θΓ and
the computation of its extension into the domain. This avoids a subsequent extension
according to the solution of the additional auxiliary problem, which constitutes a general
advantage of this approach. It leads to an identification problem, similar to Equation (26),
however, now using a function space V(Ω) defined over the domain Ω and a bilinear form
a(·, ·) on Ω instead of an inner product g(·, ·) on Γ. Choosing the second bilinear form from
Equation (14), the identification problem for the shape gradient reads

Find u ∈ V(Ω), s.t.
∫

Ω
∇u · D ∇v dΩ = J′(Ω)(v) =

∫
Γd

n · v s dΓ ∀v ∈ V(Ω), (31)

where V(Ω) is an appropriate function space in Ω. If D is chosen as the constitutive tensor
of an isotropic material, Equation (31) can be interpreted as a weak formulation of the
balance of linear momentum. In this linear elasticity context, s n plays the role of a surface
traction. Appropriately in this regard, the approach is also known as the traction method,
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see e.g., [100,101]. Also, in [102], a linear elasticity approach is used to extend the shape
update into the computational domain. While the above references discuss only linear
elasticity, the Steklov–Poincaré (SP) approach is less restrictive in the choice for a bilinear
form in Equation (13). We restrict our investigations here to the form given in Equation (31)
and consider two alternatives for the constitutive tensor D.

To complete the formulation, the constitutive tensor is expressed as

D = λ T + 2 µ S , (32)

where T denotes the fourth-order tensor that yields the trace (T A = tr(A) I), S is the
fourth-order tensor that yields the symmetric part (S A = 1

2
(

A + AT)) and λ and µ are
the Lamé constants. Suitable choices for these parameters are problem-dependent and
are usually chosen, such that the quality of the underlying mesh is preserved as much as
possible. Through integration by parts, a strong formulation of the identification problem
can be obtained that further needs to be equipped with Dirichlet boundary conditions to
arrive at

div(D∇u) = 0 in Ω, (33)

D∇u n = n s on Γd, (34)

u = 0 on Γ \ Γd. (35)

We will refer to this choice as Steklov–Poincaré structural mechanics (SP-SM) in the
following. An advantage is the quality of the domain transformation that is brought along
with it—a domain that is perturbed, such as an elastic solid with a surface load, will
likely preserve the quality of the elements that its discretization is made of. Of course,
the displacement must be rather small, as no geometric or physical nonlinearities are
considered. Further, the approach makes it possible to use weak formulations of the shape
derivative as mentioned in Section 2.4. To this end, the integrand in the shape derivative
can be interpreted as a volume load in the elasticity context and applied as a right-hand
side in (33).

Diverse alternatives exist that employ an effective simplification of the former. In [103],
the spatial cross coupling introduced by the elasticity theory is neglected and a spatially
varying scalar conductivity is introduced. The conductivity is identified with the inverse
distance to the boundary such that

D =
1

w + ε
I , (36)

where I denotes the fourth order identity tensor and w refers to the distance to the boundary.
A small value ε is introduced to circumvent singularities for points located on the wall. In
the sequel, we denote this variant as Steklov–Poincaré wall distance (SP-WD). It is emphasized
that now a diffusivity or heat transfer problem is solved instead of an elasticity problem.
More precisely, d decoupled diffusivity or heat transfer problems are solved—one for each
component of u = [u1 u2 u3]—since with (36) the PDE (33) reduces to

∇ ·
(

1
w + ε

∇ui

)
= 0 in Ω for i = 1, 2, 3. (37)

For completeness, we would like to refer to an alternative from [35] that introduces a
nonlinearity into the identification problem (31). Another choice forD employed in [91,104]
is D = 2 µ S , where µ is set to a user-defined maximum value on Γd and a minimum value
on the remaining part of the boundary. Values inside Ω are computed as the solution of a
Laplace equation such that the given boundary values are smoothly interpolated. However,
we do not consider these choices in our investigations in Sections 4 and 5.
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3.1.4. p-Harmonic Descent Approach

As introduced at the end of Section 2.5, the p-harmonic descent approach (PHD) yields
another identification problem for the domain update direction θ∗ as given in Equation (17).
A minor reformulation yields∫

Ω
(∇u · ∇u)

p−2
2 (∇u · ∇v) dΩ = α J′(Ω)(v) = α

∫
Γd

v · n s dΓ. (38)

A strong form of the problem reads

div
(
(∇u · ∇u)

p−2
2 ∇u

)
= 0 in Ω, (39)

(∇u · ∇u)
p−2

2 ∇u n = α s n on Γd, (40)

u = 0 on Γ\Γd. (41)

The domain update direction is then taken to be θ = − 1
α u. Due to the nonlinearity

of (39), we have introduced the scaling parameter α here. In the scope of an optimization
algorithm, α represents a step size and may be determined by a step size control. All other
approaches introduced above establish a linear relation between s and θ such that the
scaling can be carried out independently of the solution of the auxiliary problem. For the
PHD approach, Problem (39)–(41) may need to be solved repeatedly in order to find the
desired step size. Even without a step size control that is designed in this way, the PHD
approach is computationally more expensive than the previously discussed approaches,
which constitutes a disadvantage. This is the case not only due to the nonlinearity of
the auxiliary problem, but also due to the need for an iterative solution procedure that
gradually increases p to the desired values. Starting the solution process directly with
p > 2 may lead to divergence of the Newton iterations due to an unsuitable zero initial
guess. For a detailed discussion on the solution process, see [33]. Nevertheless, several
advantages of the PHD approach render additional computational effort acceptable for
certain applications. The main practical advantage of this approach is the parameter p,
which allows to get arbitrarily close to the case of bi-Lipschitz transformations W1,∞(Ω,Rd).
Sharp corners can therefore be resolved arbitrarily close as demonstrated in [32,33]. Another
positive aspect demonstrated therein is that the PHD approach yields comparably good
mesh qualities. Like the SP approaches the PHD approach further allows for a direct
utilization of a weak formulation of the shape derivative.

