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Abstract: Stability analysis of lateral–torsional coupled vibration is obligatory for rotating machinery,
such as aero-engines. However, the state-of-the-art method may lead to stability misjudgment under
different coordinate systems. The cause of this misjudgment has not yet been well explored. The
purpose of this paper is to clarify the error source of the stability analysis in a more comprehensive
manner. A vertical Jeffcott rotor model including torsion vibration is built, and the Lagrange approach
is applied to establish the motion equations. The coordinate transformation matrix is used to transfer
the motion equations into the rotating coordinate system, making the coefficients of the motion
equation constants. The differences in the unstable speed regions in the two coordinate systems
are captured. The limitations of the Floquet theory and Hill’s determinant analysis in the stability
estimation of the lateral–torsional coupled vibration are explained. It is found that, for Hill’s method,
increasing the number of the harmonic truncation cannot correct the misjudgment, and the matrix
truncation is the fundamental error source. The above research provides more accurate theoretical
support for the analysis of the lateral–torsional coupling instability of rotors.

Keywords: lateral–torsional coupling; rotordynamics; stability analysis; Floquet theory; Hill’s
method; coordinate transformation

1. Introduction

Present day operating gaps between rotating and stationary components are kept
to a minimum to improve the aerodynamic performance of aero-engines. Moreover, the
unbalance and eccentricity may cause undesirable lateral vibration, which are produced
by manufacturing errors, the fan blade being off, etc. [1–3]. The consequence would be a
rotating element coming into contact with the stationary part, namely a rotor stator rub [4].

The rub can significantly change the dynamic behavior of rotor systems. There has
been extensive research on the rotor–stator contact phenomenon [5,6]. As a result, the rotor
exhibits non-smooth nonlinearities and a complicated vibration motion, such as periodic,
quasi-periodic [7,8], and chaotic vibrations with sub-synchronous and super-synchronous
frequency components [9–11]. Chu et al. [12] and Sun et al. [13] used a nonlinear model
with piecewise linear stiffness and demonstrated that the rub impact between the rotor
and the stator exhibited periodic, quasi-periodic, and chaotic vibrations. Qin et al. [14]
observed grazing bifurcation and chaos in the response of a rubbing rotor. Sinha [15]
presented an analytical method to illustrate the nonlinear dynamic effect of blades rubbing
against the rigid outer case in rotating machinery. Using the complex nonlinear modes,
Hong et al. [16] analyzed the nonlinear dynamic characteristics of a rotor system with an
additional constraint due to the rub impact.

Researchers have also found that the torsional vibration caused by the rub could not
be neglected [17]. The dynamic characteristics of the rotor system are seriously affected
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by the coupling of the vibrations in lateral and torsional directions under conditions such
as gear meshing [18], unbalanced excitation [19,20], and cracking [21]. The subsequent
lateral–torsional coupled vibration may lead to response amplification and even instability,
resulting in the catastrophic failure of machines. Al-Bedoor [22] carried out a transient
analysis with torsional motion. He observed a super-harmonic of order 3, with possible
instability, in the case of torsional vibrations. Huang [23] studied the characteristics of the
torsional vibration of a rotor that was unbalanced, and found the torsional vibration of
the shaft could result in lateral vibration with a bisynchronous frequency. From the modal
and response perspectives, Hong et al. [24] discussed the lateral–torsional coupling effects
in detail. The results showed that veering and lock-in phenomena occurred between the
frequencies of the forward whirl mode and the torsional mode, and lock-in could lead to a
kind of principal instability.

