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Abstract: With the development of the air traffic management system (ATM), the cyber threat for ATM
is becoming more and more serious. The recognition of ATM cyber threat entities is an important task,
which can help ATM security experts quickly and accurately recognize threat entities, providing data
support for the later construction of knowledge graphs, and ensuring the security and stability of ATM.
The entity recognition methods are mainly based on traditional machine learning in a period of time;
however, the methods have problems such as low recall and low accuracy. Moreover, in recent years,
the rise of deep learning technology has provided new ideas and methods for ATM cyber threat entity
recognition. Alternatively, in the convolutional neural network (CNN), the convolution operation
can efficiently extract the local features, while it is difficult to capture the global representation
information. In Transformer, the attention mechanism can capture feature dependencies over long
distances, while it usually ignores the details of local features. To solve these problems, a TextCNN-
Flat-Lattice Transformer (TCFLTformer) with CNN-Transformer hybrid architecture is proposed for
ATM cyber threat entity recognition, in which a relative positional embedding (RPE) is designed to
encode position text content information, and a multibranch prediction head (MBPH) is utilized to
enhance deep feature learning. TCFLTformer first uses CNN to carry out convolution and pooling
operations on the text to extract local features and then uses a Flat-Lattice Transformer to learn
temporal and relative positional characteristics of the text to obtain the final annotation results.
Experimental results show that this method has achieved better results in the task of ATM cyber
threat entity recognition, and it has high practical value and theoretical contribution. Besides, the
proposed method expands the research field of ATM cyber threat entity recognition, and the research
results can also provide references for other text classification and sequence annotation tasks.

Keywords: air traffic management system (ATM); knowledge graph (KG); cyber threat; entity
recognition; convolution neural network (CNN); transformer

1. Introduction

The air traffic management system (ATM) is a typical airspace integration network
system [1–3] (shown in Figure 1), which plays a significant role in ensuring flight safety
and enhancing flight efficiency by monitoring and controlling aircraft flight activities with
communication, navigation technologies and monitoring systems. As more and more
embedded devices and systems are digitized and connected to many wireless services and
communications, attackers are exploiting security vulnerabilities to conduct virus ransom
and cyberattacks, posing a serious threat to human travel safety. Meanwhile, air traffic
management system cyberattacks are also developing towards a new trend. The degree
of automation and attack correlation is constantly improving, and the attack actions are
unpredictable. According to the International Threat Report Portugal Q1 2021 [4], malware
in the first quarter of 2021 increased by 24.2% compared to the same period last year.
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According to Check Point’s ransomware report [5], the air transport industry experienced
an 186% increase in weekly ransomware attacks between June 2020 and June 2021. A large
amount of useful security information such as the international aviation security reports,
cyber security vulnerability database, and threat database is seriously fragmented [6], and
these resources are not properly integrated and utilized. The current problem of ATM
cyber security posture analysis is not the lack of available information, but how to fuse
heterogeneous information from multiple sources to achieve ATM cyber security posture
analysis and provide auxiliary decision support for penetration testing.
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Figure 1. Air Traffic Management System.

The ATM cyber threat knowledge graph construction includes the processes of knowl-
edge extraction, knowledge fusion, quality assessment, and knowledge graph storage [7]
(as shown in Figure 2). Knowledge extraction [8] mainly includes entity recognition, rela-
tionship extraction, and attribute extraction. Knowledge fusion techniques include data
integration, entity alignment, knowledge modeling, knowledge embedding [9], etc. The
construction process includes, firstly, preprocessing unstructured data and semistructured
data, conducting knowledge extraction to obtain entities, interentity relationships, entity
attributes, and performing integration of structured data with information databases and
knowledge databases, and then entity alignment, disambiguation of knowledge, and finally
ontology construction and knowledge modeling. Knowledge embedding can be used for
entity alignment and ontology construction in the above process. Knowledge modeling is
followed by quality assessment, continuously updating knowledge, and ultimately form-
ing a knowledge graph. Through the analysis of the air traffic management system cyber
threat knowledge graph, cyber security experts can more intuitively understand the threat
intelligence and security posture and discover complex cyberattack patterns.

Entity recognition technology is the basis for the construction of the ATM cyber
threat knowledge graph. To effectively build the ATM cyber threat knowledge graph,
entities must be extracted from massive multisource intelligence data, especially from
unstructured data. The principle of ATM cyber threat entity recognition [10] (shown in
Figure 3) is as follows: first, preprocess the unstructured ATM cyber threat corpus text,
and then, conduct data annotation and labeling. The labeled text corpus is then subjected
to deep learning process, and the entity contextual features and entity internal features
are extracted by the deep learning method, which is trained iteratively to finally obtain
an entity recognition model. The unlabeled text corpus is automatically labeled by the
completed training of the entity recognition model; as a result, the category of the entity can
be obtained. The entity recognition method by deep learning can fully discover and utilize
entity contextual features and entity internal features, and this method is more flexible
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with better robustness [11]. ATM cyber threat entity recognition is a specific domain entity
recognition in the field of named entity recognition. The main task is to recognize different
types of threat entities such as malware, URL, IP address, and hash in text data. The
purpose is to confirm and classify the professional vocabulary in the field of ATM cyber
threats and provide data support for the later construction of knowledge graphs.

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 2. ATM cyber threat knowledge graph construction process. 

Entity recognition technology is the basis for the construction of the ATM cyber threat 
knowledge graph. To effectively build the ATM cyber threat knowledge graph, entities 
must be extracted from massive multisource intelligence data, especially from unstruc-
tured data. The principle of ATM cyber threat entity recognition [10] (shown in Figure 3) 
is as follows: first, preprocess the unstructured ATM cyber threat corpus text, and then, 
conduct data annotation and labeling. The labeled text corpus is then subjected to deep 
learning process, and the entity contextual features and entity internal features are ex-
tracted by the deep learning method, which is trained iteratively to finally obtain an entity 
recognition model. The unlabeled text corpus is automatically labeled by the completed 
training of the entity recognition model; as a result, the category of the entity can be ob-
tained. The entity recognition method by deep learning can fully discover and utilize en-
tity contextual features and entity internal features, and this method is more flexible with 
better robustness [11]. ATM cyber threat entity recognition is a specific domain entity 
recognition in the field of named entity recognition. The main task is to recognize different 
types of threat entities such as malware, URL, IP address, and hash in text data. The pur-
pose is to confirm and classify the professional vocabulary in the field of ATM cyber 
threats and provide data support for the later construction of knowledge graphs. 

 
Figure 3. Principle of ATM cyber threat entity recognition. 

Figure 2. ATM cyber threat knowledge graph construction process.

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 2. ATM cyber threat knowledge graph construction process. 