3.1.5. Overview of the Approaches

For an easier navigation through the above sections, Table 1 provides an overview of
the various approaches to compute a shape update including the introduced abbreviations
as well as references to the equations that define the respective auxiliary problem.

Table 1. Overview of the approaches to compute a shape update.

Approach Abbreviation Section Auxiliary Problem

direct sensitivity DS Section 3.1.1 θΓ = s n
filtered sensitivity FS Section 3.1.1 Equation (24)
vector Laplace–Beltrami VLB Section 3.1.2 Equation (26)
scalar Laplace–Beltrami SLB Section 3.1.2 Equations (29) and (30)
Steklov-Poincaré (struct. mechanics) SP-SM Section 3.1.3 Equations (31) and (32)
Steklov-Poincaré (wall distance) SP-WD Section 3.1.3 Equations (31) and (36)
p-harmonic descent PHD Section 3.1.4 Equation (38)

3.2. Mesh Morphing and Step Size Control

Several methods are commonly applied to extend shape update directions θΓ obtained
from the approaches DS, FS, VLB, and SLB into the domain. For example, interpolation
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methods such as radial basis functions may be used, see e.g., [37]. Another typical choice
is the solution of a Laplace equation, with θ as its state and θΓ as a Dirichlet boundary
condition on Γd for this purpose, see e.g., [105]. We follow a similar methodology and
base our extension on the general PDE introduced for the Steklov–Poincaré approach. The
boundary value problem to be solved when applied in this context reads

div(D∇θ) = 0 in Ω, (42)

θ = θΓ on Γd, (43)

θ = 0 on Γ \ Γd. (44)

As a constitutive relation, we choose again linear elasticity (see Equation (32)) or
component-wise heat transfer (see Equation (36)). Once a deformation field is available in
the entire domain, its discrete representation can be updated according to Equation (18).
It is recalled here that the domain update direction θ can be computed independently of
the step size α for all approaches except for the PHD approach, where it has a nonlinear
dependence on α, see Section 3.1.4.

In order to compare different shape updates, we apply a step size control. We follow
two different methods to obtain a suitable step size α for the optimization.

1. We perform a line search, where α is determined by a divide-and-conquer approach
such that J(Ωi+1) is minimized. By construction, the algorithm approaches the op-
timal value from below and leads to the smallest α > 0 that yields such a local
minimum. If the mesh quality falls below a certain threshold, the algorithm quits
before a minimum is found and yields the largest α, for which the mesh is still accept-
able. For all considered examples and shape update directions, this involves repeated
evaluations of J. For the PHD approach, it further involves repeated computations
of θ.

2. We prescribe the maximum displacement for the first shape update
θmax = max

x∈Ω0
‖α θ(x)‖. This does not involve evaluations of J; however, for the PHD

approach, it involves again repeated computations of θ. For all other methods, we
simply set

α = θmax
(

max
x∈Ω0
‖ θ(x)‖

)−1
. (45)

Because we aim to compare the different approaches to compute a shape update
rather than an optimal efficiency of the steepest descent algorithm, we do not make use of
advanced step size control strategies such as Armijo backtracking.

As mentioned in the previous section, the evaluation of the shape update direction
depends on the application and the underlying numerical method. In particular, the evalu-
ation of the normal vector n is a delicate issue that may determine whether or not a method
is applicable. We include a detailed explanation of the methods used for this purpose in
Sections 4 and 5.
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Figure 4. Graph of the function f described by (46) with C2 = 0. The coloring corresponds to the
function value. (Left and Center) C1 = 0. (Right) C1 = 1.

4. Illustrative Test Case

In order to investigate the different shape and domain updates, we consider the
following unconstrained optimization problem.

min
Γ∈M

J(Γ) =
∫

Ω
f (x)dΩ, (46)

where

f (x) = f (x1, x2) = 2 x4
1 + x4

2 − x2
1 − 4 x2

2

− 3 C1 |max(x1, x2)|+
1

10
C2(sin(50 x1) + sin(50 x2)). (47)

For this problem, M = M1(B̃N
e ) is considered an appropriate choice for the underlying

shape space. The graph of f is shown in Figure 4, including an indication of the curve,
where f = 0, i.e., the level-set of f . Since inside this curve, f ≤ 0 and outside f > 0,
the level-set is exactly the boundary of the minimizing domain. Through the term that is
multiplied by C1, a singularity is introduced—if C1 6= 0, the optimal shape has two kinks,
while it is smooth for C1 = 0. In the latter case, also the more restrictive choice of M = Be
is applicable provided that the initial shape is an element of Be. Through the term that is
multiplied by C2, high-frequency content is introduced. Applying the standard formula for
the shape derivative (see, e.g., [25]), we obtain

J′(Γ)(vΓ) =
∫

Γ
f vΓ · n dΓ (48)

such that s = f .
We start the optimization process from a smooth initial shape—a disc with outer radius

R = 1 and inner radius r = 0.3. The design boundary Γd corresponds to the outer boundary
only, the center hole is fixed. This ensures the applicability of the SP-SM approach, which
can only be applied as described if at least rigid body motions are prevented by Dirichlet
boundary conditions. This requires Γ\Γd 6= ∅ in the corresponding auxiliary problem
(Equations (33) and (34)).