Different modeling and simulation methods have been developed to meet the vari-
ous analysis requirements of lateral–torsional coupled vibration. In terms of modeling,
the lumped parameter model [25] preserves the dynamic characteristics of the target
modes of the system with just a few degrees of freedom (DOFs), and they are widely
used to qualitatively reveal the instability and chaos of the rotor caused by bending–
torsional coupling or nonlinear friction–impact force, with high computational efficiency.
Shi et al. [26] proposed a model with six DOFs to investigate the vibrational stability of
the unbalanced rotor bending–torsional coupling vibration of a hydro-turbine generator
unit. Recently, researchers have gradually adopted the finite element model [27] due to the
improvement in computing ability. Although the computational burden significantly in-
creases, it can quantitatively predict the dynamic characteristics of the rotor in engineering.
Zheng et al. [28] built an FE model of a rub-impact rotor during hovering flight; the disk
was five DOFs. To study coupled lateral–torsional dynamic problems, researchers have em-
ployed different numerical integration techniques to investigate this nonlinear phenomenon.
Mokhtar et al. [29] adopted a forward increment Lagrange multiplier method with a central
difference integration scheme to calculate the transient response of the rotor-stator contact.
Cao et al. [30] used a fourth-order Runge–Kutta method to solve problems, including the
lateral and torsional analysis of a flexible rotor-bearing system, which comprised gyroscopic
effects, nonlinear short journal bearings, nonlinear short squeeze film dampers, and exter-
nal nonlinear forces/torques. Transient analysis with the typical time integration method
can reveal the change process of the response, especially the instability amplification, but it
needs more computational efforts. Li et al. [31] proposed a general algorithm named the
linear and nonlinear nodes separation method to improve the efficiency of the transient
numerical simulation of the coupled lateral–torsional dynamic behavior. Additionally,
experimental investigations were performed to validate the aforementioned numerical
methods in the analysis of the lateral–torsional coupled vibration [32,33].

An appropriate coordinate system should be chosen for the dynamic analysis of rotor
systems. Most studies adopt the inertial coordinate system, which is fixed to the ground.
The inertial frame is suitable for axisymmetric and non-axisymmetric rotors with strong
applicability [34]. However, the time-varying governing motion equations in the inertia
frame are complex [35]. The Floquet–Hill formulation has become an essential and strong
tool for computing these equations and performing stability analysis of lateral–torsional
coupled vibrations [36]. Because of the small harmonic truncation order in the method,
the eigenvalues are redundant, which could cause stability misjudgment. Currently, the
misjudgment can be partially corrected by filtering out the spectrum of the solutions based
on the eigenvalues [37] and eigenvectors [38,39] of Hill’s matrix. Nonetheless, in some cases,
the redundant roots have been estimated as correct ones. The effectiveness of the filtering
strategy might be related to the case. This leads to a lack of an extensive understanding of
the misjudgment, which regrettably still occurs in many rotor stability studies [24,35,40].
On the other hand, some researchers have started to use the rotating coordinate system; the
frame rotates at the same speed as the rotor system [41]. The time-varying coefficients of
the motion equations can be converted to constants by the rotational transformation matrix,
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and then the difficulty of analysis is significantly reduced. The above research shows the
advantages of rotor stability analyses in the rotating frame.

Although the motion equations of the rotor system have different forms in the two
coordinate systems, the results should theoretically be consistent. However, discrepancies
may arise resulting in differences in the stability judgment for some motions [42]. The
inconsistency of the stability results between the two frames which has not been fully
revealed deserves further investigation. Therefore, in this paper, we study the influence of
the choice of the coordinate system on the analysis of lateral–torsional coupled vibration,
and discuss the reasons for the differences between the corresponding stability results. A
three DOFs vertical Jeffcott rotor system including torsion vibration is built (Section 2).
The analysis of lateral–torsional coupled vibration in both inertial and rotating coordinate
systems is performed (Section 3). The influence of the coordinate system choice is revealed
by comparing the results of time-domain response and modal analysis in both coordinate
systems, and the cause of misjudgment is further explained from the perspective of the
truncation of motion equations (Section 4).

2. Model Formulation

A vertical Jeffcott rotor system considering torsional vibration is shown in Figure 1.
The rotor has a mass m imbalance with eccentricity e. The rotor’s mass moment of inertia
around the z-axis is denoted as Jp. Assuming rotor symmetry, the lateral stiffness values
are set to kx = ky = k, and the equivalent damping coefficients are defined as cx = cy = c.
The torsional stiffness and the damping coefficient are represented as kr and cr, respectively.
The rotation speed of the rotor is denoted as Ω and the torsional displacement as θ. The
arrow in Figure 1 represents the rotational direction of the rotor.
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The 3-DOFs rotor model in the inertial coordinate includes two lateral motions
(x, y) and one torsional motion (θ). By assuming small displacements around the static
equilibrium position and constant rotational speed, a periodically time-varying system
written in the inertial coordinate system is obtained (detailed in Appendix A) [24]:

m
..
x−me

..
θ sin Ωt + c

.
x− 2meΩ

.
θ cos Ωt + kx + meΩ2 sin Ωt = meΩ2 cos Ωt

m
..
y + me

..
θ cos Ωt + c

.
y− 2meΩ

.
θ sin Ωt + ky−meΩ2 cos Ωt = meΩ2 sin Ωt

(me2 + Jp)
..
θ −me

..
x sin Ωt + me

..
y cos Ωt + cr

.
θ + krθ = 0

(1)

