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Abstract: A multi-dimensional morphing wing skeleton mechanism is proposed with double-sided
triangular pyramid units, which can realize continuous variable span-wise bend, span-wise twist, and
sweep. A lockable morphing unit is designed, and its mechanism/structure characteristics, degree
of freedom, and the deformable function of its deformable wing skeleton mechanism are analyzed.
One kind of flexible skin is proposed to meet the performance requirements, consisting of an internal
metastructure and a flexible surface bonded on both sides. The morphing wing skeleton mechanism
and the equivalent treated metastructure flexible skin are then combined. Subsequently, a two-way
fluid–structure interaction analysis is conducted to investigate the influence of aerodynamic loads
on the flexible skin and skeleton mechanism in different deformation states, including the influence
of structural passive deformation on the aerodynamic characteristics of the morphing wing. The
computational fluid dynamics method is employed to analyze the aerodynamic characteristics of the
morphing wing in its initial state, as well as in three deformation states, and to study its aerodynamic
performance in different flight environments.

Keywords: morphing wing; fluid–structure coupling; aerodynamic; metastructure; flexible skin

1. Introduction

Variable geometry aircrafts have many advantages due to their excellent flight effi-
ciency and performance, including efficient penetration, quick response, high endurance,
and far field transportation. In addition, variable geometry aircrafts have broad application
prospects in the aerospace vehicle field and will play a vital role in future aircraft devel-
opment. As one of the key technologies of variable geometry aircrafts, morphing wing
technology has been extensively studied in developing high-performance variable geom-
etry aircrafts. The internal deformable skeleton mechanism and flexible skin are the key
technologies for achieving deformation and maintaining the aerodynamic shape of the mor-
phing wing. This article proposes a distributed-drive deformable wing skeleton mechanism
and a corresponding metastructure flexible skin that can achieve multi-dimensional defor-
mation. This proposal is based on the development trend of morphing wing technology
and the aerodynamic requirements of various flight fields for morphing wing.

A morphing wing prototype with a variable airfoil profile thickness in a real wing size
was proposed by Kammegne et al. [1]. Four identical micro-electromechanical actuators
were installed on the middle two wing ribs of the prototype. The shape of the flexible
skin on the upper surface of the wing was changed through the vertical displacement of
the actuator to improve the air flow. Fasel et al. [2] reported a flexible variable trailing
edge camber morphing wing based on a composite material. This morphing wing realized
the differential deformation of the wingspan, flexible maneuvering, and control. The
flight test verified the improvement in rolling efficiency. Xi et al. [3,4] studied a wing
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chord camber-deformed morphing wing based on a reconfigurable mechanism structure.
Then, two deformation driving schemes were compared. The Tu-160 supersonic bomber
developed by the Soviet Union [5] and the American F-14 Tomcat fighter jet adopted a
variable swept wing of wing root rotation [6]. The variable swept wing has excellent low-
speed take-off and landing and high-speed penetration characteristics and controllability.
From an aerodynamics perspective, the variable swept wing provides an effective method
for reducing the aerodynamic drag caused by air compression at the subsonic, transonic,
and supersonic stages of an aircraft, thus obtaining a higher lift–drag ratio.

NextGen conducted a flight and wind tunnel test of the variable swept wing aircraft
MFX-1 under the funding of the variant aircraft structure “MAS” program [7]. A hydraulic
driver placed inside each parallelogrammatic connecting-rod mechanism drove the morph-
ing wing deformation. The flexible skin uses a carbon fiber silicone reinforcement material
that can be shear-deformed, and a swept angle of 15◦–45◦ can be achieved in flight tests
within 15 s. Jenett et al [8] designed a modular and reversibly assembled wing that per-
formed continuous span-wise twist deformation. Lightweight and high-strength carbon
fiber lattice cells were used to support the morphing wing. The morphing wing had a
−10◦ to 10◦ twist in the wind tunnel experiment, which exhibited higher roll efficiency and
aerodynamic characteristics than a conventional rigid aileron system. Lockheed Martin
developed a folding wing, which enabled variations of span-wise length, aspect ratio, and
effective sweep angle, significantly increasing mission performance compared with con-
ventional aircrafts [9]. Considering the need of large sweep deformation and high stiffness
characteristics, a morphing wing driven by distributed parallel linkage was proposed by
Yang et al. [10,11], which enabled variations in chord length, area, and aspect ratio. How-
ever, the above-mentioned morphing wing research mainly focuses on the thickness and
camber deformation of the two-dimensional airfoil profile; sweep, wingspan bending, or
folding deformations of the three-dimensional wing and other single morphing functions.
It is still difficult to meet the requirements of a multi-function aerodynamic shape and large
deformation of aircrafts in complex flight environments.