We perform an iterative algorithm to solve the minimization problem by successively
updating the shape (and the domain) using the various approaches introduced in Section 3.
For a fair comparison of the different shape and domain updates, the line search technique
sketched in Section 3.2 is used to find the step size α that minimizes J(Γi+1) for a given θ,
i.e., the extension of θΓ into the domain is taken into account when determining the step
size α.

4.1. Discretization

We discretize the initial domain using a triangulation and in a first step keep this
mesh throughout the optimization. In a second step, re-meshing is performed every third
optimization iteration and additionally, whenever the line search method yields a step size
smaller than 10−6. The boundary is accordingly discretized by lines (triangle edges). In
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order to practically apply the theoretically infeasible shape updates, which are parallel to
the boundary normal field, the morphing of the mesh is completed based on the nodes. A
smoothed normal vector is obtained at all boundary nodes by averaging the normal vectors
of the two adjacent edges. The sensitivity s is evaluated at the nodes as well and then used
in combination with the respective auxiliary problem to obtain the domain update direction
θ, respectively θΓ at the nodes. The evaluation of the integral in J is based on values at the
triangle centers.

The auxiliary problems for the choices from Section 3.1.2 (VLB, and SLB) are solved
using finite differences. Given uΓ, the tangential divergence at a boundary node j is
approximated based on the adjacent boundary nodes by

∆ΓuΓ(xj) ≈ 2
uΓ(xj+1)− uΓ(xj)

hj+1
(
hj + hj+1

) − 2
uΓ(xj)− uΓ(xj−1)

hj
(
hj + hj+1

) , (49)

where hj = ‖xj − xj−1‖ denotes the distance between nodes j and j− 1.
The auxiliary problems for the choices from Sections 3.1.3 and 3.1.4 (SP-SM, SP-TM,

and PHD) are solved with the finite element method. Isoparametric elements with linear
shape functions based on the chosen triangulation are used. Dirichlet boundary conditions
are prescribed by elimination of the corresponding degrees of freedom.

The auxiliary problem (42)–(44) needed in combination with all choices from Section 3.1
that provide only θΓ (DS, FS, VLB, SLB) is solved using the same finite-element method.
All computations are carried out in MATLAB [106]. The code is available through http:
//collaborating.tuhh.de/M-10/radtke/soul (accessed on 28 June 2023).

4.2. Results

Figure 5 illustrates the optimization process with and without remeshing for a coarse
discretization to give an overview. The mean edge length is set to h = 0.1 for this case.
In the following, a finer mesh with h = 0.05 is used if not stated differently. Preliminary
investigations based on a solution with h = 0.01 show that the approximation error when
evaluating J drops below 10−6.

To begin with, we consider the smooth case without high frequency content, i.e., C1 = 0
and C2 = 0. Figure 6 (left) shows the convergence of J over the optimization iterations for
the different approaches to compute the shape update. For this particular example, the DS
approach yields the fastest reduction of J, while the PHD yields the slowest. In order to
ensure that the line search algorithm works correctly and does not terminate early due to
mesh degeneration, a check was performed as shown in Figure 6 (right). The thin lines
indicate the values of J that correspond to steps with sizes from 0 to 2 α. It can be seen that
the line search iterations did not quit early but lead to the optimal step size at all times.

Figure 5. Shapes encountered during the optimization iterations for different initial shapes using
the VLB method and a coarse mesh (h = 0.1). (Top) no remeshing. (Bottom) remeshing every
second iteration.

http://collaborating.tuhh.de/M-10/radtke/soul
http://collaborating.tuhh.de/M-10/radtke/soul
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Figure 6. Convergence of J during the optimization iterations for different shape updates including
values for (untaken) steps with sizes between 0 and 2 α.

The progression of the norm of the domain update direction and the step size is shown
in Figure 7. More precisely, we plot there the mean norm of the displacement of all nodes
on the boundary, i.e.,

G =
α

Nn

Nn

∑
n=1
‖θn‖2, (50)

where Nn is the total number of nodes on the boundary. As expected, G converges to
a small value, which yields no practical shape updates anymore after a certain number
of iterations.

Figure 7. (Left) Mean norm of the nodal boundary displacement. (Right) Optimal step size.

4.2.1. Behavior under Mesh Refinement

While we have ensured that the considered discretizations are fine enough to accu-
rately compute the cost functional in a preliminary step, the effect of mesh refinement
on the computed optimal shape shall be looked at more closely. To this end, the scenario
C1 = 0 and C2 = 0 considered so far does not yield new insight. All methods successfully
converged to the same optimal shape, as shown in Figure 5 and the convergence behavior
was indistinguishable from that shown in Figure 6. This result was obtained with and
without remeshing.

For the scenario C1 = 1 and C2 = 0 with sharp corners (see Figure 4), different
behaviors were observed. Figure 8 shows the convergence of the objective functional (left)
and final shapes obtained with the different shape updates. All shapes are approximately
equal except in the region of the sharp corners on the x-axis close to x = −1 and on the
y-axis close to y = −1.

Figure 9 shows a zoom into the region of the first sharp corner for the final shapes
obtained with different mesh densities. It is observed that only the DS approach resolves
the sharp corner while all other approaches yield smoother shapes. For further mesh refine-
ments the obtained shapes were indistinguishable from those shown in Figure 9 (right).
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Next, we consider the scenario C1 = 0 and C2 = 1, which introduces high-frequency
content into the optimal shape. The high-frequency content may be interpreted in three
different ways, when making an analogy to real-world applications.

1. It may represent a numerical artifact, arising due to the discretization of the primal and
the adjoint problem (we do not want to find it in the predicted optimal shape then).

2. It may represent physical fluctuations, e.g., due to a sensitivity that depends on a
turbulent flow field (we do not want to find it in the predicted optimal shape then).