Entity recognition technology is the basis for the construction of the ATM cyber threat 
knowledge graph. To effectively build the ATM cyber threat knowledge graph, entities 
must be extracted from massive multisource intelligence data, especially from unstruc-
tured data. The principle of ATM cyber threat entity recognition [10] (shown in Figure 3) 
is as follows: first, preprocess the unstructured ATM cyber threat corpus text, and then, 
conduct data annotation and labeling. The labeled text corpus is then subjected to deep 
learning process, and the entity contextual features and entity internal features are ex-
tracted by the deep learning method, which is trained iteratively to finally obtain an entity 
recognition model. The unlabeled text corpus is automatically labeled by the completed 
training of the entity recognition model; as a result, the category of the entity can be ob-
tained. The entity recognition method by deep learning can fully discover and utilize en-
tity contextual features and entity internal features, and this method is more flexible with 
better robustness [11]. ATM cyber threat entity recognition is a specific domain entity 
recognition in the field of named entity recognition. The main task is to recognize different 
types of threat entities such as malware, URL, IP address, and hash in text data. The pur-
pose is to confirm and classify the professional vocabulary in the field of ATM cyber 
threats and provide data support for the later construction of knowledge graphs. 

 
Figure 3. Principle of ATM cyber threat entity recognition. Figure 3. Principle of ATM cyber threat entity recognition.

The contributions of this paper are summarized into three points:
Firstly, a TextCNN-Flat-Lattice Transformer (TCFLTformer) with CNN-transformer

hybrid architecture is proposed for ATM cyber threat recognition entities, in which a relative
positional embedding (RPE) is designed to encode position text content information, and a
multibranch prediction head (MBPH) is utilized to improve deep feature learning.

Secondly, ATM cyber threat entity recognition datasets (ATMCTERD) are provided
for our research needed, which contain 13,570 sentences, 497,970 words, and 15,720 token
entities. We collect data from multiple sources, which are mainly from international aviation
authorities and cyber security companies, We manually annotate the datasets with BIO
annotation rules, and the annotation entity types are malware, URL, IP address, and hash.

Finally, in comparative experiments with six NER models on our datasets that we
proposed, TCFLTformer can obtain the highest accuracy scores of 93.31% and the highest
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precision scores of 74.29%, while the highest accuracy rate and precision rate of other
methods are 93.10% and 72.61%, respectively, which is an improvement of 0.21% in accuracy
rate and 1.68% in precision rate. Then, we carry out the additional experiments on MSRA
and Boson datasets to fully and comprehensively evaluate the effectiveness of our model.
This indicates that the method proposed in this paper can recognize cyber threat entities in
the ATM more accurately and better perform.

The rest of the manuscript is organized as follows. Section 2 reveals related work,
Section 3 reveals detailed structures of the methodology, while Section 4 gives model
training and optimization. The experimental settings and the experimental results are
demonstrated and analyzed in Section 5. The discussion part is in Section 6. Finally, we
make the conclusions and outlook in Section 7.

2. Related Work

Entity recognition refers to named entity extraction technology, which plays an impor-
tant role in natural language processing and is the most critical and fundamental process
in knowledge extraction. At present, a considerable amount of literature has made some
progress and published on entity recognition subject. Based on the development history
of entity recognition technology, the main research methods include traditional machine
learning methods and deep learning methods.

2.1. Entity Recognition Based on Traditional Machine Learning

Traditional machine learning methods mainly use feature engineering to transform text
data into numerical features and then use classifiers for classification. Applying traditional
machine learning, entity recognition is cast to a multiclass classification or sequence labeling
task. Given labeled data samples, features are carefully designed to represent each training
example. Machine learning algorithms are then utilized to learn a model to recognize
similar patterns from unstructured data.

Many machine learning algorithms have been applied in entity recognition, including
Hidden Markov Models (HMM) [12], Decision Trees [13], Maximum Entropy Models [14],
Support Vector Machines (SVM) [15], and Conditional Random Fields (CRF) [16]. McNamee
and Mayfield [17] used 1000 language-related and 258 orthography and punctuation
features to train SVM classifiers. Each classifier makes a binary decision as to whether the
current token belongs to one of the eight classes, i.e., B-(Beginning), I-(Inside) for person,
organization, location, and other tags. SVM does not consider “neighboring” words when
predicting an entity label. McCallum and Li [18] proposed a feature induction method
for CRF in entity recognition. Experiments were performed on CoNLL03 and achieved
an F-score of 84.04% for English. The two methods are based on traditional machine
learning. However, traditional machine learning methods need to manually select and
extract features, and they have limited ability to express text data, so it is difficult to deal
with complex semantic information. Hence, there will be error propagation in the model
during training. In view of this, scholars gradually began to shift their focus to deep
learning.

2.2. Entity Recognition Based on Deep Learning

Deep learning methods have achieved great success in the field of natural language
processing, and current mainstream research is based on deep learning approaches to
entity recognition, where the nonlinear modeling properties of deep neural networks
models facilitate the ability to represent learning and the semantic combination capabilities
conferred by vector representation and neural processing, which allows machines to acquire
raw data and automatically discover potential representations and processing needed
for classification or detection [11]. It can automatically learn intricate hidden feature
representations from the input data without complex feature engineering and extensive
domain knowledge (i.e., this is done by the partial deep learning model shown in the
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dashed box in Figure 3), and deep neural networks can automatically capture features for
recognition without much human intervention, thus saving a lot of effort.

Researchers have proposed various deep learning algorithms for entity recognition;
the application of convolutional neural networks (CNN) to named entity recognition tasks
was originally proposed by Collobert in 2019 [19]. In the same year, scholars added CRF
based on CNN and proposed the CNN-CRF model, which was used to extract entities from
Chinese electronic cases [20]. Both accuracy and speed improved after using this model.
In 2021, Kong and Zhang added an attention mechanism to deal with the information
loss in long sentences based on the fact that the traditional CNN cannot handle the loss of
long-distance information. They proposed a new CNN model, in which the CNN fusion
of different convolution kernels and residual structures improved the ability to capture
the contextual information of long texts from different dimensions [21]. The features of
the text in both past and future directions can be obtained by using the Bidirectional Long
Short-Term Memory (BiLSTM) model. Inspired by this, several researchers have carried
out considerable research work on this basis. Peng et al. [22] proposed a named entity
recognition model combining BiLSTM based on character characteristics with Conditional
Random Fields (CRF) in the cyber security domain, using an active learning method, and
obtained good results using a small batch of labeled samples. Li [23] proposed a fusion of
adversarial active learning for security knowledge triad extraction using the BiLSTM-CRF
model for joint entity and relationship extraction, and experiments showed the effectiveness
of the scheme.

In recent years, applying the transformer model to entity extraction has also become a
hot research topic for scholars in this field. The transformer is mainly implemented by the
attention mechanism. The use of transformers for named entity recognition can improve
accuracy and shorten the training time. Representatives of using transformers in named
entity recognition include the TENER model proposed by Yan [24] and the Transformer-
CRF model proposed by Li Bo [25]. The former proposes a special transformer structure for
the named entity recognition task, while the latter is used in the transformer. The CRF is
introduced for entity classification and recognition based on the extraction of text features.
In addition, there is the ERNIE-BiGRU-CRF model proposed by Zhang in 2020 [26] and
the BERT-BiLSTM-CRF model proposed by Shen in 2022 [27], both of which combine
the attention mechanism with RNN, and the neural networks extract sentence features
and uses the attention mechanism to solve the problem of long-distance dependence,
effectively improving the capability of overall recognition. The application of the attention
mechanism in the named entity recognition task expands the research direction of named
entity recognition.