In Equation (1), the first and second equations are force-balance equations separately
in the x-direction and y-direction, and the third equation is a torque-balance equation.
Equation (1) shows that the torsional vibration couples with the lateral vibration by the
inertia terms of equations, namely −me

..
θ sin Ωt and me

..
θ cos Ωt in the two lateral motion
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equations and (−me
..
x sin Ωt + me

..
y cos Ωt) in the torsional motion equation, which are

caused by the mass of the unbalance e. Furthermore, the presence of time-varying coeffi-
cients sin Ωt and cos Ωt, caused by the coupling between lateral and torsional vibrations,
makes the calculation of the motion equations more complex. System parameters consid-
ered in the present study are listed in Table 1.

Table 1. Rotor’s physical and simulation parameters [24].

Parameter Variable Value Unit

Mass m 1 kg
Lateral damping coefficient c 0 N·m/s

Lateral stiffness k 104 N/s
Mass moment of inertial Jp 0.5 kg·m2

Torsional damping coefficient cr 0 N·m·s/rad
Torsional stiffness kr 1250 kg·m/s2

Eccentricity e 100 mm
Rotation speed Ω varying rpm

3. Analysis in Two Coordinate Systems

In this section, analytical methods for rotor stability analysis in both inertial and
rotating coordinate systems are derived, and modal analysis is carried out to predict
unstable regions of the rotor. Subsequently, a comparison is made between the results
obtained in the two coordinate systems.

3.1. Analysis in Inertial Coordinate System
3.1.1. Analytical Method

In Section 2, the governing equations of the unbalanced rotor system under the inertial
frame are obtained by Lagrange’s approach. The coefficients sin Ωt and cos Ωt with a
period T = 2π/Ω are periodic time-varying, leading to solutions to the motion equations
periodic with the same period T. One can solve the aforementioned equations by the
well-known Floquet theory [43] and Hill’s method [44].

Let us transform the periodic coefficients sin Ωt and cos Ωt into exponential form.
Consider Euler’s formula:

cos Ωt =
eiΩt + e−iΩt

2
, sin Ωt =

−ieiΩt + ie−iΩt

2
(2)

where i =
√
−1. Then, replace Equation (2) in Equation (1) and write it as matrix form. To

analyze the modal characteristics of the unbalanced rotor system, set the external force
vector equal to zero, and we obtain the following equation:

(M + MteiΩt +
~

Mte−iΩt)
..
q + (C + CteiΩt +

~
Cte−iΩt)

.
q + (K + KteiΩt +

~
Kte−iΩt)q = 0 (3)

The matrices in Equation (3) are included in Appendix B.
The time-varying coefficients sin Ωt and cos Ωt are now substituted by exponen-

tial terms e−iΩt and eiΩt. The solution of Equation (3) is periodic with the same period
T = 2π/Ω. Thus, the solution of Equation (3) can be assumed in the following form
according to Floquet’s theory:{

q = φeλt

φ(t) = φ(t + Tk), Tk = 2π/Ω
(4)
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where φ is the quasi-mode vector, which is periodic with the same period T, and λ is the
quasi-eigenvalue [45]. The period function φ can be expressed by the general Fourier series:

φ =
+∞

∑
j=−∞

IjeijΩt (5)

where Ij is the harmonic contribution of the jth order harmonic. By substituting Equations (4)
and (5) into Equation (3), we obtain the following equation:

(M + MteiΩt +
~

Mte−iΩt)
+∞
∑

j=−∞
(−jΩ2 + 2iλjΩ + λ2)IjeijΩt+

(C + CteiΩt +
~
Cte−iΩt)

+∞
∑

j=−∞
(ijΩ + λ)IjeijΩt+

(K + KteiΩt +
~
Kte−iΩt)

+∞
∑

j=−∞
IjeijΩt = 0

(6)

By separately setting the coefficients of each exponential term eijΩt to zero in
Equation (6), an infinite set of algebraic equations are then obtained:

...{
[(i(j− 2)Ω + λ)2Mt + (i(j− 2)Ω + λ)Ct + Kt]Ij−2

+[(i(j− 1)Ω + λ)2M + (i(j− 1)Ω + λ)C + K]Ij-1

+[(ijΩ + λ)2 ~
Mt + (ijΩ + λ)