3. It may represent the actual and desired optimal shape (we want to find it in the
predicted optimal shape).

With this being said, no judgement about the suitability of the different approaches can
be made. Depending on the interpretation, a convergence to a shape that includes the
high-frequency content can be desired or not.

Figure 10 shows the shapes obtained with selected approaches when refining the
mesh. The approaches FS, SLB and PHD were excluded because they yield qualitatively
the same results as the SP-SM approach, i.e., convergence to a smooth shape without high
frequency content. In order to illustrate the influence of the conductivity A, three variants
are considered for the VLB approach. For a large conductivity of A = 1, the obtained shape
is even smoother than that obtained for the SP-SM approach, while A = 0.1 (the value
chosen so far in all studies) yields a similar shape. Reducing the conductivity to A = 0.01,
the obtained shape is similar to that obtained for the DS approach, which does resolve the
high frequency content.

Figure 8. Results for C1 = 1. (Left) Convergence of J during the first optimization iterations for
different shape updates. (Right) Shapes obtained after 20 iterations.

Figure 9. Geometries obtained for C1 = 1 and C2 = 0. (Left) Results for h = 0.05. (Middle) Results
for h = 0.025. (Right) Results for h = 0.0125.
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Figure 10. Geometries obtained for C1 = 0 and C2 = 1. (Left) Results for h = 0.05. (Middle) Results
for h = 0.025. (Right) Results for h = 0.0125.

4.2.2. Behavior for a Non-Smooth Initial Shape

Finally, we test the robustness of the different shape updates by starting the opti-
mization process from a non-smooth initial shape. A corresponding mesh is shown in
Figure 11 (left). The convergence behavior in Figure 11 (right) already indicates that not all
approaches converged to the optimal shape. Instead, the DS and the SLB approach yield
different shapes with a much higher value of the objective functional.

Figure 11. (Left) Initial shape with sharp corners. (Right) Convergence of J during the optimization
iterations for different shape updates.

Figure 12. Meshes encountered during selected optimizations based on a non-smooth initial shape
without remeshing. (Top) Meshes after the first iteration. (Bottom) Meshes after 20 iterations.
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Figure 12 provides an explanation for the convergence behavior. After the first it-
eration, the DS and the SLB approach show a severe mesh distortion in those regions,
where the initial shape had a sharp corner (see Figure 11 (left)). In order to prevent at
least self-penetration of the triangular elements, the step sizes become very small for the
following iterations and after nine (for DS) or eight (for SLB) iterations, no step sizes larger
than 10−6 could be found that reduce the objective functional. Opposed to that, the FS and
the SP approach yield shapes which are very close to the optimal shape. Still, the initial
corners are visible also for these approaches, not only due to the distorted internal mesh,
but also as a remaining corner in the shape, which is more pronounced for the FS approach.
The VLB and the PHD approach behave very similar to the SP approach and are therefore
not shown here.

We would like to emphasize that even if different approaches yield approximately the
same optimal shape, the intermediate shapes, i.e., the path taken during the optimization,
may be fundamentally different, as apparent in Figure 12. This is to be kept in mind
especially when comparing the outcome of optimizations with different shape updates that
had to be terminated early, e.g., due to mesh degeneration, which is the case for several of
the studies presented in the next section.

5. Exemplary Applications

In this section we showcase CFD-based shape optimization applications on a 2D and
3D geometry, while considering the introduced shape update approaches. Emphasis is
given to practical aspects and restrictions that arise during an optimization procedure. As
mentioned in Section 2.5, an extension of the shape space in [94] to three dimensions is
very likely possible. Therefore, we choose M1(B̃N

e ) as the underlying shape space for both
the two- and the three-dimensional example. The investigated applications refer to steady,
laminar internal and external flows. The optimization problems are constrained by the
Navier–Stokes (NS) equations of an incompressible, Newtonian fluid with density ρ and
dynamic viscosity µ, viz.

Rp = −div(u) = 0 , (51)

Ru = ρ∇u u− div(2 µ S− p I) = 0 , (52)

where, u, p, S = 1/2(∇u + (∇u)T) and I refer to the velocity, static pressure, strain-rate
tensor and identity tensor, respectively. The adjoint state of (51) and (52) is defined by the
adjoint fluid velocity û and adjoint pressure p̂ that follow from the solution of

R p̂ = −div(û) = 0, (53)

Rû = ρ
(
(∇u)T û−∇û u

)
− div(2 µ Ŝ− p̂ I) = 0 , (54)

where, Ŝ = 1/2(∇û + (∇û)T) refers to the adjoint strain rate tensor.
The employed numerical procedure refers to an implicit, second-order accurate finite-

volume method (FVM) using arbitrarily shaped/structured polyhedral grids. The seg-
regated algorithm uses a cell-centered, collocated storage arrangement for all transport
properties, cf. [107]. The primal and adjoint pressure-velocity coupling, which has been
extensively verified and validated [27,108–111], follows the SIMPLE method, and possible
parallelization is realized using a domain decomposition approach [112,113]. Convective
fluxes for the primal [adjoint] momentum are approximated using the Quadratic Upwind
[Downwind] Interpolation of Convective Kinematics (QUICK) [QDICK] scheme [108] and
the self-adjoint diffusive fluxes follow a central difference approach.

The auxiliary problems of the various approaches to compute a shape update are
solved numerically using the finite-volume strategies described in the previously men-
tioned publications. Accordingly, θ is computed at the cell centers cc in a first step. In a
second step, it needs to be mapped to the nodal positions xn, which is completed using
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an inverse distance weighting, also known as Shepard’s interpolation [114]. We use θn to
denote the value at a node

θn =
1

Nc
n

∑
c∈Cn

θ(cc)

(
1− ||xn − cc||

∑d∈Cn ||xn − cd||

)
. (55)

Therein, Cn contains the Nc
n indices of all adjacent cells at node n. After the update of

the grid, geometric quantities are recalculated for each FV. Topological relationships remain
unaltered and the simulation continues by restarting from the previous optimization step
to evaluate the new objective functional value. Due to the employed iterative optimization
algorithm and comparably small step sizes, field solutions of two consecutive shapes are
usually nearby. Compared to a simulation from scratch, a speedup in total computational
time of about one order of magnitude is realistic for the considered applications.