3. Methodology

In this paper, we propose a TCFLTformer model for the recognition of ATM cyber
threat entities, which can be divided into two parts, the TextCNN module and the Flat-
Lattice Transformer module (as shown in Figure 4). Among them, TextCNN [28] is a text
model based on a convolutional neural network, which mainly extracts local features from
text and enhances the ability of the model to learn to acquire local features. Flat-Lattice
Transformer [29] is a flat graph structure model based on Transformer [30], which can
process long hierarchical text data. It mainly learns the temporal and relative positional
characteristics from the text data. This method combines the advantages of TextCNN
and Flat-Lattice Transformer, which can improve the accuracy of recognition cyber threat
entities in ATM.

The TCFLTformer model is a deep learning-based entity recognition model, and the
principle of this model is shown in Figure 5. Firstly, the text is word-vectorized n × k, and
then the TextCNN model is used to extract the cyber threat entity features in the ATM.
In the process of feature extraction, we use multiple convolution kernels of different sizes
h× k for convolution operation to capture the text features of different lengths (n − h + 1) × s
of text features, and the features s × 1 obtained from the convolution operation are pooled,
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the convolution operation can extract local features, and the pooling operation can down-
scale the features to reduce the number of parameters of the model. Then, the feature
vectors are input into the fully connected layer to obtain fixed-length feature vectors s × J,
then they are input into the multibranch prediction head, then they are processed by the
Flat-Lattice Transformer model processing, and finally, the labeling results of the input
entities are obtained after probabilistic judgment of the linear CRF layer.
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It is noteworthy that the input of the multibranch prediction head (MBPH) of the
TCFLTformer module has two parts, as shown in Figure 6: one is the word vector matrix
and the relative position encoding matrix composed of the ATM cyber threat entities, the
other is the output matrix of the fully connected TextCNN module, which fully learns the
entity features through the two parts of matrix data to obtain a richer feature representation
and enhance the model. The details of each network layer of the model are as follows:
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1© Token Embedding
We use character-level N-gram [31] to represent a word. For example, the word

“scarcruft”, assuming the value of n is 3, has the trigram “<sc”, “sca”, “car”, “arc”, “rcr”,
“cru”, “ruf”, “uft”, and “ft>”, where “<” is the prefix and “>” is the suffix. Thus, we use
these trigrams to represent the word “scarcruft”, and here the vector of 9 trigrams can be
superimposed to represent the word vector of “scarcruft”. The word vectorization hierarchy
is the same as the CBOW [32] structure and consists of three layers: an input layer, an
implicit layer, and an output layer, where the input layer is multiple words represented
by vectors and their N-gram features and location features, the implicit layer has only one
layer (shown in Figure 4), which is a superimposed average of multiple word vectors, and
the output layer is the word vector corresponding to the completion of processing.

The ei ∈ Rk is the k-dimensional word vector corresponding to the i-th word in a sentence.
A sequence of length n can be expressed as a matrix E1:n = (eT

1 , eT
2 , . . . , eT

n )
T ∈ Rn∗k. Then,

the matrix E1:n is taken as the input into the convolution layer.
2© TextCNN

In the convolution layer, J filters of different sizes are convolved E1:n to extract local
features. The width of each filter window is the same E1:n, only the height is different. In
this way, different filters can obtain relationships for different ranges of words. Each filter
has S(s ∈ S), a convolution kernel. Convolutional neural networks learn parameters in a
convolutional kernel, with each filter having its focus, allowing multiple filters to learn
multiple different pieces of information. We designed multiple convolutional kernels of
the same size to learn features complementary to each other from the same window. The
specific formula is as follows:

Cj
i = f (W j · Ei:i+h−1 + b) (1)

where W j ∈ Rh∗k denotes the weight of the j-th (j ∈ J) filter of the convolution operation,
Cj

i is the new feature resulting from the convolution operation, b ∈ R is a bias, and f is
a nonlinear function. Many filters with varying window sizes slide over the full rows

E1:n, generating a feature map
[
Cj

1, Cj
2, . . . , Cj

n−h+1

]
. The most important feature

_
C

j

s was
obtained by one-max pooling for one scalar and mathematically written as:

_
C

j

s = Max([Cj
1, Cj

2, . . . , Cj
n−h+1]) (2)
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S convolution kernels are computed to obtain S feature values, which are concatenated
to obtain a feature vector Pj:

Pj = [
_
C

j

1,
_
C

j

2, . . . ,
_
C

j

S] (3)

Finally, the feature vector of all filters is stacked into a complete feature mapping
matrix M ∈ RJ∗S:

M = [P1, P2, . . . , Pj] (4)

3©multibranch prediction Head (MBPH)
For ease of exposition, according to Figure 6, the input consists of a word vector matrix

referred to as F ∈ Rb∗c∗h∗w, the TextCNN layer output feature mapping matrix referred to
as F′ ∈ Rb∗l∗h∗w. Then, both F and F′ will be reshaped, referred to as f ∈ Rb∗c∗(h∗w) and
f ′ ∈ Rb∗l∗(h∗w). Finally, f and f ′ will be turned into a token embedding through einsum
operation, which can be denoted as:

tblc = f ′bl(hw) fbc(hw) (5)

where l is the token length, and b, c, h, and w denote the batch size, number of channels,
height, and width of the input feature F.

The MBPH first expands t into a new embedding t′ by a linear layer, which can be
denoted as:

t′ = tW l , t′ ∈ Rb∗l∗(n∗d∗3) (6)

where W l is the weight of the linear layer, n is the head number of MBPH, and d is the
dimension for subsequent tensors.

Then, the embedding t′ will be forwarded to different heads. Parameters are not shared
among heads. Each head contains two steps: linear transformation and scale dot-product
attention (SDPA).

The linear layers are applied to map t′ into a query (Q ∈ Rb∗n∗l∗d), key (K ∈ Rb∗n∗l∗d),
and value (V ∈ Rb∗n∗l∗d), which can be denoted as:

Q, K, V = t′WQ, t′WK, t′WV (7)

where WQ, WK, WV denotes the weights of the linear layers to map Q, K, and V, respectively.
Thereafter, the correlation between them is calculated through dot-product operation

and softmax activation to generate an attention map, which will be used as the weight V.
The process can be expressed as:

SDPA(Q, K, V) = So f tmax
(

QkT
√

d

)
V (8)

The output of each head will be concatenated together before a linear layer is applied,
then we will obtain the final output of the MBPH, which can be expressed by the following
formula:

headm = SDPA(t′Wm
Q, t′Wm

K, t′Wm
V), m ∈ (0, n] (9)

MBPH(Q, K, V) = Concat(head1, . . . , headn)Wo (10)

where WQ, WK, WV denotes the weights of the linear layers of the m-th head to map Q, K,
and V, respectively. Wo is the weight of the last linear layer in MBPH.

