
Citation: Deng, X.; Shi, B.; Tang, Y.;

Wang, N. The Linear Stability of

Liquid Film with Oscillatory Gas

Velocity. Aerospace 2023, 10, 691.

https://doi.org/10.3390/

aerospace10080691

Academic Editor: Jian Liu

Received: 14 June 2023

Revised: 29 July 2023

Accepted: 31 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

The Linear Stability of Liquid Film with Oscillatory
Gas Velocity
Xiangdong Deng 1, Baolu Shi 1,2,*, Yong Tang 1,2 and Ningfei Wang 1

1 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
3120205056@bit.edu.cn (X.D.); tangyong@bit.edu.cn (Y.T.)

2 Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 404100, China
* Correspondence: shibaolu@bit.edu.cn

Abstract: The present study theoretically investigated the linear instability of a liquid film sheared
by gas flow under acoustic oscillations. In this work, the velocity oscillations of the gas are used
to approximately characterize the acoustic oscillations, and the ratio of the conduction heat flux
to the evaporation heat flux is used to characterize the heat and mass transfer. Considering the
much stronger impact of the heat convection than the heat conduction in practical cases, a correction
factor is introduced to satisfy the heat flux ratio within a reasonable range. Because of the oscillatory
velocity of gas, several unstable regions, involving the KHI region and the parametric instability (PI)
region, appear. The impact of the velocity oscillations on the KHI is related to the forcing frequency.
Increasing the oscillatory velocity amplitude promotes the KHI when the forcing frequency is large,
while the KHI is restrained with the increase in the oscillatory velocity amplitude when the forcing
frequency is small. Since the viscous dissipation is enhanced when the forcing oscillations frequency
increases, the PI is suppressed. In addition, when the surface tension decreases, the interfacial
instability is also promoted. Increasing the gas–liquid density ratio can destabilize the surface.
However, the impact of the heat and mass transfer on the interfacial instability is neglectable as the
gas–liquid density ratio is large. Furthermore, the heat and mass transfer have a promoting impact
on the PI and KHI, while their destabilizing effect on the indentation between unstable regions is
greater. It is significant to note that the location of the maximum growth rate would be in the most
unstable region.

Keywords: liquid film; acoustic oscillations; heat and mass transfer; Kelvin–Helmholtz instability

1. Introduction

Liquid film cooling is an effective cooling method, which can prevent the wall of
the combustor from overheating, oxidation, and destruction. Experimental results have
predicted that the detachment of droplets from the liquid layer of the liquid film cooling
cannot be neglected [1]. The entrainment is a significant reason for the mass loss of
the liquid film, which can result in a decrease in the liquid film cooling efficiency. This
entrainment phenomenon is related to the Kelvin–Helmholtz instability (KHI) [2,3], and
it can be regarded as the process of droplets being peeled from liquid film, similar to
the atomization process, as the liquid film is sheared by the gas stream. As the liquid
is surrounded by the gas stream, the velocity of which is higher than that of the liquid,
the momentum transfer from the high-speed gas to the liquid dominates the breakup
process. Various theoretical and experimental studies [4–9] of the atomization process have
been carried out. The typical examples of Lasheras and Hopfinger [10] showed that the
interfacial instability was the main factor of the atomization process, and the instability
was suppressed by the surface tension. The KHI plays a significant role in the atomization
mechanism [11–17]. Rayana et al. [18] extended the theoretical method of Varga et al. [11]
to study the process of the droplet peeling from liquid film. It should be noted that there
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was only gas on the upper side of the liquid film, the lower side of the liquid film was
limited by the wall rather than the free liquid film on both sides, and the results obtained
by the linear stability theory agreed well with those of the experiments.

In summary, the generation of droplets can still be attributed to the general growth
of the perturbation wave, and the KHI has an important impact on the process of air-
assisted or air-blast atomization. The process of droplet production under the acoustic
oscillations can result in combustion instability. For example, in an F-1 liquid rocket engine,
the pulse combustion of liquid fuel peeled from the liquid layer of film cooling under
acoustic oscillation was considered to be a main factor of the combustion instability [19].
Baillot et al. [20] considered that the pressure oscillations may reach 10% or even higher, as
the combustion instability appears in the combustion chamber, which inevitably affects
the atomization process. Even though the fuel injection systems are extremely insensitive
to pressure oscillations in the combustion chamber, combustion instability with acoustic
oscillations can also occur [21]. The pressure oscillations in the combustion chamber
were mainly reflected in oscillations of the gas velocity [22]. Jia et al. [23–26] investigated
the instability of coaxial jets and sheets, and the oscillatory gas velocity was used to
characterize the acoustic fluctuations. Due to the oscillatory gas velocity, parametric
instability (PI) appeared, and the surface waves were also oscillatory [27]. Because the
viscous damping effect is enhanced when the frequency of oscillatory gas velocity increases,
the PI is restrained. However, the KHI is enhanced when the frequency of oscillatory gas
velocity increases. The KHI of the liquid jet is more impressionable to the rotating velocity
of gas than the PI [28].