~
Ct +

~
Kt]Ij

}
ei(j−1)Ωt = 0{

[(i(j− 1)Ω + λ)2Mt + (i(j− 1)Ω + λ)Ct + Kt]Ij−1

+[(ijΩ + λ)2M + (ijΩ + λ)C + K]Ij

+[(i(j + 1)Ω + λ)2 ~
Mt + (i(j + 1)Ω + λ)

~
Ct +

~
Kt]Ij+1

}
eijΩt = 0{

[(ijΩ + λ)2Mt + (ijΩ + λ)Ct + Kt]Ij

+[(i(j + 1)Ω + λ)2M + (i(j + 1)Ω + λ)C + K]Ij+1

+[(i(j + 2)Ω + λ)2 ~
Mt + (i(j + 2)Ω + λ)

~
Ct +

~
Kt]Ij+2

}
ei(j+1)Ωt = 0

...

(7)

Let us write Equation (7) as the infinite determinant form:



. . .
...

...
...

...
...

· · · A-2 ∆+1 0 0 0 · · ·
· · · ∆−1 A-1 ∆+1 0 0 · · ·
· · · 0 ∆−1 A0 ∆+1 0 · · ·
· · · 0 0 ∆−1 A+1 ∆+1 · · ·
· · · 0 0 0 ∆−1 A+2 · · ·

...
...

...
...

...
. . .





...
I-2
I-1
I

0

I+1
I+2

...


=0 (8)

where:

Aj = (−j2Ω2 + 2iλjΩ + λ2)M + (ijΩ + λ)C + K;

∆+1 = (−(j + 1)2Ω2 + 2iλ(j + 1)Ω + λ2)
~

Mt + (i(j + 1)Ω + λ)
~
Ct +

~
Kt;

∆−1 = (−(j− 1)2Ω2 + 2iλ(j− 1)Ω + λ2)Mt + (i(j− 1)Ω + λ)Ct + Kt.
(9)
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Due to the infinite expansion of Equation (5), the determinant associated with Equation (8)
is called the Hill infinite determinant [44].

One reconstructs Equation (8) into Hill’s eigenvalue problem:

(λ2 _M + λ
_
C +

_
K)φ = 0 (10)

and the matrices in Equation (10) are also included in Appendix B.
Equation (10) is derived from the original motion Equation (3). Thus, the modal

solutions of Equation (10) are equivalent to the solutions of the unbalanced rotor system.

Because of the inclusion of the damping matrix
_
C, Equation (10) can be expressed in the

state space:
AΦ = λBΦ (11)

where:

A=

[
−

_
C −

_
K

_
K 0

]
, B=

[_
M 0

0
_
K

]
, Φ =

[
λφ
φ

]
(12)

According to Hill’s determinant convergence, the number of harmonic significantly
contributing to the quasi-modes φ, namely the Floquet solution, is finite [45]. A finite
truncated harmonic order jmax then needs to be defined. By solving the eigenproblem of
Equation (11) in the state space truncated to the jmax harmonic order for a given Ω, one can
obtain n× (2jmax + 1) eigenvalues λl , where n = 3 is the number of degrees of freedom
of the unbalanced rotor system. According to Equations (4) and (5), each eigenvalue is
associated with a complex eigenvector φl , expressed in the time domain as:

φl(t) =
jmax

∑
−jmax

Ijle(ijΩ+λl)t (13)

where Ijl is the jth harmonic of the lth eigenvector of the unbalanced rotor system. Then,
the modal analysis of the rotor system in the inertial frame can be implemented. The
stability of the lth quasi-mode is determined by the nonzero real parts of the corresponding
eigenvalues obtained from Equation (11).

3.1.2. Modal Frequency and Stability

Modal analysis of the unbalanced rotor in the inertial frame is performed in this
section, and the parameter values are listed in Table 1. The truncated harmonic order is
jmax = 2, and the step of the rotation speed is 5 rpm. Modal angular frequencies and
the real part of eigenvalues varying with the rotation speed are demonstrated in Figure 2.
ωb+,j,ωb−,j and ωt,j (j = −1, 0, 1) in Figure 2a represent the jth-order harmonic frequency
of the forward whirl, backward whirl, and torsional modes, respectively. There exist three
notable coupling regions in Figure 2a, and eigenvalues with positive real parts form three
regions in the corresponding speed range in Figure 2b, which are demonstrated by the blue,
red and green regions, respectively. These three regions are unstable regions. Region A1
corresponds to the region of rotation speed where the -1st-order harmonic frequency of
the forward whirl mode is equal to zero. This kind of instability region, caused only by
harmonic frequency, is named the ‘secondary instability region’. Region B1 and C1 are
caused by the coupling between harmonic and fundamental frequencies of forward whirl
modes and torsional modes, termed the ‘principal instability region’ [45]. To conclude,
when the truncated harmonic order is jmax = 2, the number of the instability regions caused
by the coupling between lateral modes and torsional modes is two, and the two regions are
mostly overlapped.
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3.2. Analysis in Rotating Coordinate System