5.1. Two-Dimensional Flow around a Cylinder

We consider a benchmark problem that refers to a fluid flow around a cylinder,
as schematically depicted in Figure 13a. This application targets to minimize the flow-
induced drag of the cylinder by optimizing parts of its shape. The objective J(Γ) and its
shape derivative read

J(Γ) =
∫

Γ(p I − 2µS)n · e1dΓ and
J′(Γ)(vΓ) = −

∫
Γd (µ∇u n · ∇û n)︸ ︷︷ ︸

s

vΓ · n dΓ , (56)

where e1 denotes the basis vector in the x-direction (the main flow direction), see [110] for a
more detailed explanation. Note that the objective is evaluated along the complete circular
obstacle Γ, but its shape derivative is evaluated only along the section under design Γd, as
shown in Figure 13a. The decision of optimizing a section of the obstacle’s shape instead
of the complete shape is made to avoid trivial solutions such as, e.g., a singular point or a
straight line without the need for applying additional geometric constraints.

(a) (b)

Figure 13. Cylinder (ReD = 20): (a) Sketch of the investigated 2D optimization problem where the
dashed line denotes the section free for design (Γd) and (b) detail of the employed numerical grid
near the cylinder.

The steady and laminar study is performed at ReD = ρ Uin D/µ = 20 based on the
cylinder’s diameter D and the inflow velocity Uin. The two-dimensional domain has a
length and height of 40 D and 20 D, respectively. At the inlet, velocity values are prescribed,
slip walls are used along the top as well as bottom boundaries and a pressure value is set
along the outlet.

To ensure the independence of the objective functional J and its shape derivative J′

in Equation (56) with regard to the spatial discretization, a grid study is first conducted,
as presented in Table 2. Since the monitored integral quantities do not show a significant
change from refinement level 4 on, level 3 is employed for all following optimizations. A
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detail of the utilized structured numerical grid is displayed in Figure 13b and consists of
approximately 19,000 control volumes. The cylinder is discretized with 200 surface patches
along its circumference.

Table 2. Cylinder (ReD = 20): Results of the mesh dependence study. For illustrative purposes,
we denote here Ĵ′ =

∫
Γd s dΓ. Index i refers to the mesh refinement level. Note ρ = 20 kg/m3,

µ = 1 Pa · s, Uin = 1 m/s and D = 1 m.

Refinement
Level Number of FV 2Ji

ρU2
in D2

2 Ĵ′i
ρU2

in D
Ji−Ji−1

Ji−1
(%) Ĵ′i− Ĵ′i−1

Ĵ′i−1
(%)

M0 300 2.1197 −3.325 - -

M1 1200 2.1433 −3.612 1.11 −8.64

M2 4800 2.1356 −3.822 −0.35 −5.81

M3 19,200 2.1334 −3.937 −0.11 −3.01

M4 76,800 2.1334 −3.932 −0.003 0.14

M5 307,200 2.1334 −3.936 −0.001 −0.11

In contrast to the theoretical framework, we now have to take into consideration
further practical aspects in order to realize our numerical optimization process. A crucial
aspect that needs to be taken into account in any CFD simulation is the quality of the
employed numerical grid. As the optimization progresses, the grid is deformed on the fly
rather than following a remeshing approach. Hence, we have to ensure that the quality of
the mesh is preserved to such an extent that the numerical solution converges and produces
reliable results. An intuitive method to ensure that grid quality is not heavily deteriorated
is to restrict large deformations by using a small step size α.

In the numerical investigations of the 2D case, the step size remains constant through
the optimization process and is determined by prescribing the maximum displacement in
the first iteration (θmax), as described in Section 3.2. We set it to two percent of the diameter
of the cylinder, i.e., θmax = 0.02 D, based on the experience of the authors on this particular
case, cf. [115].

5.1.1. Results

The investigated approaches are DS, VLB with A = 0.1 D, VLB with A = 0.5 D, VLB
with A = D, SP-WD and PHD. For all approaches that yield θΓ only, the extension into the
domain is completed, as described in Section 3.2 (see Equation (42)) with a constitutive
relation based on Equation (36). Figure 14a shows the relative decrease of J(Γ) with regard
to the initial shape, for all aforementioned approaches. As it can be seen, the investigated
domain expressions SP-WD & PHD managed to reach a reduction greater than 9% while
the remaining boundary expressions fell shorter at a maximum reduction of 8.2% by the
DS approach. In the same figure, one can notice that none of the employed approaches
managed to reach a converged state with its applied constant step size. The reason behind
this shortcoming is shown in Figure 14b where the minimum orthogonality of the compu-
tational mesh is monitored during the optimization runs. Herein, the orthogonality of each
cell is computed as

k = min
n∈N

(90◦ − βn), (57)