The present study focuses on the K-H instability of viscous liquid film with a co-
flowing gas stream under acoustic oscillations. The acoustic oscillations are expressed as
the oscillations of gas velocity. In addition, considering that the phase change caused by
the temperature difference may affect the growth of the disturbance amplitude [29–31],
the heat and mass transfer are also taken into account based on the simplified model of
Hsieh [32,33]. The ratio of the conduction heat flux to the evaporation heat flux is used
to characterize the heat and mass transfer. Considering that the heat convection is much
stronger than the heat conduction in practical cases, a correction factor is introduced to
satisfy the heat flux ratio within a reasonable range. The viscous potential flow theory
is used to obtain a dispersion relation, which has been used to investigate the KHI in
previous studies [34–40]. The dispersion relation between the temporal growth rate and the
disturbance wave number is obtained. Furthermore, the effects of the acoustic oscillations,
Weber number, heat and mass transfer, as well as other key parameters on the interfacial
instability are discussed.

2. Program Formulation

Figure 1 shows that a two-dimensional channel is set horizontally, and the gas is over
the liquid. The density, viscosity coefficients, surface tension coefficient, and the thickness
of the liquid film are ρl , µl , σ, and hl , respectively. The density, viscosity coefficient, and
thickness of the gas stream are ρg, µg, and hg, respectively. As the gas velocity is higher than
that of the liquid, the KHI appears due to the velocity discontinuity. Hence, a coordinate
system that moves with the liquid film is considered in this work. The basic velocities of gas
and liquid in the x and y directions are

(
Ug, 0

)
and (0, 0), respectively. The temperatures at

the upper and lower walls are T1 and T2, respectively, and Ti represents the temperature at
the surface. When the acoustic oscillations are taken into account, the expression of the gas
velocity in the x direction is

Ug =
(
Ug −Ul

)
+ ∆Ug cos ωst, (1)

where Ug is the basic axial velocity, ∆Ug represents the forcing oscillations amplitude, ωs
denotes the forcing oscillations frequency, and t is the time.
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Figure 1. Schematic of the model.

The temperature difference can lead to Marangoni effects [41], and it significantly
affects the interfacial instability. Various articles have examined the Marangoni effects
on the instability of liquid jets, sheets, and droplets [42–51]. It should be noted that the
previous work has focused on the instability behavior dominated by the surface tension,
which is named capillary instability or Rayleigh–Plateau instability, and the aerodynamic
effect was neglectable. In this case, the Marangoni effects are obvious. However, as the
liquid film is sheared by co-flowing gas stream, the instability behavior is driven by the
aerodynamic force. In this case, the surface tension restrains the instability. The results of
a recent study [52] predicted that the impact of the Marangoni effects would be weak, as
the aerodynamic force dominates the instability behavior. In this work, the surface tension
coefficient is a constant. Therefore, the Marangoni effects are not taken into account.

The expression of the interfacial displacement as the surface is disturbed in the present
study is

η = D(t) exp(ikx), (2)

where k is the wavenumber.
As vj = ∇ϕj, and the continuity equation vj = 0, the perturbation potentials ϕj satisfy

the Laplace equation, which is
∇2 ϕj = 0, (3)

where the right subscripts j = g, l represent the gas and liquid phases, respectively. The
Laplace operator is ∇2 = ∂2/∂x2 + ∂2/∂y2.

The pressure disturbance can be calculated by the Lagrange integral, which is given by

pl = −ρl
∂ϕl
∂t

, (4)

pg = −ρg

(
∂ϕg

∂t
+ Ug

∂ϕg

∂t

)
. (5)

The boundary condition when y = hg is

∂ϕg

∂y
= 0, y = hg. (6)

The expressions of the conditions involving heat and mass transfer as y = 0, as shown
in Appendix A, are

∂ϕl
∂y

=
∂η

∂t
+

Λ
ρl

η, y = 0, (7)

∂ϕg

∂y
=

∂η

∂t
+ Ug

∂η

∂x
+

Λ
ρg

η, y = 0. (8)
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The boundary condition when y = −hl is

∂ϕl
∂y

= 0, y = −hl . (9)

The normal stress must be balanced at y = 0, and the boundary condition is given by

−pg + 2µg
∂2 ϕg

∂y2 −
(
−pl + 2µl

∂2 ϕg

∂y2

)
= −σ

∂2η

∂x2 , y = 0. (10)

The solutions to Equation (3) are

ϕl = A1 sinh(ky) + A2 cosh(ky), (11)

ϕg = B1 sinh(ky) + B2 cosh(ky), (12)

where A1, A2, B1, and B2 are coefficients, which are determined by the boundary conditions.
Substituting Equations (11) and (12) into Equations (6)–(9) yields

ϕl =
1
k

[
sinh(ky) +

cosh(khl)

sinh(khl)
cosh(ky)