Now, we transform Equation (1) into rotating coordinates η(t), ς(t), which are attached
to the disk. The coordinate transformation is as follows:

X = TY (14)

where

X =


x
y
θ

, Y =


η
ς
θ

, T =

cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1

 (15)

Then, Equation (1) expressed in rotating coordinates has constant coefficients:
m

..
η + c

.
η − 2mΩ

.
ς− 2meΩ

.
θ + (k−mΩ2)η − cΩς = 0

m
..
ς + me

..
θ + c

.
ς + 2mΩ

.
η + (k−mΩ2)ς + cΩη −meΩ2θ = 0

(me2 + Jp)
..
θ + me

..
ς + cr

.
θ + 2meΩ

.
η + krθ −meΩ2ς = 0

(16)

and the matrix form of Equation (16) can be written as:

M
..
Y + C

.
Y + KY = 0 (17)

The matrices in Equation (17) are given in Appendix B in detail.
The modal characteristics of the rotor system in the rotating frame are obtained. The

instability prediction results differ from those in the inertial frame. There exist two unstable
regions, as shown in Figure 3. Similar to Region A1 in Figure 2, Region A2 in Figure 3 is
also caused by the frequency of the whirl mode being equal to zero, namely, the secondary
instability region. The coupling between the whirl mode and torsional mode results in
an additional unstable region, referred to as Region B2. Upon comparing the unstable
regions depicted in Figure 2 with those in Figure 3, it can be observed that Figure 3a has
one less coupling region compared to Figure 2a, and Figure 3b has one less unstable region
compared to Figure 2b.
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3.3. Comparison of Results in Two Coordinate Systems

The differences between the modal analysis results in two frames are shown in Figure 4
in detail. Because the unstable regions are symmetric about the x-axis, Figure 4b displays
only the top half of the unstable regions. In both the rotating and inertial frames, there exist
Region A3 and Region C3, while Region B3 is exclusively observed in the modal analysis
results of the rotating frame. From Figure 4b, unstable speed ranges can be determined. If
we only consider the principal instability region, the range of unstable speeds in the inertial
frame is from Ω = 1305 rpm to Ω = 1624 rpm. However, in the rotational frame, this range
is shifted and becomes from Ω = 1356 rpm to Ω = 1624 rpm. In other words, the speed
range from Ω = 1305 rpm to Ω = 1356 rpm is the unstable speed range in the inertial frame
but the stable speed range in the rotating frame. It is unreasonable for one rotor system to
have different modal calculation results in two coordinate systems.
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4. Verification of the Results

In Section 3, we found that the unstable ranges obtained in the rotating frame are not
consistent with those obtained in the inertial frame. A time-domain analysis is carried out
to verify which one is the true unstable range in this section. The reasons for the disparities
in stability prediction are also elucidated.

4.1. Time Domain Results

The fourth-order Runge–Kutta method is performed in both coordinate systems to
investigate the unstable speed ranges. Figures 5 and 6 display the sequential displace-
ments along the x-axis and the corresponding rotor orbits at the following spin speeds:
Ω = 1355 rpm, Ω = 1356 rpm, Ω = 1357 rpm, Ω = 1624 rpm, and Ω = 1625 rpm in the
inertial frame. Similarly, Figures 7 and 8 demonstrate the results in the rotating frame. An
initial displacement is given in the time domain simulation. Given that the rotor system
is undamped, the response will exhibit periodic behavior (limit cycle) when it is stable
and diverge when it is unstable. Accordingly, the system is stable at rotation speeds
Ω = 1355 rpm, Ω = 1356 rpm, and Ω = 1625 rpm, but unstable at Ω = 1357 rpm and
Ω = 1624 rpm. Especially, the system is stable when Ω = 1357 rpm both in two frames from
the time domain analyses.
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However, Hill’s method in the inertial frame gives inconsistent results, i.e., the system
is judged as unstable at Ω = 1357 rpm, which is different from the time domain results.
Therefore, Region B3 in Figure 4 is not a real unstable speed range. The coupling region
B2 in Figure 2a and unstable region B2 in Figure 2b obtained by Floquet theory and Hill’s
method in the inertial coordinate system are false.