where βn refers to the nth angle between a face normal and the connecting line between
the adjacent cell center and N denotes the total number of adjacent cells. The minimum
orthogonality of the computational mesh corresponds to the minimum value of k out of
all cells. In all cases, mesh quality is heavily deteriorated during the final steps of the opti-
mization algorithm, leading to unusable computational meshes. This is partially attributed
to the selected section of design (Γd) and the mesh update approach, as described by
Equation (55). A natural question that one may ask by virtue of Equation (55) is what happens
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at nodes connecting a design and a non-design surface patch. To this end, we present Figure 15,
in which we show the discretized rightmost connecting section of the cylinder between
the aforementioned surfaces at the end of the optimization process of VLB −A = 0.1 D.
As can be seen, a sharp artificial kink appears at the connection between design and
non-design surfaces. This is due to the displacement of the connecting vertex, which
is computed based on contributions of all adjacent surface patches, as illustrated in
Figure 15b. Therefore, if our auxiliary problem results in shape updates that do not
smoothly fade out to zero at the connection between a design and non-design boundary,
a kink is bound to appear. Another similar issue that more prominently occurs in inter-
nal flows is that the two adjacent faces, belonging to different boundaries, may intersect,
thus leading to unusable computational grids. In all approaches, in which the boundary
condition of θ changes from ΓD to Γ \ ΓD, such issues may appear. A resulting significant
deterioration of the surrounding mesh leads to a premature termination of the computa-
tional study due to divergence of the primal or adjoint solver. The deteriorating behavior,
even though it is noticed for all shape updates, appears earlier or later with regard to the
complete optimization run. From a technical point of view, one can circumvent this problem
by applying an additional filter to the field θ as computed by the respective auxiliary prob-
lem. For example, a filter of a prescribed radius, employing a cosine ramp, can be applied
in a close neighborhood around the connection of ΓD and Γ \ ΓD so that deformations
smoothly decay to zero close to the non-design section. However, applying such a filter
would essentially alter the solution of the respective auxiliary problem. As this section
aims to directly compare some of the approaches presented in Section 3 with minimum
user interference, such techniques are deliberately avoided.

(a) (b)

Figure 14. Cylinder (ReD = 20): (a) Relative decrease (Ji − J0)/J0 · 100% of objective (J(Ω)).
(b) Minimum cell orthogonality of the computational meshes. Both figures share the same legend.

(a) (b)

Figure 15. Cylinder (ReD = 20): (a) Detail of the numerical grid at the rightmost connection
point between Γ\Γd and Γd in the last optimization iteration with the approach VLB −A = 0.1D.
(b) One-dimensional illustrative example for a mesh update (see Equation (55)). Face centers are
shown with circles while vertices are displayed by ×marks. The arrows denote the shape update
direction, θf, at the face centers. The solid line depicts the initial and the dashed line the deformed
discretized shape.
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Furthermore, it is interesting to note that the shapes found by each metric differ
significantly and the paths towards them as well. This is shown in Figure 16. We note
that SP-WD and PHD result in smoother solutions while shapes produced by the VLB
approach become less and less smooth as A decreases. Note that in the limit A −→ 0, VLB is
equivalent to DS (see Equation (27)).

(a) (b) (c)

(d) (e) (f)

Figure 16. Cylinder (ReD = 20): Outline of optimized (red) compared to initial (black) shapes.
(a) DS, (b) VLB −A = 0.1 D, (c) VLB −A = 0.5 D, (d) VLB −A = D, (e) SP-WD and (f) PHD.

5.1.2. Step Size Control through Line Search

Similar to the illustrative test case of Section 4, we apply the line search technique
described in Section 3.2 to find an optimal step size for the 2D cylinder application. Due
to significant numerical effort needed to test different step sizes, we restrict our investiga-
tions to the SP-WD and DS approach. Figure 17a shows the dependence of the objective
functional J(Γi+1) on the step size for the first two optimization iterations. Contrary to
the illustrative test case, we cannot reach a step size in which J starts increasing. Instead,
the line search ends early, due to a low mesh quality. In particular, we monitor the mini-
mum mesh orthogonality and quit at a threshold of 45◦. This choice is confirmed by the
results shown in Figure 17b where for most descent directions, a rapid deterioration of the
mesh is noticed after 45◦.

This study highlights the significant numerical restrictions that one may face when
considering CFD-based shape optimization studies. While preferably, we would like to
employ the optimal step size for each descent direction, we are inevitably restricted by
the quality of the employed mesh. To this extent, one may pose the question of what
the optimal balance between an extensive mesh refinement—which implies increased
computational effort—and a straightforward, experienced-based choice of the step size
is. An answer to such a question stems from the goal of the optimization at hand and the
available computational resources of the user.
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(a) (b)

Figure 17. First two optimization iterations employing an optimal step size control based on a line
search technique. Filled green circles denote results obtained for the optimally selected step size.
(a) Relative decrease of objective. (b) Minimum cell orthogonality of employed computational grid.
Figures (a,b) share the same legend.

5.2. Three-Dimensional Flow through a Double-Bent Duct

The second test case examines a more involved, three-dimensional, double-bent duct,
as shown in Figure 18. The flow has a bulk Reynolds-number of ReD = ρUD/µ = 500
where U and D refer to the bulk velocity as well as the inlet diameter, respectively. Along
the inlet, a uniform velocity profile is imposed and a zero-pressure value is prescribed at
the outlet. The ducted geometry is optimized with regard to the total power loss, i.e.,

J(Γ) = −
∫

Γ
n · u

(
p +

ρ

2
u · u

)
dΓ, (58)

for which the corresponding shape derivative J′(Γ)(θ) corresponds to that of the previ-
ous section, see Equation (56). A detailed explanation of the adjoint problem including
boundary conditions is provided in [108,116].