][
D′(t) +

Λ
ρl

D(t)

]
exp(ikx), (13)

ϕg =
1
k

[
sinh(ky)−

cosh
(
khg
)

sinh
(
khg
) cosh(ky)

][
D′(t) + ikUgD(t) +

Λ
ρg

D(t)

]
exp(ikx). (14)

Utilizing Equations (4) and (5), the normal stress balance boundary condition (i.e.,
Equation (10)) is

ρg

(
∂ϕg

∂t
+ Ug

∂ϕg

∂y

)
+ 2µg

∂2 ϕg

∂y2 −
(

ρl
∂ϕl
∂t

+ 2µl
∂2 ϕg

∂y2

)
+ σ

∂2η

∂x2 = 0. (15)

Substituting the expressions of the perturbation potentials into the normal stress
balance boundary condition yields

D′′ (t) +
m
f

D′(t) +
n
f

D(t) = 0, (16)

where
f = ρlcoth(khl) + ρgcoth

(
khg
)
, (17)

m = 2µlk2coth
(
khg
)
+ 2ikρgUgcoth

(
khg
)
+ 2µgk2coth

(
khg
)
+ Λcoth(khl) + Λcoth

(
khg
)
, (18)

n = 2µgik3Ugcoth
(
khg
)
+ 2µgk2 Λ

ρg
coth

(
khg
)
− ρgk2U2

gcoth
(
khg
)

+ikUgΛcoth
(
khg
)
+ 2µlk2 Λ

ρl
coth(khl) + ikρgU′gcoth

(
khg
)
+ σk3

. (19)

The Hill’s equation can be obtained using the following transformation [23,25]:

D(t) = F(τ) exp
(
−
∫ m

2 f
dt
)

, (20)

τ = 0.5ωst, (21)
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Ug =
(
Ug −Ul

)
+ ∆Ug cos 2τ. (22)

Taking Equations (20)–(22) into Equation (16) (as shown in Appendix B), the result is

d2F(τ)
dτ2 + [θ0 + 2θ2 cos(2τ) + 2θ4 cos(4τ)]F(τ) = 0, (23)

where

θ0 =
4

ω2
s


− G2

4 f 2 +
H+2µgik3(Ug−Ul)coth(khg)+ik(Ug−Ul)Λcoth(khg)

f

−
ikρgG(Ug−Ul)coth(khg)+k2ρgρl

[
(Ug−Ul)

2
+ 1

2 ∆U2
g

]
coth(khg)coth(khl)

f 2

. (24)

2θ2 =
4

ω2
s

 − ikρgG∆Ugcoth(khg)+2k2ρgρl(Ug−Ul)∆Ugcoth(khl)coth(khg)
f 2

+
ik∆UgΛcoth(khg)+2µgik3∆Ugcoth(khg)

f

, (25)

2θ4 = − 2
ω2

s

k2ρgρl∆U2
gcoth

(
khg
)
coth(khl)

f 2 , (26)

G = 2µgk2coth(khl) + 2µlk2coth
(
khg
)
+
[
coth(khl) + coth

(
khg
)]

Λ, (27)

H = 2µgk2 Λ
ρg

coth
(
khg
)
+ 2µlk2 Λ

ρl
coth(khl) + σk3. (28)

Considering Equation (20), the expression of the growth rate can be written as

ωr = 0.5βrωs −
µlk2coth(khl) + µgk2coth

(
khg
)

f
−

coth
(
khg
)
+ coth(khl)

2 f
Λ, (29)

where βr is a characteristic exponent, which is introduced to obtain the dispersion relation
(i.e., Equation (29)), and the equation to obtain βr is

cosh(πβ) = 1− 2 sin2

(
πθ1/2

0
2

)
− π

4θ1/2
0

(
θ2

2
1− θ0

+
θ2

4
22 − θ0

)
sin
(

πθ1/2
0

)
. (30)

The nondimensionalized dispersion relation is

Ωr = 0.5βrΩs −
K2coth(K) + ξK2coth(αK)

f Re
− coth(αK) + coth(K)

2 f
Λ, (31)

cosh
(
πβ
)
= 1− 2 sin2

(
πθ

1/2
0
2

)
− π

4θ
1/2
0

(
θ

2
2

1− θ0
+

θ
2
4

22 − θ0

)
sin
(

πθ
1/2
0

)
, (32)

where

θ0 =
4

Ω2
s

 −
G2

4 f
2 +

H+ 2
Re ξiK3coth(αK)+iKΛcoth(αK)

f

− iKρGcoth(αK)+K2ρ(1+ 1
2 ∆γ2)coth(αK)coth(K)

f
2

, (33)

2θ2 =
4

Ω2
s

 −
iKρG∆γcoth(αK)+2K2ρ∆γcoth(K)coth(αK)

f
2

+
2

Re ξiK3∆γcoth(αK)+iK∆γΛcoth(αK)
f

, (34)
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2θ4 = − 2
Ω2

s

K2ρ∆γ2coth(αK)coth(K)

f
2 , (35)

f = coth(K) + ρcoth(αK), (36)