4.2. Tracing to the Source of Misjudgment
4.2.1. On the Truncation Order in Hill’s Method

The influence of the truncated harmonic order in Hill’s method is studied in this
section. As the number of truncated harmonics increases, the number of modal frequency
coupling regions rises from two to six, shown in Figure 9. Meanwhile, the unstable regions
obtained by the real part of eigenvalues do not change when the number of the harmonic
truncation order increases. Therefore, we can conclude that the number of harmonic
truncation in Hill’s method does not impact the prediction of instability for an unbalanced
rotor in the inertial frame.
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Furthermore, one can notice that, as the number of the harmonic truncation order jmax
increases, all the newly identified coupling regions correspond to the unstable region 3.
The false unstable region 2 cannot be eliminated by increasing the truncation order and is
always at the top of the coupling regions.

4.2.2. On the Correspondence of Solutions in Two Frames

The coordinate transformation matrix T in Equation (14) has time-varying terms,
which may affect the solutions of motion equations and lead to misjudgment. The cause
of the false unstable region is studied from the perspective of the solutions of the motion
equations in this section.

The modal vectors φi and eigenvalues λi of the rotor system can be obtained by modal
analysis at a certain speed in both two frames. Then, the solutions of the motion equations
Xi can be derived by Equation (18), wherein i stands for the mode number. To verify the
effect of the coordinate transformation matrix T on the solutions, Equations (19) and (20)
are used to transfer the solution from the inertial (rotating) frame to that in the rotating
(inertial) frame, respectively.

Xi = φieλit (18)

X
′
i = TYi (19)

Y
′
i = T−1Xi (20)

Taking one rotational speed Ωi in the false unstable region, we calculate the solu-
tions xi and yi of the motion equations given in Equations (11) and (17) in both frames.
Equations (19) and (20) are used to transfer xi and yi into y

′
i and x

′
i respectively, wherein x

′
i

is the transformed solution in the inertial frame and y
′
i is that in the rotating frame. The

convergence of Hill’s method is achieved by jmax = 2 so that the number of modes is nine
in the inertial frame. The number of modes of the system is three in the rotating frame. By
substituting solutions xi, x

′
i, yi and y

′
i into Equations (1) and (16) in two coordinate systems,

whether the solution satisfies the motion equations can be judged. The check mark (X)
means that the solution of the mode satisfies the equations, and the cross mark (7) means
that it does not, as demonstrated in Table 2, wherein Mk is the kth mode.
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Table 2. Rotor’s physical and simulation parameters.

Solutions M1 M2 M3 M4 M5 M6 M7 M8 M9

obtained in inertial frame (xi) X 7 7 7 7 X X 7 7

transferred to rotating frame (y
′

i) X 7 7 7 7 X X 7 7

obtained in rotating frame (yi) X - - - - X X - -
transferred to inertial frame (x

′

i) X - - - - X X - -

From Table 2, it can be observed that out of nine solutions xi obtained in the inertial
frame, six of them do not satisfy the motion equations. Similarly, the same issue arises for
the solutions y

′
i obtained in the rotating frame through coordinate transformation. On the

contrary, all the solutions yi obtained in the rotating frame satisfy the motion equations, as
well as the solutions x

′
i in the inertial frame after coordinate transformation. Additionally,

one can notice that even though the convergence of Hill’s method is achieved by jmax = 3,
six out of the fifteen solutions still fail to satisfy the motion equations in both two frames.
Therefore, it is reasonable to conclude that the solutions that do not satisfy the motion
equations in the inertial frame are responsible for the false modal frequency coupling region
and unstable region observed in the results of the modal analysis. Moreover, increasing the
truncated order will not eliminate this error.

4.2.3. On the Matrix Truncation in the Solving Process

Since the error in Hill’s method in the inertial frame is independent of the harmonic
truncation, it is necessary to explore the calculation process of the motion equations to
determine the origin of the error. If the truncated harmonic number is 2, Equation (6) will
become Equation (21). Equation (22) is the matrix form of Equation (21), where ∆−1 and
∆+1 are given in detail in Equation (8).