4© Relative Position Embedding
While the original Transformer captures sequence information by absolute position

encoding, we use Lattice’s relative position for encoding [33]. The flat-lattice structure
consists of spans of different lengths. To encode the interactions between spans, the relative
position of the spans is encoded. For two spans xi and xj in the lattice, there are three
relationships between them—intersection, inclusion, and separation—and dense vectors
are used to model the relationship between them. For example, head[i] and tail[i] denote
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the head and tail positions of span xi, and then the relationship between the two spans xi
and xj is expressed in terms of four relative distances, which are calculated as:

d(hh)
ij = head[i]− head[j] (11)

d(ht)
ij = head[i]− tail[j] (12)

d(th)ij = tail[i]− head[j] (13)

d(tt)ij = tail[i]− tail[j] (14)

d(hh)
ij denotes the distance between the head of xi and the head of xj, d(ht)

ij denotes the
distance between the head of xi and the tail of xj, and the same for others. The final relative
position encoding is a simple nonlinear transformation of the four distances, which are
calculated as:

Rij = ReLU(Wr(P
d(hh)

ij
⊕ P

d(ht)
ij
⊕ P

d(th)ij
⊕ P

d(tt)ij
)) (15)

where Wr is the learnable parameter, ⊕ is the connection operator, Pd is computed by
referring to [30], and then the positions of the words composing the sequence are encoded
to obtain the corresponding positional embedding [29], which is computed as the following
equation:

PE(pos, 2i) = sin
( pos

100002i/demb

)
(16)

PE(pos, 2i + 1) = cos
( pos

100002i/demb

)
(17)

where pos denotes the sequential position of the word, and i is the dimensional index of
the positional encoding, denoting the i-th dimension of the word vector, i ∈ [0, demb−1],
where the dimension of the positional embedding coincides with the dimension of the
word vector. It is then summed with the word vector of the corresponding input so that
the distance between words can be characterized for the model to learn to understand the
order of information between the input words.

A∗i,j = WT
q ET

xi
ExjWk,E + WT

q ET
xi

RijWk,R + uTExjWk,E + vT RijWk,R (18)

where Wq, Wk,R, Wk,E ∈ Rdemb∗dhead is the learnable parameter, and then A is replaced by A*.

Att(A, V) = so f tmax(A∗)V (19)

5© Residual Connection
A residual connection has also been added to the model, as shown in Figure 6, for

the add operation. Suppose the output of a layer in the encoder is f(x) for a nonlinear
variation of the input x. Then, after adding the residual connection, the output becomes
f(x) + x. The +x operation is equivalent to a shortcut. The purpose of adding the residual
structure is mainly to avoid the gradient vanishing problem when updating the model
parameters during backpropagation: thanks to the residual connection, an additional term
x is added to the output, then the layer network can generate a constant term when biasing
the input, and thus will not cause gradient vanishing when applying the chain rule during
backpropagation.

6© Layer Normalization
In deep learning, there are various ways to handle data normalization, but they all

have a common purpose: they want the input data to fall in the nonsaturated region of the
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nonlinear activation function, and therefore transform it into data that obey a distribution
with a mean of 0 and a variance of 1.

Layer normalization is processed for a single sample, and the number of hidden layer
nodes in a layer is denoted by H. ai denotes the output of the i-th hidden layer node, and
the statistics in layer normalization can be calculated using the following formula:

µ =
1
H

H

∑
i=1

ai (20)

σ =

√√√√ 1
H

H

∑
i=1

(a i − µ)2 (21)

Using Equation (21) to calculate the layer-normalized values through µ and σ:

ai=
ai − u

σ2 +
√

ε
(22)

where ε is a very small number to avoid the denominator being 0. It is worth pointing out
that the calculation of layer normalization is not related to the number of samples, it only
depends on the number of hidden layer nodes, so as long as the number of hidden layer
nodes is guaranteed to be sufficient, the statistics of layer normalization can be guaranteed
to be representative enough.

7© Feed-Forward Neural Network Module
This paper refers to the design of the Transformer encoder. It implements the feed-

forward neural network (FFN) submodule of the inattention encoder, using two fully
connected layers. The first layer uses ReLU as the activation function, and the second layer
uses a linear activation function. If the input of the feed-forward neural network is denoted
by Z, the output of the feed-forward neural network can be expressed as follows:

FFN(Z) = ReLU(ZW1 + b1)W2 + b2 (23)

where W1 and W2 are the weight matrices of each layer, and b1 and b2 are their correspond-
ing biases.

In addition, we also use residual connection and layer normalization in the above two
submodules to speed up the convergence of network training and prevent the gradient
vanishing problem:

OutPut = LayerNorm(X + SubModule(X)) (24)

where X are the outputs of the above two submodules.
8© Linear CRF

The basic form of the linear chain conditional random field model parameters P(y|x)
is defined as follows:

P(y|x) = 1
Z(x)

exp

(
∑
i,k

λktk(yi−1,yi,x, i) + ∑
i,ι

uιsι(yi,x, i)

)
(25)

Z(x) = ∑
y∈Y

exp

(
∑
i,k

λktk(yi−1,yi,x, i) + ∑
i,ι

uιsι(yi,x, i)

)
(26)

where tk(yi−1,yi,x, i) denotes the transfer feature function defined on the edge, which is
related to the current position and the previous position i − 1. The state feature function
defined on the node represented by sι(yi,x, i) is only relevant to the current position i. In
general, the characteristic function takes the value of 1 when the corresponding conditions
are met, otherwise, it is 0. λk and uι are the feature functions and the corresponding weights,
respectively, whose values are updated during the training process [34]. Equation (26) is
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the normalized factor term whose value corresponds to the summation of scores using the
characteristic function for all possible candidate state sequences.

For the sequence annotation task, given a linear chain of conditional random fields λ,
an input text sequence x, and a set y of all possible candidate annotation results, the desired
optimal annotation result y∗, as in Equation (28), can be computed quickly and efficiently
using the Viterbi algorithm.

y∗= argmaxP
y∈Y

(y|x, λ) (27)

y∗= argmax
y∈Y

∑i,k λktk(yi−1,yi,x, i) + ∑i,ι uιsι(yi,x, i) (28)

4. Model Training and Optimization

To train and optimize our proposed TCFLTformer cyber threat entity recognition
model for ATM, we used the following steps:

4.1. Data Preprocessing

Before model training, we need to preprocess the data of the air traffic manage-
ment system cyber threat entity recognition task. To ensure the diversity and breadth of
the datasets, we have collected data from multiple sources shown in Table 1, which are
mainly from international aviation authorities and cyber security companies, such as the
National Aeronautics and Space Administration (NASA), Single European Sky ATM Re-
search (SESAR), Federal Aviation Administration (FAA), European Aviation Safety Agency
(EASA), Microsoft Security, Naked Security, Quick Heal Antivirus Blog, etc., who have
published unstructured cyber threat intelligence (CTI) reports and articles that contain a
large number of ATM system cyber threat entities. The number of aviation authority and
security company blogs and their articles collected are shown in Table A1 (Appendix A)
with websites in this paper. The texts in the datasets are all in English, which contain a
large number of technical terms and acronyms. We have manually annotated the datasets
with the BIO-tagging, where each token is labeled as B (beginning), I (inside), or O (outside)
of an entity, and the four types of annotation entity are malware, URL, IP address, and
hash. To ensure the quality and reliability of the datasets, the annotation results have been
reviewed and verified several times.