G =
2

Re
ξK2coth(αK) +

2
Re

K2coth(K) + [coth(K) + coth(αK)]Λ, (37)

H =
2

ρRe
ξK2Λcoth(αK) +

2
Re

K2Λcoth(K) +
K3

We
, (38)

where K = khl is a nondimensional wavenumber, α = hg/hl is the thickness ratio,
ρ = ρg/ρl denotes the density ratio, Ωr = ωrhl/

(
Ug −Ul

)
represents the nondimensional

temporal growth rate, ξ = µg/µl is the viscosity ratio between the gas and liquid phases,
Ωs = ωshl/

(
Ug −Ul

)
is the nondimensional forcing frequency, ∆γ = ∆Ug/

(
Ug −Ul

)
is

the nondimensional oscillations amplitude, We = ρl
(
Ug −Ul

)2hl/σ is the Weber number,
and Re = ρl

(
Ug −Ul

)
hl/µl denotes the Reynolds number. Λ = C(1 + α)/

[
ρl
(
Ug −Ul

)
L
]

is the heat flux ratio between the conduction heat flux from the wall to the interface and
the evaporation heat flux at the gas–liquid interface.

3. Results and Discussion

Funada et al. [53] studied the KHI of a liquid film in a channel, and the dispersion
relation without gravitational acceleration is[

ρg
(
ω + ikUg

)2
+ 2µgk2(ω + ikUg

)]
coth(khg) +

(
ρl − ρg

)
ak

+
[
ρl
(
ω + ikUl

)2
+ 2µlk2(ω + ikUl

)]
coth(khl) + σk3 = 0

. (39)

Equation (39) is obtained in a fixed coordinate system. Under the coordinate system
of the present study, it is written as{

ρg
[
ω + ik

(
Ug −Ul

)]2
+ 2µgk2[ω + ik

(
Ug −Ul

)]}
coth(khg)

+
(
ρlω

2 + 2µlk2ω
)
coth(khl) + σk3 = 0

. (40)

The nondimensionalized Equation (40) is[
ρ(Ω + iK)2 +

2
Re

ξK2(Ω + iK)
]

coth(αK) +
(

Ω2 +
2

Re
K2Ω

)
coth(K) +

K3

We
= 0, (41)

where Ω = Ωr + iΩI represents the nondimensional complex growth rate, the imaginary
part ΩI predicts the nondimensional disturbance frequency, and the real part Ωr denotes
the nondimensional growth rate. k is the wavenumber, and the wavelength w = 2π/k.
i =
√
−1 is the imaginary unit.

As the phase change and acoustic oscillations are ignored, the liquid layer is sheared by
the high-speed gas stream, and this simplified model is similar to that of Funada et al. [53].
Figure 2 shows the results obtained by Equation (41) and the dispersion relation of the
present study without the phase change and acoustic oscillations (i.e., ∆γ = 0 and Λ = 0).
The curves shown in Figure 2 are normal. Before a maximum value was reached, the curves
increased firstly with the wavenumber. After the maximum value, the curves decreased due
to the impact of the viscosity of the liquid and the surface tension, and an abscissa-crossing
point was reached. The dominant wavenumber is the wavenumber corresponding to the
maximum growth rate. In addition, the range of the wavenumber from 0 to the abscissa-
crossing point is known the unstable range. It can also be observed that the interfacial
instability was promoted as the surface tension decreased. Figure 3 displays the results



Aerospace 2023, 10, 691 7 of 19

of this work compared with that of Asthana and Agrawal [34] when the heat and mass
transfer were considered. In addition, the results of the simplified model in this work were
in good agreement with previous studies, and the correctness of the dispersion relation
obtained in this work was verified to a certain degree.
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According to previous studies [1,54], the values of the typical physical parameters
are shown in the following: the liquid density is ρl = 800 kg/m3, the gas density is
ρg = 1 kg/m3, T1 − Ti = 1000 K, Ti − T2 = 200 K, the thermal conductivity coeffi-
cient of the liquid is κl = 0.08 W/(m ·K), the thermal conductivity coefficient of the gas
κg = 0.1 W/(m ·K), the latent heat is L = 250 kJ/kg, the velocity difference between the
gas and the liquid is Ug−Ul = 5 m/s, the viscosity of the liquid is µl = 0.008 Pa · s, the sur-
face tension coefficient is σ = 0.02 N/m, the viscosity of the gas is µg = 0.000008 Pa · s, the
thickness of the liquid film is hl = 0.001 m, the thickness of the gas stream is hg = 0.00625 m,
and the frequency of the acoustic oscillations is 1000 Hz. The values of the typical nondi-
mensional parameters are calculated as the reference state in the following: We = 10, 000,
Re = 5000, ρ = 0.00125, α = 6.25, Ωs = 0.2, ξ = 0.001, and the heat flux ratio is
Λ = 0.0001856. In fact, the heat flux on the combustor wall of a liquid rocket can reach
106 W/m2 or higher, and the heat convection is much stronger than heat conduction. In
this case, the heat flux ratio Λ ≥ 0.001. Therefore, setting Λ = 0.0001856 is not reasonable,
and a correction factor ψ should be introduced to satisfy Λ within a reasonable range, i.e.,
Λ = ψC(1 + α)/

[
ρl
(
Ug −Ul

)
L
]
. The heat flux ratio Λ was set to 0.002 in the following.