The coefficient matrix in Equation (22) is not a square matrix; therefore, the modal
analysis cannot be performed directly. To obtain a square coefficient matrix, we need to
remove ∆−1 in the first row and ∆+1 in the last row of the matrix, thus Equation (23) is
obtained. Correspondingly, the term of I−2 and I+2 in Equation (21) should be removed as
well; therefore, the first and the last equation in Equation (21) do not hold any more. This
phenomenon provides an explanation for the consistent occurrence of six sets of solutions
that fail to satisfy the motion equations in the inertial frame.

In summary, the truncation of motion equations causes the misjudgments of stability.
The false unstable region in the inertial frame cannot be eliminated by only increasing the
number of the harmonic truncation order in Hill’s method. The absence of several terms by
matrix truncation means that the modal solutions do not satisfy the motion equations. The
false modal frequency coupling region always appears at the top of the coupling regions,
where one needs to pay more attention to the stability results.

{
[(−2iΩ + λ)2Mt + (−2iΩ + λ)Ct + Kt]I−2

+[(−iΩ + λ)2M + (−iΩ + λ)C + K]I-1

+[λ2
~

Mt + λ
~
Ct +

~
Kt]I0

}
e−iΩt = 0 · · · · · · · · · · · · · · · · · · · · (1){

[(−iΩ + λ)2Mt + (−iΩ + λ)Ct + Kt]I−1

+[λ2M + λC + K]I0

+[(iΩ + λ)2 ~
Mt + (iΩ + λ)

~
Ct +

~
Kt]I+1

}
e0iΩt = 0 · · · · · · (2){

[λ2Mt + λCt + Kt]I0

+[(iΩ + λ)2M + (iΩ + λ)C + K]I+1

+[(2iΩ + λ)2 ~
Mt + (2iΩ + λ)

~
Ct +

~
Kt]I+2

}
eiΩt = 0 · · · · · (3)

(21)
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∆−1 A−1 ∆+1 0 0
0 ∆−1 A0 ∆+1 0
0 0 ∆−1 A+1 ∆+1




I−2
I−1
I

0

I+1
I+2

 = 0 (22)

A−1 ∆+1 0
∆−1 A0 ∆+1

0 ∆−1 A+1


I−1

I
0

I+1

 = 0 (23)

5. Conclusions

In this paper, we study the influence of coordinate system choice on stability estimation
of lateral–torsional coupled vibration in an unbalanced rotor and try to explain the reason
for the stability misjudgment of Hill’s method in inertial coordinates. The findings of this
research can offer enhanced theoretical supports for the stability analysis of the lateral–
torsional coupling vibration of rotors.

The unstable regions obtained by modal analyses are different in the inertial and
rotating frames. The unstable region exhibits a wider range of speeds in the inertial
frame compared to that in the rotating frame. It is confirmed by the time integral that the
redundant unstable region obtained in the inertial frame is false.

The misprediction of unstable regions under the inertial frame can be attributed to the
two truncations in Floquet’s theory and Hill’s method, namely the harmonic truncation
and the matrix truncation. Harmonic truncation makes Hill’s method infinite determinant
finite, leading to a non-square matrix. Subsequently, false solutions are generated, which
finally give rise to a misjudgment of the rotor stability.

We suggest utilizing the rotating frame to analyze the lateral–torsional coupled vibra-
tion if the rotor can be assumed as axially symmetric. This approach ensures the constant
coefficients of motion equations, avoids truncations in the calculation process, and enhances
the precision of rotor system instability prediction. If the rotor system is not axially sym-
metric due to complex supports or cracks, converting all coefficients of motion equations
to constants in the rotating frame becomes infeasible. In such cases, the errors caused by
the harmonic truncation and the matrix truncation should be taken into account when
using the Floquet–Hill formulation. Particularly, when two close unstable regions appear,
a false unstable region caused by erroneous eigenvalues may exist. To avoid the stability
misjudgment in the analysis of lateral–torsional coupled vibration, the eigenvalues should
be filtered to extract the ones satisfying the motion equations of the rotor system by either
time domain calculation or eigenvalue filtering method.

Further works will focus on unbalanced rotors in engineering. Experimental studies
will be also carried out to verify the mispredicted unstable results.
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Appendix A

The motion equations of the unbalanced rotor system under the inertial coordinate
can be obtained by Lagrange’s equations. The process in detail is as follows.