Table 1. The source of our datasets.

Source Name Number of Articles

NASA 265
SESAR 226

FAA 249
EASA 159

Microsoft Security 265
Naked Security 265

Quick Heal Antivirus Blog 117
InfoSecurity Magazine—Information Security and IT Security 258

Others 267
Count 2071

4.2. Training Process

We used the PyTorch deep learning framework to implement the model training, using
the Adam optimizer to optimize the parameters of the model and setting the learning rate
to 0.001. We also used a cross-entropy loss function to calculate the loss values of the model.
We used a batch gradient descent algorithm to update the parameters of the model during
training, with each batch of size 64. We used a GPU to accelerate the training process of
the model for faster convergence. We trained 50 epochs, each epoch containing multiple
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batches. At the end of each epoch, we recorded the loss value and accuracy of the model
for model tuning and validation. Table 2 shows the model algorithm training process.

Table 2. TCFLTformer model training process.

For each epoch loop:
For each batch loop:
(1) Parameter initialization;
(2) Token character-level n-grams for word vectorization;
(3) TextCNN extracts entity feature vectors;
(4) The word vector and the feature matrix of the TextCNN output are input into

Flat-Lattice Transformer;
(5) The Flat-Lattice Transformer model passes backward to automatically learn to

extract features;
(6) The CRF layer calculates the global likelihood probability of the sequence;
(7) Update parameters;

Ending the batch loop;
Ending the epoch loop;

4.3. Model Optimization

To further improve the performance of the model, the following optimization strategies
were used:

4.3.1. Dropout

We added a Dropout layer between the fully connected and convolutional layers of
the model to avoid overfitting, and we set the probability of Dropout to 0.5.

4.3.2. Learning Rate Adjustment

A learning rate adjustment strategy was used during the training process to better
control the training speed of the model. We used the StepLR scheduler to adjust the learning
rate by dividing the learning rate by 10 at the end of each epoch.

4.3.3. Regularization

L2 regularization was used to control the complexity of the model to avoid overfitting,
and the regularization factor was set to 0.001.

4.3.4. Model Evaluation

According to the annotation model of BIO, malware, URL, IP address, and hash are
divided into four separate issues, and each problem is divided into a triple classification
problem. Take malware as an example: it is divided into three categories such as B-
Malware, I-Malware, and O. The initial word B-Malware and the noninitial word I-Malware
of the recognized malware are combined into one entity, and the complete recognition
of a security entity is correctly recognized. In addition, only recognized entities with
the initial word B-Malware, and noninitial words I-Malware and O, are not considered
to be correctly recognized. Therefore, the evaluation index system commonly used in
multiclassification problems will be used to evaluate the recognition effect of the cyber
security entity recognition model studied in this paper.

After the model is trained, we use a test set to evaluate the model. We calculated the
accuracy, recall, F-value, macroaverage, and microaverage metrics of the model to evaluate
the performance of the model. The Accuracy (ACC) is the ratio of the number of samples
correctly classified by the classifier to the total number of samples, the Precision (P) is the
ratio of the number of positive samples correctly classified by the classifier to the number
of positive samples predicted by the classifier, the Recall (R) is the ratio of the number of
positive samples correctly classified by the classifier to the number of true positive samples,
and the F-value is the summed average of Precision and Recall, and is one of the most
commonly used metrics to evaluate model performance.
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The main evaluation metrics [29] used in this paper are Precision (P), Recall (R), F-
value (F), Accuracy (Acc), Macroaveraging, and Microaveraging. The specific calculations
are shown below:

P = TP/(TP + FP) (29)

R = TP/(TP + FN) (30)

F = (2× P× R)/(P + R) (31)

Acc = (TP + TN)/(TP + TN + FP + FN) (32)

Macroaveraging, which first calculates the value of each class statistical indicator and
then finds the arithmetic mean for all classes, is calculated as follows:

Macro− P =
1
n∑n

i=1 pi (33)

Macro− R =
1
n∑n

i=1 Ri (34)

Macro− F =
1
n∑n

i=1 Fi (35)

where n is the number of entity types, and there are four types of entities in this paper, so n
is 4. Pi, Ri, and Fi denote the Precision, Recall, and F-value for the i-th type of entity.

Microaveraging unclassified statistics for each of the test data, and then calculating
the corresponding index, the calculation formula is as follows:

Micro− P =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(36)

Micro− R =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(37)

Micro− F =
2×Micro− P×Micro− R

Micro− P + Micro− R
(38)

5. Experiment
5.1. Experimental Environment

The experimental environment for this article is a computer with an Intel(R) Core(TM)
i7-8700K CPU @ 3.70 GHz processor, 32 GB of RAM, and NVIDIA GeForce GTX 1080 Ti
graphics card. The operating system is Ubuntu 18.04 LTS.

5.2. Experimental Data

In our experiments, we divide the dataset with completed data preprocessing into the
training set, validation set, and test set in the ratio of 7:1:2, where the training set is used to
train the model, the validation set is used to estimate the training level of the model and
optimize the parameters, and the test set is used to evaluate the performance of the model.
The training set consists of 9499 sentences, 348,579 words, and 11,004 token entities, the
validation set consists of 1357 sentences, 49,803 words, and 1373 token entities, and the test
set consists of 2714 sentences, 99,588 words, and 3343 token entities, as shown in Table 3.
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Table 3. The analysis of datasets.

Datasets

Data Type Sentences Tokens Tags

Train 9499 348,579 11,004
Validation 1357 49,803 1373

Test 2714 99,588 3343
Count 13,570 497,970 15,720

We perform categorical data analysis on the datasets, which are formatted into
two columns, with words and corresponding labels for each row. The sentences are
separated by spaces and line breaks. The number and percentage of each type of tagged
entity are shown in Table 4. The number of malware entities is 6991, or 44.47%; the number
of hash entities is 3378, or 21.49%; the number of URL entities is 4363, or 27.75%; and the
number of IP entities is 988, or 6.28%.

Table 4. The analysis of named entities.

Tag Name Count Ratio

Malware 6991 44.47%
Hash 3378 21.49%
URL 4363 27.75%

IP 988 6.28%

5.3. Experimental Setup

The experiments use a TCFLTformer cyber threat entity recognition method for ATM in
this paper. We have used a cross-validation method to ensure the generalization capability
and reliability of the model.