Figure 4 shows the effect of the nondimensional oscillations amplitude of the gas
velocity on the interfacial instability. As shown in Figure 4, only one unstable region
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occurred as the acoustic oscillations were ignored (i.e., ∆γ = 0), without a phase transition.
This unstable region is inherent, driven by aerodynamic force, and it is named the KHI
region. As the oscillations of the gas velocity were neglected, the expression of the growth
rate is Ωr = 0.5Ωs

√
θ0. This means that this unstable region is dominated by θ0. How-

ever, several unstable regions appeared without a phase transition when the oscillation
amplitude of the gas velocity ∆γ 6= 0. According to Equations (30) and (31), these unstable
regions after the first unstable region, which are named the parametric instability (PI)
region, are governed by θ2 and θ4. The full wavelength assumption of Mayer [13] indicted
that the unstable disturbed waves in unstable regions can grow generally and break up
into droplets. Therefore, the appearance of the PI is beneficial for the formation of smaller
droplets. More importantly, Figure 4 shows the most unstable PI region was the second
unstable region. Hence, the first and second unstable region only are discussed in the
following. Furthermore, the location of the dominant wavenumber would be in the first
unstable region as the oscillation amplitude ∆γ is larger than a critical value ∆γcr, and it
would be in the second unstable region as ∆γ > ∆γcr. Because the growth rate increases
faster in the PI region than in the KHI region, as observed in Figure 4, the PI was more
impressionable to the oscillations of the gas velocity than the KHI. Moreover, the results
in Figure 4b show that the KHI was enhanced when the oscillatory velocity amplitude
increased in the case of Ωs = 0.5. However, the KHI was restrained with the increase
in the oscillatory velocity amplitude when Ωs = 0.2, as observed in Figure 4a. It can
be concluded that the impact of the velocity oscillations on KHI is related to the forcing
frequency. The KHI is enhanced with an increasing oscillatory velocity amplitude when the
forcing frequency is large, while the KHI is restrained as the oscillatory velocity amplitude
increases in the case when the forcing frequency is small.
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The inherent frequency can be calculated by Equation (20), the expression of which
can be written as

ΩI = 0.5Ωs

√
θ0. (42)

The results of a previous study [55] predicted that the waves at half or harmonic
frequencies were stimulated by the velocity oscillations, and the resonant wavenumber
around the parametric instability regions is ΩI = eΩs/2, where e = 1, 2 · · · . In the present
study, the resonant wavenumbers should be 13.26, 14.53, . . ., ·as the forcing frequency is 0.2.
When the forcing frequency is 0.5, the resonant wavenumbers should be 15.30, 19.34, . . .,
and these wavenumbers have been marked in Figure 4. However, because the variation in
the inherent frequency of the system is limited, the parametric instability region would not
be located at these resonant wavenumbers [55]. Furthermore, the wavenumbers around
which the parametric instability appears are related to the forcing frequency, as can be seen
in Figure 5 and Equation (40).
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Figure 5 exhibits the influence of the forcing oscillations frequency. Obviously, as
the forcing oscillations frequency increased, the instability of the surface was enhanced
with an increasing forcing oscillations frequency, while the parametric instability was
prevented. Meanwhile, the stabilizing effect of the increasing forcing oscillations in the
parametric instability region was greater than the stabilizing effect in the KHI region, as
observed in Figure 5. According to the dispersion relation equation of the present study
(i.e., Equation (30)), the contribution of the viscous dissipation is

Ωv = −K2coth(K)
f Re

− ξK2coth(αK)
f Re

. (43)