Based on the kinematic description, the kinetic energy is written as:

T =
1
2

m[
.
x− e(Ω +

.
θ) sin(Ωt + θ)]

2
+

1
2

m[
.
y + e(Ω +

.
θ) cos(Ωt + θ)]

2
+

1
2

Jp(Ω +
.
θ)

2
(A1)

where the first two terms are of translational kinetic energy and the other term is rotational
kinetic energy of the system. The overdots denote derivatives with respect to time. The
potential energy of the system is given by:

U =
1
2
(kx2 + ky2 + krθ2) (A2)

Rayleigh’s dissipation function is expressed as:

D =
1
2
(c

.
x2

+ c
.
y2

+ cr
.
θ

2
) (A3)

Lagrange’s equations are then used to derive the motion equations of the rotor system,
which are found to be:

m
..
x−me

..
θ sin(Ωt + θ) + c

.
x + kx = me(Ω +

.
θ)

2
cos(Ωt + θ)

m
..
y + me

..
θ cos(Ωt + θ) + c

.
y + ky = me(Ω +

.
θ)

2
sin(Ωt + θ)

(me2 + Jp)
..
θ −me

..
x sin(Ωt + θ) + me

..
y cos(Ωt + θ) + cr

.
θ + krθ = 0

(A4)

Generally, the amplitude of the torsional vibration θ in most rotor systems is very
small. Thus, the following relations are used:{

sin(Ωt + θ) ≈ sin Ωt + θ cos Ωt
cos(Ωt + θ) ≈ cos Ωt− θ sin Ωt

(A5)

Substituting Equation (A5) into Equation (A4) and ignoring the higher-order terms
.
θ

2
,

θ
..
θ, etc., the following equation can be obtained:

m
..
x−me

..
θ sin Ωt + c

.
x− 2meΩ

.
θ cos Ωt + kx + meΩ2 sin Ωt = meΩ2 cos Ωt

m
..
y + me

..
θ cos Ωt + c

.
y− 2meΩ

.
θ sin Ωt + ky−meΩ2 cos Ωt = meΩ2 sin Ωt

(me2 + Jp)
..
θ −me

..
x sin Ωt + me

..
y cos Ωt + cr

.
θ + krθ = 0

(A6)

Appendix B

Matrices in Equation (3):

Mt =

 0 0 ime/2
0 0 me/2

ime/2 me/2 0

,
~

Mt =

 0 0 −ime/2
0 0 me/2

−ime/2 me/2 0

,

Ct =

0 0 −meΩ
0 0 imeΩ
0 0 0

,
~
Ct =

0 0 −meΩ
0 0 −imeΩ
0 0 0

,

Kt =

0 0 −imeΩ2/2
0 0 −meΩ2/2
0 0 0

, Kt =

0 0 imeΩ2/2
0 0 −meΩ2/2
0 0 0

.

(A7)
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Matrices in Equation (10):

_
M =



. . .
...

...
...

· · · M
~

Mt 0 · · ·
· · · Mt M

~
Mt · · ·

· · · 0 Mt M · · ·
...

...
...

. . .


,

_
C =



. . .
...

...
...

· · · C−1

¯
~
Ct,−1 0 · · ·

· · ·
¯
Ct,0 C0

¯
~
Ct,0 · · ·

· · · 0
¯
Ct,+1 C+1 · · ·

...
...

...
. . .


,

_
K =



. . .
...

...
...

· · · K−1

¯
~
Kt,−1 0 · · ·

· · ·
¯
Kt,0 K0

¯
~
Kt,0 · · ·

· · · 0
¯
Kt,+1 K+1 · · ·

...
...

...
. . .


,ϕ =



...
I−1
I

0

I+1
...


.

(A8)

With

Cj = 2jΩM + C, Kj = −j2Ω2M + ijΩC + K,
¯
~
Ct,j = 2i(j + 1)Ω

~
Mt +

~
Ct,

¯
~
Kt,j = −(j + 1)2Ω2

~
Mt + i(j + 1)Ω

~
Ct +

~
Kt,

¯
Ct,j = 2i(j− 1)ΩMt + Ct,

¯
Kt,j = −(j− 1)2Ω2Mt + i(j− 1)ΩCt + Kt.

(A9)

Matrices in Equation (17):

Mr =

m 0 0
0 m me
0 me me2 + Jp

, Cr =

 c −2mΩ −2meΩ
2mΩ c 0
2meΩ 0 cr

,

Kr =

k−mΩ2 −cΩ 0
0 k−mΩ2 −meΩ2

0 −meΩ2 kr

.

(A10)
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