In training the model, we used the Adam optimizer with a learning rate of 0.001
and a batch size of 64. To prevent overfitting, we used an early-stop strategy and the
Dropout technique. Specifically, training was stopped when the model performance on the
validation set did not improve for 10 consecutive epochs.

5.4. Experimental Method

To verify the recognition effectiveness of the TCFLTformer cyber threat entity recog-
nition model for ATM proposed in this paper, comparison experiments are conducted on
different algorithmic models. The comparison models in the experiments include SVM [35],
Naive Bayes [36], BiLSTM-CRF [37], Transformer-CRF [25], ERNIE-BiGRU-CRF [38], BERT-
BiLSTM-CRF [39], and the proposed paper based on the TCFLTformer deep learning
models; all comparison models are trained and tested on the same datasets. To exclude
the randomness of the model training process, and exclude whether the tiny edge (if there
is one) is due to the chance or randomness of the experiment, we take the average of the
results of the 20 experiments as the final result, and the results of the accuracy evaluation
related to the 20 experiments are shown in Table 5.

Table 5. Accuracy from 20 experiments.

Model Name Average-Value Max-Value Min-Value

BiLSTM-CRF 92.362 92.606 91.847
Transformer-CRF 92.951 93.022 92.883

ERNIE-BiGRU-CRF 92.833 93.079 92.794
BERT-BiLSTM-CRF 93.104 93.165 92.935

TCFLTformer 93.312 93.382 93.184

5.5. Model Evaluation Results

Firstly, we compare the approach proposed in this paper with the traditional feature
engineering machine learning model. Table 6 shows the experimental results of the test set
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on different models (best in bold), and Figure 7 shows the comparison of the experimental
results on different models. From the experimental results, the accuracy of the method
proposed in this paper reaches 93.31%, the recall R reaches 63.63%, and the F-value reaches
68.55%, while the accuracy of the traditional method SVM is only 77.20%, the recall R is
52.90%, and the F-value is 52.50%. It can be seen that the traditional machine learning
model performs poorly in the threat entity recognition task, with a lower accuracy, precision,
recall, and F-value than the deep learning model. The reason for this result is that the
traditional machine learning methods mainly use feature engineering to transform text data
into numerical features and then use classifiers to classify them, and the method has limited
expressiveness for text data and has difficulty in handling complex semantic information.
In conclusion, it indicates that the method proposed in this paper can recognize cyber
threat entities in the ATM more accurately and better perform than the traditional feature
engineering machine learning model.

Table 6. Experimental results of different models.

Model Name Acc
Macroaveraging Microaveraging

P R F P R F

SVM 77.20 52.10 52.90 52.50 53.50 54.46 53.98
Naive Bayes 74.80 68.40 59.70 63.75 68.80 66.40 67.58
BiLSTM-CRF 92.36 67.38 52.21 58.83 83.75 80.62 82.16

Transformer-CRF 92.95 71.78 58.04 64.18 86.17 82.07 84.07
ERNIE-BiGRU-CRF 92.83 69.98 66.39 68.14 84.70 85.18 84.94
BERT-BiLSTM-CRF 93.10 72.61 65.23 68.72 86.47 84.07 85.25

TCFLTformer 93.31 74.29 63.63 68.55 88.45 83.68 86.00
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Secondly, we compare the method proposed in this paper with other deep learning
methods. The experimental results show that the method in this paper has certain ad-
vantages in terms of accuracy and precision rate. Specifically, the accuracy rate of the
method in this paper is 93.31%, and the precision rate is 74.29%, while the highest accuracy
rate and precision rate of other methods are 93.10% and 72.61%, respectively, which is
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an improvement of 0.21% in accuracy rate and 1.68% in precision rate. Next, we give
some detailed analysis of the performance with different algorithmic networks which were
trained and tested on the same datasets.

1. BiLSTM-CRF [37]: The model is a sequence labeling model based on LSTM networks,
which combines BiLSTM networks and CRF (Conditional Random Fields) for labeling
input sequences. The BiLSTM network can capture the input sequence context infor-
mation and model the input, while the CRF model can utilize the interdependencies
among the labels in the sequence labeling task to globally label the output. From the
experimental results, the accuracy of the TCFLTformer reaches 93.31%, the precision
P reaches 74.29%, the recall R reaches 63.63%, and the F-value reaches 68.55%, while
the accuracy of the BiLSTM-CRF is 92.36%, the precision P reaches 67.38%, the recall
R is 52.21%, and the F-value is 58.83%. The reason for such a result is that BiLSTM-
CRF may have label sequences annotation ambiguity problems, which are not easy
to handle for longer input sequences and may lead to unstable model training and
performance degradation.

2. Transformer-CRF [25]: The model is a sequence annotation model based on the Trans-
former model. It uses the same structure as commonly used in natural language
processing for the task of sequence annotation by adding a CRF model to the Trans-
former model. The transformer is used for modeling, which captures global contextual
information. The CRF layer captures the relationships between tags. The results in
Table 5 show that the accuracy of the TCFLTformer reaches 93.31%, the precision P
reaches 74.29%, the recall R reaches 63.63%, and the F-value reaches 68.55%, while the
accuracy of the Transformer-CRF is 92.95%, the precision P reaches 71.78%, the recall
R is 58.04%, and the F-value is 64.18%. The reason for such experimental results may
be due to the lack of relative position modeling features of the model, resulting in
possible difficulties in capturing position relationships and long-term dependencies
in some contextual sequences.

3. ERNIE-BiGRU-CRF [38]: The model is a sequence annotation model based on the
pretraining model ERNIE and BiGRU network. It combines the pretraining model,
bidirectional GRU model, and CRF model. The pretraining model can effectively
extract the semantic information in the input sequence, while BiGRU is used for
modeling. From the experimental results, the accuracy of the TCFLTformer reaches
93.31%, the precision P reaches 74.29%, the recall R reaches 63.63%, and the F-value
reaches 68.55%, while the accuracy of the ERNIE-BiGRU-CRF is 92.83%, the precision
P reaches 69.98%, the recall R is 66.39%, and the F-value is 68.14%, respectively, the
recall R which is higher by 2.76%. The reason for this experimental result is that
the model incorporates the ERNIE pretraining model, which is able to introduce
more linguistic information into the entity recognition task and effectively extract the
semantic information in the input sequence, and BiGRU for modeling, which is able
to capture more complex contextual dependencies; however, the lack of text relative
position information extraction is a problem.