The term K2coth(K)/ f Re in Equation (41) denotes the damping effect of the liquid
viscosity on the interfacial instability, and the term ξK2coth(αK)/ f Re represents the con-
tribution of the gas viscosity. As the wavenumber K � 1, coth(K)→ 1 , the viscous
dissipation of the liquid phase can be proportional approximately to K2/Re, as ξ � 1.
In this case, the viscous dissipation was enhanced with an increasing wavenumber. Ac-
cording to Equation (42), the resonant wavenumber of the PI region increased because
of the increase in the forcing oscillations frequency. Therefore, the PI was restrained be-
cause of the strongly viscous dissipation, and the regions of the PI moved to the right,
as shown in Figure 5. In addition, it can be observed obviously that there was a critical
forcing oscillations frequency Ωcr; the location of dominant wavenumber would be in the
second unstable region when Ωs < Ωcr, and it would be in the first unstable region when
Ωs > Ωcr.
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As can be observed in Figure 6, the KHI as well as the PI were enhanced when
the gas–liquid density increased. Meanwhile, the unstable regions expanded when the
gas–liquid density ratio increased. Even though the heat and mass transfer were neglected,
the gaps between unstable regions disappeared when the gas–liquid density ration was
large enough. This suggests that the increases in the gas–liquid density ratio may have
accelerated the breakup process of the liquid film. Due to the increase in the gas–liquid
density ratio, the aerodynamic force effect was enhanced. Therefore, the interface between
the gas and liquid phases tended to be more unstable with an increasing gas–liquid density
ratio. In addition, it is worth noting that the growth rate in the PI region increased faster
than that in the KHI region when the gas–liquid density ratio rose. It can be concluded
that the PI was more susceptible to the gas–liquid density than the KHI. Furthermore, the
inherent frequency of the system increased because of the increase in the gas–liquid density
ratio, and it led the parametric unstable regions to move to the right, as shown in Figure 6a.
Moreover, the dispersion curves with and without the heat and mass transfer were very
approximate as the gas–liquid density ratio was large, as observed in Figure 6b. In this
case, the effect of the heat and mass transfer could be neglected.
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Figure 7 exhibits the influence of the surface tension on the interfacial instability of
the viscous liquid film. As observed in Figure 7, with the increase in the Weber number,
the maximum growth rate as well as the dominant wavenumber increased. The KHI was
dominated by the aerodynamic effect, and it was suppressed by the surface tension. Hence,
increasing the Weber number made the gas–liquid interface tend to be more unstable.
According to the study of Varga et al. [11,12,14–16], the droplets after the breakup process
may become smaller in this condition. In addition, the results in Figure 7 show that the
growth rate in the PI region increased faster than that in the KHI region. This predicted
that the impact of the oscillatory velocity on the KHI would be weaker than that on the
parametric instability. One can also observe, in Equation (32), the term K3/We, which
denotes the effect of surface tension on the interfacial instability. The damping effect of the
surface tension would become stronger with an increasing wavenumber K.
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Then, the effect of the viscosity of the liquid film on the surface instability was exam-
ined. It is obvious in Figure 8 that the both the inherent and PI regions increased when
the Reynolds number increased. This predicted that the viscosity of the liquid would play
a stabilizing role. Jia et al. [23] examined a two-dimensional liquid jet exposed to gas, as
the longitudinal acoustic oscillations were considered, and the authors reported that the
liquid viscous dissipation was proportional to K2/Re. According to Equation (40) in this
work, the damping effect of the viscosity of the liquid film was proportional approximately
to K2/Re, similar to the study of Kumar [56]. Moreover, it can also be concluded that
there is a critical Reynolds number Recr, the location of the maximum growth rate is in the
KHI region as Re < Recr, and it shifts to the second unstable region when Re > Recr, as
shown in Figure 8. A larger wavenumber corresponds to a shorter wavelength because
of λ = 2π/K. According to recent studies [11,12,14–16], the atomization quality may be
improved in the breakup process when the Reynolds number increases.

Figure 9 shows the influence of the viscosity of the gas medium on the interfacial
instability of the liquid film. It is clear that the growth rate of the inherent and parametric
regions increased as the gas–liquid viscosity increased. The results predicted that increasing
the viscosity of the gas would promote the KHI and PI. This conclusion is consistent with
that reported by Funada et al. [57], who examined the linear stability of a viscous liquid jet
exposed to a viscous gas phase. However, its destabilizing effect is neglectable because the
gas–liquid viscosity ratio ξ � 1.
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Figure 9. The dispersion curves when the gas–liquid viscosity ratio varies (We = 10,000, Re = 5000,
∆γ = 0.3, Ωs = 0.2, ρ = 0.00125, α = 6.25, Λ = 0.002).

Figure 10 shows the variation in the growth rate by varying Λ from 0 to 0.003 as the
acoustic oscillations are taken into account. In this work, Λ represents the ratio between the
conduction heat flux and the evaporation heat flux, and it is employed to characterize the
heat and mass transfer. As displayed in Figure 10, the interfacial instability was promoted
as the heat and mass transfer were enhanced. It can be concluded that the heat and mass
transfer had a destabilizing effect. Furthermore, the unstable regions expanded obviously
as the phase transition appeared. Zeng et al. [58] investigated the primary breakup process
numerically with the evaporation effect. The results suggested that the phase change
could promote the KHI. Chan et al. [59] examined the mass transfer on the KHI at the
gas–liquid interface. The authors concluded that the evaporation enhanced the wave
instability. Although the physical model of the present study was somewhat different from
those of Zeng et al. [58] and Chan et al. [59], the qualitative tendency was consistent.
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process numerically with the evaporation effect. The results suggested that the phase 
change could promote the KHI. Chan et al. [59] examined the mass transfer on the KHI at 
the gas–liquid interface. The authors concluded that the evaporation enhanced the wave 
instability. Although the physical model of the present study was somewhat different 
from those of Zeng et al. [58] and Chan et al. [59], the qualitative tendency was consistent. 
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 Figure 10. The effect of the heat and mass transfer (We = 10,000, Re = 5000, ∆γ = 0.3, Ωs = 0.2,
ρ = 0.00125, α = 6.25, ξ = 0.001).