Like for the two-dimensional flow, a grid study is first conducted, as presented in
Table 3. In order to enable a computationally feasible study as well as ensure a reliable
estimation of the objective, level 2 is employed for all cases presented hereafter. This
corresponds to a structured numerical grid of 90,000 control volumes. Three diameters
downstream of the inlet, the curved area is free for design and discretized with 5600 surface
elements and the numerical grid is refined towards the transition region between the design
and non-design wall as depicted in Figure 19.
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Figure 18. Double-bent pipe (ReD = 500): Several views on the initial geometry where red areas
indicate the region free for design.
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Table 3. Double-bent pipe (ReD = 500): Results of the mesh dependence study. For illustrative pur-
poses, we denote here Ĵ′ =

∫
Γd s dΓ. Index i refers to the mesh refinement level. Note ρ = 500 kg/m3,

µ = 1 Pa · s, U = 1 m/s and D = 1 m.

Refinement
Level Number of FV 2 Ji

ρU3D2
2 Ĵ′i

ρU3D
Ji−Ji−1

Ji−1
(%) Ĵ′i− Ĵ′i−1

Ĵ′i−1
(%)

M0 11,250 2.18 −5.55 - -

M1 90,000 3.091 −11.44 41.73 106.13

M2 720,000 3.15 −11.38 1.91 −0.53

M3 5,760,000 3.17 −11.38 0.41 0.0

(a) (b)

Figure 19. Double-bent pipe (ReD = 500). (a) Initial geometry. (b) Employed numerical grid. Red
areas indicate the design region.

During the optimization of the 3D case, the step size remains constant through the
process and is determined by prescribing the maximum displacement in the first iteration
(θmax), as described in Section 3.2. We set it to one percent of the initial tube’s diameter,
i.e., θmax = 0.01D. The investigated shape and domain updates are DS, SLB with A/D = 1,
VLB with A/D = 1, SP-WD and PHD with p = 4. Here, A is used in a similar context
as in Section 5.1. All investigated shape updates are extended into the domain as in the
two-dimensional case.

Results

Figure 20a shows the relative decrease of J(Ω) with regard to the initial shape. A stopping
criterion of the optimization runs is fulfilled when the relative change of the objective functional
between two domain updates falls below 0.1%, i.e when (Ji − Ji−1)/Ji−1 · 100% < 0.1%.

The investigated boundary-based approaches SLB & VLB managed to reach a reduc-
tion greater than 40%, which corresponds to the SP-WD gain. The PHD approach minimizes
the cost functional by ≈36%, still 10% more than the DS approach, which terminated due
to divergence of the primal solver after 42 iterations. The reason for termination is the
divergence of the primal solver due to insufficient mesh quality, as already described in the
previous section. Note that solver settings such as relaxation parameters, etc., are the same
for all simulations during all optimizations.

The degraded grid quality within the DS procedure can be anticipated from the rep-
resentation of the shape update direction in Figure 21a. Compared to the shape updates
with the approaches SLB, SP-WD, and PHD with p = 4 (Figure 21b–d), a rough shape
update field is apparent for the DS approach, especially in the straight region between the
two tube bends. It is noted that the figure is based on the cell-centered finite-volume ap-
proximation, and the results have to be interpolated to the CV vertices using Equation (55).
This procedure results in a smoothing, which allows the numerical process to perform
at least a few shape updates without immediate divergence of the solver. Compared to
the DS approach, the shape update is significantly smoother for the SLB approach with
a filter width of A/D = 1, cf. Figure 21b. Even smoother shape changes follow from the
remaining approaches, with comparatively little difference in the respective deformation
field between SP-WD and PHD in the region between the tube’s bents.
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(a) (b)

Figure 20. Double-bent pipe (ReD = 500): (a) Relative decrease of objective (J(Ω)) during the
optimization runs as in Figure 14. (b) Relative global volume (Vi −V0)/V0 · 100% increase for each
shape update. Figures (a,b) share the same legend.

(a) (b)

(c) (d)

Figure 21. Double-bent pipe (ReD = 500): Normalized magnitude of displacement for the first shape
update for the (a) DS, (b) SLB (A = D), (c) SP-WD, and (d) PHD (p = 4) approaches along the
design region.

Perspective views of the final shapes obtained with the four different approaches are
shown in Figure 22. Again, it can be seen that the DS approach (a) results in local dents
in the region between the bends, which is ultimately the reason for the divergence of the
SIMPLE solver after a few iterations. On the other hand, shape updates of the SLB, SP-WD,
and PHD approaches are all smooth but still noticeably different.

The results in Figure 22 are consistent with the expectation that an increased volume
should accompany a reduction in pressure drop. The fact that the different shape update
approaches yield different final shapes can be partially observed by tracking the pipe’s
volume. For this purpose, Figure 20b is presented, in which the relative volume changes
(i.e., the sum of all FVs) over the number of shape changes are depicted for all approaches.
The LB-based methods require about 55% relative volume increase to achieve roughly 43%
relative cost functional reduction. On the other hand, the SP-WD approach converts relative
volume change of approximately 40% almost directly into a relative objective decrease
of also 40%. Only the PHD and DS approaches reduce the cost functional significantly
more than the volume increase. Thus, the PHD [DS] approach gained about 36% [26%]
relative objective decrease with about 25% [17%] relative volume increase. In theory,
an unbounded increase of the pipe’s volume would result in a minimization of the total
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pressure drop. However, since certain sections of the pipe are bound to their initial
configuration, an optimal solution is not only associated with a volume increase. Due to
the constrained upstream and downstream geometry, the final pressure loss would involve
sudden expansion and sudden contraction losses even for an infinitely large design section.

(a) (b)

(c) (d)

Figure 22. Double-bent pipe (ReD = 500): Initial (red) and optimized (green) shapes based on the
(a) DS, (b) SLB (A = D), (c) SP-WD, and (d) PHD (p = 4) approach.