4. BERT-BiLSTM-CRF [39]: The model is a sequence annotation model based on the
pretrained model BERT, BiLSTM network, and CRF model. It introduces the knowl-
edge of the pretrained model, is able to extract richer semantic information through
self-supervised training and joint learning of multiple tasks, and uses BiLSTM mod-
eling with the advantage of bidirectional modeling. The CRF model is also used for
the global optimization of annotation results. The results in Table 5 show that the
accuracy of the TCFLTformer reaches 93.31%, the precision P reaches 74.29%, the recall
R reaches 63.63%, and the F-value reaches 68.55%, while the accuracy of the BERT-
BiLSTM-CRF is 93.10%, the precision P reaches 72.61%, the recall R is 65.23%, and the
F-value is 68.72%, respectively, the F-value which is higher by 0.17%. The reason for
this experimental result is that the model introduces the BERT pretraining model as an
encoder, which is able to extract richer semantic information through self-supervised
training and joint learning of multiple tasks, and uses BiLSTM modeling, which has
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the advantage of bidirectional modeling, but may not be effective in recognizing some
low-frequency words and, in addition, lacks the feature of relative position modeling,
which may be difficult to capture the position relations and long-term dependencies
in some contextual sequences.

Then, we compare the experimental results of the four types of ATM cyber threat
entities on different models, and Figure 8 shows the experimental results of the four types
of threat entities on different models. Among them, the IP entity has the highest F-value,
which indicates the effectiveness of the character features extracted by TextCNN. The
character-level vectors extracted by the model can represent the morphological features to
a certain extent, so that the relevant features can be fully obtained for such threat entities
with mixed numeric–symbolic, fixed-format characteristics, thus improving the F-value of
entity recognition.

Finally, we conducted an error analysis of the experimental results. The experimental
results show that there are two main errors in the recognition of entities in the ATM by
the method in this paper: one is the recognition of nonthreat entities as threat entities, and
the other is the recognition of threat entities as nonthreat entities. Among them, the error
of recognizing nonthreat entities as threat entities is mainly due to the existence of some
entities similar to threat entities in the ATM, while the error of recognizing threat entities
as nonthreat entities is mainly due to the lack of obvious features of threat entities or the
lack of rich contextual information. To address these errors, we can further improve the
recognition effect later by increasing the feature dimension, optimizing the model structure,
and increasing the datasets volume.

In summary, the TCFLTformer cyber threat entity recognition method for ATM pro-
posed in this paper has achieved better results in the experiments and has a certain applica-
tion value.
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5.6. Additional Experiments

In order to fully and comprehensively evaluate the effectiveness of the model, we
conduct additional experiments with datasets of different sizes, different corpus sources,
and different coverage of division granularity. In this paper, we introduce MSRA and Boson
public named entity recognition datasets and classify MSRA as a large dataset and Boson
as a small dataset according to the corpus size. Among them, Boson is sliced according
to the ratio of 8:1:1 for training, validation, and testing sets. Table 7 shows the detailed
statistics of each dataset in the experiment.
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Table 7. The detailed statistics of datasets.

Datasets Type Train/103 Validation/103 Test/103

MASA 1
char 2169.9 - 172.6

sentence 46.4 - 4.4
token 74.7 - 6.2

Boson 2
char 424.8 52.1 51.7

sentence 8.8 1.1 1.1
token 18.0 2.2 2.2

1 MSRA: https://modelscope.cn/datasets/damo/msra_ner (accessed on 3 May 2021). 2 Boson: https://github.
com/HuHsinpang/BosonNER-Pretreatment/tree/master/boson (accessed on 3 May 2021).

In the experiment, the MSRA corpus is more standardized, and too large a learning
rate can easily lead to the model failing to converge, so the experimental hyperparameters
are set as follows: the learning rate of the MASA in the experiment is set to 0.0005, the
learning rate of the Boson is set to 0.0015. The maximum length of the training input
text is 128; a dropout layer with a rate of 0.1 is added to prevent overfitting; the Bi-LSTM
hidden layer dimension is 200; the batch size is set to 24, epoch is set to 60; using the Adam
optimizer to update the neural network parameters to minimize the loss function. In order
to exclude the randomness of the model training process, we take the average of the results
of 20 experiments as the final result shown in Table 8.

Table 8. Experimental results on MASA and Boson.

Model Name
MASA Boson

P R F P R F

BiLSTM-CRF 94.571 94.233 94.402 81.812 82.024 81.918
Transformer-CRF 95.951 96.785 96.366 87.186 90.174 88.655

ERNIE-BiGRU-CRF 97.421 97.674 97.547 88.653 91.683 90.143
BERT-BiLSTM-CRF 97.985 97.962 97.973 88.529 91.701 90.087

TCFLTformer 98.512 98.525 98.518 89.993 92.094 91.031

It can be seen that the method in this paper is better than other models including
the overall performance. Specifically, on Boson, the precision rate of the method in this
paper is 89.993%, the recall rate is 92.094% and the F-value is 91.031%, while the highest
precision rate of other methods is 88.653%, the recall rate and the F-value of other methods
are 91.701% and 90.143%, respectively, which is an improvement of 1.34% in precision
rate, 0.40% in recall rate, and 0.89% in F-value rate. Frankly speaking, models such as
ERNIE-BiGRU-CRF and BERT-BiLSTM-CRF are already the state-of-the-art methods in
the literature at present, so a negligible performance improvement of our model is already
good progress.

We compare and analyze the models of our experiments in different aspects. In
addition to the improvement of performance indicators, there are also advantages in the
aspects below:

(1) In terms of model size, ERNIE-BiGRU-CRF and BERT-BiLSTM-CRF are both large
models based on pretraining, they use a large number of parameters in the training
process, which take up more storage space, and TCFLTformer is a small model with
better applicability.

(2) In terms of model construction, ERNIE is trained on a large-scale general-purpose
corpus, which may not perform well for some domain-specific tasks. Mask in BERT
replaces individual characters instead of entities or phrases, and does not consider
lexical structure/grammatical structure. TCFLTformer utilizes the Lattice structure to
model the input text, which can better capture the semantic and structural information.

(3) In terms of model training time, pretrained models require a large amount of compu-
tational resources and take a long time to complete the training process; TCFLTformer

https://modelscope.cn/datasets/damo/msra_ner
https://github.com/HuHsinpang/BosonNER-Pretreatment/tree/master/boson
https://github.com/HuHsinpang/BosonNER-Pretreatment/tree/master/boson
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can compute different parts of the input text in parallel, which accelerates the process
of model training and reasoning, and allows more data to be processed in less time.

In summary, the TCFLTformer cyber threat entity recognition method for ATM pro-
posed in this paper has better performance and practicality and provides an effective
solution for entity recognition.

5.7. Instances of ATM Cyber Threat Entity Extraction

The threat entities in the text data are extracted by training the cyber threat entity
recognition model of the ATM, and Figure 9 shows the word clouds map formed by the
four types of threat entities extracted in this paper.
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From Figure 9, we can see that malware entities account for the largest proportion of
the four types of ATM cyber threats, such as DustySky, VirusTotal, ClearSky, ScarCruft,
and other malware. The second proportion is the threat entity hash address, such as
db1156b072d58acdac1aeab9af2160a2, 5689448b4b6260ec9c35f129df8b8f2622c66a45, and
331eca9c7d9fd9cbe7cd192af09880a3. The number of threat entities which include the URL
and IP categories is shown to be relatively low.