4. Conclusions

This study investigated the instability of a planner liquid film theoretically when the
phase change and acoustic oscillations were taken into consideration. The gas velocity
oscillations were employed to characterize the acoustic oscillations. The results showed
that the parametric instability (PI) appeared when the acoustic oscillations were taken
into account. The impact of the velocity oscillations on the Kelvin–Helmholtz instability
(KHI) was related to the forcing frequency. The results suggest that the KHI was enhanced
with an increasing oscillatory velocity amplitude when the forcing frequency was large,
while the KHI was restrained as the oscillatory velocity amplitude increased in the case
of the small forcing frequency. In addition, the PI was more susceptible to the oscillations
of the gas velocity than the KHI. Due to the enhancement of the viscous damping effect,
the PI was prevented when the forcing oscillations frequency increased. Furthermore,
the resonant wavenumber and frequency varied with the forcing oscillations frequency.
Both the KHI and PI were promoted with the enhancement of the heat and mass transfer.
More importantly, the inherent frequency of the system increased with an increase in the
gas–liquid density ratio, and it led to an increase in the wavenumber of the PI. As the
gas–liquid density ratio was large enough, the influence of the heat and mass transfer could
be neglected. Moreover, the dominant wavenumber could be transferred from the KHI
region to the PI region when the Weber number increased. The liquid viscosity restrained
the interfacial instability. Although the gas viscosity destabilized the surface of the liquid
film, its destabilizing impact was neglectable because of the low viscosity. Considering
Mayer’s full wavelength assumption [13], which indicates that the unstable disturbed
waves in unstable regions can grow generally and break up into droplets, the acoustic
oscillations are beneficial for obtaining smaller droplets. In addition, increasing the Weber
number, Reynolds number, and gas–liquid density ratio not only accelerates the breakup
process of the liquid film but also improves the atomization quality.
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Nomenclature

A1 undetermined coefficients
A2 undetermined coefficient
B1 undetermined coefficient
B2 undetermined coefficient
C undetermined coefficient
D a function of time
hg thickness of gas
hl thickness of liquid
k wavenumber
K nondimensional wavenumber
p pressure disturbance
pg disturbed pressure of gas
pl disturbed pressure of liquid
Re Reynolds number
t time
Ug axial gas velocity in coordinate system moving with liquid jet
Ug,0 axial gas velocity in fixed coordinate system
Ul axial velocity of liquid
Ug axial velocity of gas
Ul axial basic velocity of liquid
Ug axial basic velocity of gas
∆Ug oscillations amplitude of gas velocity
v velocity vector
w wavelength
We Weber number
α thickness ratio between gas and liquid
ϕg perturbation potential of gas
ϕl perturbation potential of liquid
∆γ nondimensional oscillations amplitude
η disturbed amplitude
µg gas viscosity
µl liquid viscosity
ρ gas–liquid density ratio
ρg gas density
ρl liquid density
σ surface tension coefficient
Λ heat flux ratio
Ω nondimensional complex growth rate
ΩI nondimensional inherent frequency
Ωi nondimensional disturbance frequency
Ωr nondimensional temporal growth rate
Ωs nondimensional forcing oscillation frequency
Ωv contribution of viscosity to the instability
ω complex growth rate
ωi complex disturbance frequency
ωr temporal growth rate
ωs forcing oscillations frequency
ξ gas–liquid viscosity ratio



Aerospace 2023, 10, 691 15 of 19

Appendix A

The mass transfer, which occurs with the heat transfer, changes the amplitude of
the disturbance at the interface through the phase change between gas and liquid. To
obtain the kinematic boundary conditions of the disturbance wave including the effect of
the mass transfer, Heish [32,33] built the mass transfer balance and heat transfer balance
conditions. The mass transfer is approximated by the ratio of the conduction heat flux
and the evaporation heat flux in kinematic boundary conditions. As in the studies of
Hsieh [32,33], the mass transfer flux balance is

ρl

(
∂ϕl
∂r
− ∂η

∂t

)
= ρg

(
∂ϕg

∂r
− ∂η

∂t
−Ug

∂η

∂x

)
. (A1)

When the phase transition appears, the heat absorbed by the phase transition [32,33] is