Due to the increased computational effort required for this study compared to the
two-dimensional example shown previously, it is interesting to compare the methods
with respect to computation time. Such a comparison is given in Table 4, distinguishing
between mean primal and mean adjoint computation time. For the underlying process,
the mesh is adjusted before each primal simulation and thus, the averaged primal time
consists of the time required to compute the shape update and the solution to the primal
Navier–Stokes system (51) and (52). In all cases, the average adjoint simulation time is
in the range of 0.1 CPUh. Interestingly, the values of the optimizations based on the
Laplace–Beltrami approach are slightly below while all others slightly above this value.
Starting from an approximately similar simulation time of all primal NS approximations,
a significant increase in computation time can be seen for the volume-based methods.
Therein, the PHD approach is particularly costly, since the nonlinear equation character
in (39) is elaborately iterated in terms of Picard linearization, which drastically increases
the total simulation time.

Table 4. Double-bent pipe (ReD = 500): Measured computation time CPUh (nopt · twc · nCPU) for
all five optimization studies, where twc refers to the mean wall clock time per primal/adjoint run
and nopt as well as nCPU denote the number performed optimization steps as well as employed
CPU cores.

Approach nopt [-] Primal twc [h] Adjoint twc [h] Total CPUh [h]

DS 42 0.1325 0.1176 10.5042

SLB (A/D = 1) 241 0.1005 0.0994 48.1759

VLB (A/D = 1) 235 0.0991 0.0981 46.342

SP-WD 441 0.1255 0.1109 86.9652

PHD (p = 4) 491 0.1914 0.1070 146.5144
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5.3. Discussion

Overall, the numerical studies shown herein highlight how different shape updates on
the same CFD-based optimization problem impact not only the steepness of the objective
reduction curve, but also the final shape. This agrees with the observations made in [88],
where it was shown that application of different metrics may lead to different shapes, or
in [117], where the final shape was shown to depend on the choice of the filter radius,
employed by a smoother. In general, one would expect that all presented approaches
converge to the same solution for a convex optimization problem. However, in the context
of CFD-based shape optimization, information about the convexity of the investigated
problem is rarely available and thus the application of different shape update approaches
is likely to lead to different shapes. From a practical point of view, we identified mesh
quality preservation to be the bottleneck of the applied approaches. Indeed, one can
sustain a better mesh quality or even progress the optimization of non-converged runs
by auxiliary techniques, such as remeshing or additional artificial smoothing; however,
this goes beyond the scope of the paper. Furthermore, it is interesting to note that the
computational cost for each shape update is not the same but rather increases when the
complexity of the utilized shape update increases as well. Finally, based on the presented
results, we would like to emphasize that the intention is not to enable a direct comparison
of different shape updates with regard to performance in general. We would rather like
to show how a range of practical shape updates may result in different shapes because
typically, the optimization runs have to be stopped before an optimal shape is reached due
to mesh distortion issues. Which shape update yields the largest reduction until the mesh
becomes heavily deteriorated depends on the application. For example, by comparing
the applications presented herein, one can notice that VLB performs much better in the
double-bent pipe than in the cylinder case.

6. Summary and Conclusions

We have explained six approaches to compute a shape update based on a given sensi-
tivity distribution in the scope of an iterative optimization algorithm. Since the derivations
of mathematical papers in the field of shape optimization can be difficult to understand
without the required background knowledge, we have reviewed the mathematical concepts
behind optimization on shape spaces without a focus on mathematical derivations together
with extensive referencing in order to provide a first step into the topic for the interested
reader. Further, this work should be seen as an overview of potentially more robust and
efficient methods for which the theoretical background is already established, in contrast
to the methods that are sometimes encountered in practice. We included two variants of
the well known Hilbertian approaches based on the Laplace–Beltrami operator that yield
first-order Sobolev gradients (SLB and VLB). For comparison, a discrete filtering technique
and a direct application of the sensitivity was considered as well (FS and DS). Further, two
alternative approaches that have not yet been extensively used for engineering applications
were investigated (SP and PHD). They directly yield the domain update direction, such
that an extra step that extends the shape update direction into the domain can be avoided.

Based on an illustrative example, the characteristic behavior of the approaches was
shown. While the FS and the DS approaches manage to find the optimal shape, even in
regions where it is not smooth or where a high curvature is not present, the SP approaches
yield shapes that differ in these regions. For the PHD, VLB and SLB approach, the param-
eters p and A can be used to regulate the smoothness of the obtained shape. Due to the
possibility of remeshing for the comparably simple problem, mesh quality was not an issue.

Regarding the simulations of the CFD problems, for which remeshing was not realized,
the decrease in mesh quality became a severe issue preventing the optimization algorithm
from convergence. For the two-dimensional case, the PHD approach yielded the steepest
decrease in the objective functional; however, the smallest objective functional value was
obtained using the SP method, which managed to preserve a reasonable mesh quality for
more iterations than all other approaches. For the three-dimensional case, the VLB and
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SLB approaches outperformed all other approaches in terms of steepest decrease of the
objective functional as well as the smallest value that could be achieved before the mesh
quality became critical.

Concluding, we have observed that the behavior of the approaches is strongly con-
nected to the considered problem. We suggest using the SP as a first choice, as it is computa-
tionally less involved than the PHD approach and does not require an extension of the shape
update into the domain in a second step as the SLB and the VLB approaches do. The per-
formance of the latter shall still be compared for a given application scenario—despite the
extension in a separate step, the overall computational cost may still be reduced compared
to the SP approach due to a steeper descent. Finally, we suggest avoiding the DS approach,
since it was weaker than all other approaches in terms of mesh quality, irrespective of the
problem. While some approaches to compute a shape update were so far published only in
combination with extensive theoretical consideration, all approaches were introduced here
in a simple form, ready for implementation. Together with the illustrative test case and the
exemplary application, this makes them readily available for practitioners.
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