6. Discussion

In this part, we will discuss two widely concerned issues around the safety of air
traffic management system (ATM).

1. The risks to civil aircraft from military interventions

Military interventions may occur in any State at any time and pose risks to civil
aviation. For example, downing Ukrainian Flight 752 took place in Iranian airspace on
8 January 2020; moreover, downing Malaysia Airlines Flight 17 (MH-17) happened in
Ukraine, on 17 July 2014. We briefly discuss the impact of military intervention in conflict
zones relating to aviation safety.

1.1 The risk of surface-to-air missiles
The principal weapons of concern for these purposes are those surface-to-air missiles

(SAMs) with the capability of reaching aircraft at cruising altitudes (which for these pur-
poses are taken to be altitudes in excess of 25,000 ft (7600 m) above ground level). These
are large, expensive, and complex pieces of military equipment which are designed to be
operated by trained personnel. In this context, civil aircraft represent a relatively easy and
highly vulnerable target, due to their size and predictable flight paths.
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1.2 The risk of intentional attack
Some terrorist groups are known to have a continuing and active interest in attacking

civil aviation. Such terrorist groups tend to conflict where there is a breakdown of State
control. Should they at some point succeed along with the capability to operate them,
the vulnerability of aircraft using airspace over those areas to identify and target specific
aircraft or aircraft would be high operators with some reliability and would be relatively
straightforward. The risk to civil aircraft in those circumstances could immediately become
high.

1.3 The risk of unintentional attack
Past incidents, although rare, have proved that there is a great risk to civil aviation as

an unintended target when flying over or near conflict zones, in particular, the deliberate
firing of a missile whose target is perceived to be a military aircraft, which either misses its
intended target or makes the misidentification on a civil aircraft. Moreover, higher levels of
risk are particularly associated with overflying areas of armed conflict.

1.4 The risk of air-to-air attacks
The risk factors associated with an unintentional attack using air-to-air missiles

launched by a military aircraft are due to misidentification of civilian aircraft flying in
combat zones or zones of high tension/sensitivity. Such air-to-air attacks deliberately act
where a civilian aircraft is perceived by State authorities as a potential means of terrorist
attack, usually because it has reported an unlawful interference incident on board (e.g.,
breach of the cockpit or hijack) or is exhibiting suspicious behavior (e.g., not communicating
with Air Traffic Control or deviating from its air traffic control clearance).

2. Analysis about the impact of cyberattacks on ATM

The ATM consists of different subsystems, such as the flight management system,
communication, navigation and surveillance system, in-flight entertainment system, etc.,
and there may exist certain dependency relationships between the subsystems, i.e., the
failure of a subsystem by an attack may lead to the damage of other subsystems with which
it has a dependency relationship, e.g., the failure of Mode S transponders by an attack may
lead to damage of the TCAS and the communication, navigation and surveillance system,
which may lead to the damage of the flight management system. For example, the failure
of Mode S transponders will lead to the damage of the TCAS, communication, navigation
and monitoring system, and then lead to the damage of the flight management system,
which will eventually lead to the damage of the autopilot flight command computer and
the damage of the autopilot function of the airplane. Therefore, a network cascade failure
model based on dynamic dependency groups is proposed to be used to analyze the process
of impact propagation after a cyberattack.

The analysis model is described as follows. As shown in Figure 10, it is proposed
to consider a network composed of certain subsystems in an ATM system as nodes and
connectivity relationships as edges, with the nodes in the dashed box forming a depen-
dency group, and the nodes in the group depending on each other. When a node in the
dependency group fails, the remaining nodes are impacted to a certain extent, and the
intensity of the impact is controlled by the decoupling coefficient α, i.e., each edge of each
of the remaining nodes is retained with a probability of α, and deleted with a probability
of 1-α. When α→ 1, the coupling strength of the nodes in the dependency group is the
weakest, and the failure of one node cannot cause any impact on the rest of the nodes in the
group; whereas when α→ 0, the coupling strength of the nodes in the dependency group
is the strongest, and the failure of a single node can cause all the nodes in the group to be
damaged. By adjusting the parameter α, the dependency strength of different subsystems
in the avionics network can be described.
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Network cascade failure is triggered by attacking certain nodes in the ATM system;
the attacked nodes and their connections will be removed from the network altogether,
which, in turn, leads to fragmentation of the network. In the network, the nodes that can
connect to the giant branch are considered functional nodes, and the rest of the nodes are
considered failed nodes. Due to a certain degree of dependency between nodes within
the dynamic dependency group, the failure of a node in the network causes two kinds of
impacts:

(1) Out-of-group impact, the failure of a node causes network fragmentation, which, in
turn, leads to the failure of some nodes outside the group that cannot connect to the
network mega branch through that node;

(2) In-group impact: the rest of the nodes in the dependency group in which the failed
node is located are damaged and each of its connected edges is deleted with probability
1 − α, i.e., it is retained with probability α.

When a node fails, the out-group influence causes the failure to be able to propagate
across the dependency group, thus extending the failure to a wider range, while the in-
group influence causes the remaining nodes within the group to have their edges damaged,
thus causing more nodes within the group to be damaged. Under the alternating effects of
these two influences, cascading failures occur on the network.

7. Conclusions

In this paper, we successfully proposed a cyber threat entity recognition method
for ATM based on TCFLTformer. The method combines a convolutional neural network,
planarized representation, and Lattice Transformer model to effectively recognize cyber
threat entities in ATM. We compared the proposed method with other popular cyber
threat entity recognition methods in our experiments. The experimental results show that
our method performs well in terms of accuracy and recall, proving its effectiveness in
cyber threat entity recognition in ATM. In summary, the TCFLTformer cyber threat entity
recognition method for ATM proposed in this paper has better performance and practicality
and provides an effective solution for ATM cyber threat entity recognition.

There are some shortcomings in this study that require further research and improve-
ment. First, the datasets used in this study are small in size and contain only a limited
number of ATM cyber threat entities. Future research can consider expanding the size of
the datasets to improve the generalization ability and robustness of the model. In addition,
other large-scale deep learning models can be used for ATM cyber threat entity recognition,
such as GPT [40] and RWKV [41], and future research can consider applying these models
to ATM cyber threat entity recognition for comparison and analysis.
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Appendix A

Table A1. The source of our datasets.

Source Name Website

NASA https://www.nasa.gov/ (accessed on 3 May 2021)
SESAR https://www.geosamples.org/ (accessed on 3 May 2021)
FAA https://www.faa.gov/ (accessed on 3 May 2021)
EASA https://www.easa.europa.eu/en (accessed on 3 May 2021)

Microsoft Security https://www.microsoft.com/en-us/security (accessed on
3 May 2021)

Naked Security https://nakedsecurity.sophos.com/ (accessed on
3 May 2021)

Quick Heal Antivirus Blog https://blogs.quickheal.com/ (accessed on 3 May 2021)
Infosecurity Magazine–Information
Security and IT Security

http://www.infosecurity-magazine.com/ (accessed on 3
May 2021)
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