Lρl

(
∂ϕl
∂r
− ∂η

∂t

)
= S(η), (A2)

where L in Equation (A2) is the latent heat released by evaporation, and S(η) represents
the heat flux. In the simplified physical model of Hsieh et al. [32,33], T1 represents the
temperature of the upper wall, T2 denotes the temperature of the lower wall, Ti represents
the temperature of the surface, and Ti should be the saturation temperature when the phase
transition appears. We assume that the heat transfer from the upper wall to the surface
is by heat conduction, and the heat transfer from the surface to the lower wall is by heat
conduction. Thus, the heat flux S(η) at the disturbed interface is

S(η) =
κg(Ti − T1)

hg − η
+

κl(Ti − T2)

hl + η
, (A3)

where κl and κg are the thermal conductivity coefficients of liquid and gas, respectively.
Obviously, Equation (A3) is not a linear expression of the disturbed amplitude η. Therefore,
Equation (A3) should be linearized by the Taylor series. Expanding the S(η) in the Taylor
series at η = 0, the following equation can be obtained:

S(η) = S(0) + S′(0)η +
1
2

S′′ (0)η2 + · · · . (A4)

To represent S(η) as a function of the disturbed amplitude η, the case of η = 0 was
assumed as an equilibrium state in previous work [32,33], and the heat flux should be zero.

S(0) =
κg(Ti − T1)

hg
+

κl(Ti − T2)

hl
= 0. (A5)

It can be obtained from Equation (A5) as follows

κg(Ti − T1)

hg
= −κl(Ti − T2)

hl
= C, (A6)

where C is a constant. Taking Equations (A3)–(A5) into Equation (A6), the linearized
expression is

S(η) =
κg(Ti − T1)

h2
g

− κl(Ti − T2)

h2
l

= C

(
1
hg

+
1
hl

)
η. (A7)

Utilizing the Equations (A1), (A2), and (A7), the result is

∂ϕl
∂y

=
∂η

∂t
+

Λ
ρl

η, (A8)
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∂ϕg

∂y
=

∂η

∂t
+ Ug

∂η

∂x
+

Λ
ρg

η, (A9)

where Λ = C
(
1/hg + 1/hl

)
/L, and the Equations (A8) and (A9) are the boundary condi-

tions at the disturbed surface.

Appendix B

Taking Equations (20) and (21) into Equation (16) yields

∂2F(τ)
∂τ2 +

4
ω2

s

(
−m′

2 f
− m2

4 f 2 +
n
f

)
F(τ) = 0. (A10)

Considering that

G = 2µgk2coth(khl) + 2µlk2coth
(
khg
)
+
[
coth(khl) + coth

(
khg
)]

Λ (A11)

H = 2µgk2 Λ
ρg

coth
(
khg
)
+ 2µlk2 Λ

ρl
coth(khl) + σk3, (A12)

the expressions of m′, m2, and n are

m′ = 2ikρgU′gcoth
(
khg
)
, (A13)

m2 =
[
G + 2ikρgUgcoth

(
khg
)]2

= G2 + 4GikρgUgcoth
(
khg
)
− 4k2ρ2

gU2
gcoth2(khg

)
= G2 + 4Gikρgcoth

(
khg
)[(

Ug −Ul
)
+ ∆Ug cos 2τ

]
−4k2ρ2

gcoth2(khg
)[(

Ug −Ul
)
+ ∆Ug cos 2τ

]2 , (A14)

n = 2µgik3Ugcoth
(
khg
)
− ρgk2U2

gcoth
(
khg
)
+ ikUgΛcoth

(
khg
)
+ H

= H + 2µgik3[(Ug −Ul
)
+ ∆Ug cos 2τ

]
coth

(
khg
)
+ ikρgU′gcoth

(
khg
)

−ρgk2[(Ug −Ul
)
+ ∆Ug cos 2τ

]2coth
(
khg
)
+ ik

[(
Ug −Ul

)
+ ∆Ug cos 2τ

]
Λcoth

(
khg
) . (A15)

For the cosine function, there is

cos 4τ = cos2 2τ − sin2 2τ = 2 cos2 2τ − 1, (A16)

Taking Equations (A13)–(A16) into Equation (A10), the results are

d2F(τ)
dτ2 + [θ0 + 2θ2 cos(2τ) + 2θ4 cos(4τ)]F(τ) = 0, (A17)

where

θ0 =
4

ω2
s


− G2

4 f 2 +
H+2µgik3(Ug−Ul)coth(khg)+ik(Ug−Ul)Λcoth(khg)

f

−
ikρgG(Ug−Ul)coth(khg)+k2ρgρl

[
(Ug−Ul)

2
+ 1

2 ∆U2
g

]
coth(khg)coth(khl)

f 2

, (A18)

2θ2 =
4

ω2
s

 − ikρgG∆Ugcoth(khg)+2k2ρgρl(Ug−Ul)∆Ugcoth(khl)coth(khg)
f 2

+
ik∆UgΛcoth(khg)+2µgik3∆Ugcoth(khg)

f

, (A19)
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2θ4 = − 2
ω2

s

k2ρgρl∆U2
gcoth

(
khg
)
coth(khl)

f 2 . (A20)
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