The deformation function of the morphing wing flexible skin can be realized in three
main ways [12]: the deformation of the elastic material itself [13], the sliding or rotating
deformation of the mechanism, and the large deformation of the sandwich composite
structure. A hybrid material flexible skin of a Kevlar/carbon-fiber-reinforced silica gel
matrix for a shear swept morphing wing was proposed by Yu et al. [14]. The difficulty lay in
ensuring that folds and wrinkles were avoided during shear deformation. Lockheed Martin
developed a seamless flexible skin with foldable deformation and memory function [9]. A
discrete slip-deformed skin for variable geometry wings was proposed by Xi et al. [15,16],
which was different from elastic skin and was designed to discretize the relative sliding
motion between rigid plates to deformation. However, the gap and size of the discrete
rigid plates required by each deformation form are different. Yokozeki et al. [17] developed
a corrugated flexible skin structure of chord direction camber morphing wing. A rigid
bar was added to the bottom of the corrugated structure to enhance the stiffness of the
wingspan direction. In addition, flexible rubber was filled on one side to ensure a smooth
and continuous surface. Metastructure has the advantages of lightweight structure, in-
plane low stiffness, large deformation, high out-of-plane stiffness and good heat insulation,
vibration drag, and energy absorption [18–20]. A zero Poisson’s ratio hybrid metastructure
flexible skin and accordion metastructure flexible skin were proposed by Olympio et al. [21].
Based on the advantages of metastructure characteristics, Bubert et al. [22] proposed a
metastructure composite skin that consists of a zero Poisson’s ratio metastructure as the
support core and a flexible silicone panel as the surface layer. This design allows for
wingspan direction large deformation while maintaining the continuous smoothness of the
airfoil. The existing research shows that flexible skin can achieve large deformation, but the
bearing capacity is low and the fatigue damage is easy; or that flexible skin can effectively
provide out-of-plane stiffness, but the deformation ability is not ideal and the driving force
demand is too large. The metastructure morphing skin is an effective solution to realize the
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variability of the deformed wing, bear and transmit the aerodynamic load, and ensure the
smooth continuity and airtightness of the airfoil. It has the advantages of high out-of-plane
bearing capacity and low driving force. However, there are also the shortcomings of small
deformation and the need to cover the elastomer to ensure a smooth surface. Therefore, it
is necessary to focus on the design of its in-plane deformation capacity and out-of-plane
aerodynamic carrying capacity.

This study proposes a morphing wing skeleton (MWS) mechanism with modular bilat-
eral triangular pyramid (BTP) units. The MWS mechanism not only provides three different
morphing functions, but also has high stiffness and stability. Through modular design
and distributed drive, the MWS mechanism can achieve local or global multi-dimensional
continuous smooth deformation. Distributed drive can effectively reduce the local excessive
driving force demand. Compared to other morphing mechanisms, this MWS mechanism
has a simple structure, distributed drive, multi-dimensional morphing, and modular ex-
pansion. The rest of this paper is organized as follows. Section 2 presents the structure
and metastructure flexible skin of the MWS mechanism. Section 3 proposes a discrete
multifunctional distributed drive continuous multi-dimensional deformation MWS mecha-
nism. The deformable truss is taken as the basic unit, which has the characteristics of high
bearing capacity. Furthermore, a new hybrid metastructure flexible skin with adjustable
Poisson’s ratio is designed to meet the requirements of continuous and smooth flexible
morphing wing on the surface, high out-of-plane stiffness, and low in-plane stiffness
characteristics. Aerodynamic characteristics are analyzed for the multi-dimensional MWS
mechanism and flexible skin. Research on the smooth continuous flexible morphing wing
is of great significance.

2. Design of the MWS Mechanism and Metastructure Flexible Skin
2.1. Structure Design of the MWS Mechanism

The modular BTP unit consists of two top pin joints (P), three spherical hinges,
six inclined rods, one rotating rod, and two middle plane rods, as shown in Figure 1a.
It is important to note that the BTP unit is symmetrical with the middle plane. Figure 1b
depicts a 1/2 BTP unit connected to the wing rib support frame for wing rib installation.
By connecting two BTP units and the 1/2 BTP unit with a rotating rod and spherical joints,
a lockable morphing (LM) unit is formed, as shown in Figure 1c. To ensure stability post-
morphing, a lockable passive member is added to enhance the structure’s stiffness and
stability. Within the LM unit, a linear actuator is connected to two top pin joints. It is worth
mentioning that both the lockable passive member and linear actuator are symmetrically
arranged with respect to the plane O3O1O2.
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Figure 1. Composition of the lockable morphing unit: (a) the BTP unit, (b) 1/2 BTP unit, and (c) the
LM unit.

Figure 2 illustrates the reconfigurability of the LM unit through changes in the configu-
ration of the linear actuator and lockable passive member. In the initial position, represented
by Figure 2a, the left-wing rib support frame is fixed. The swept-back linear actuator is
elongated to achieve swept-back deformation, as shown in Figure 2b. Similarly, the twisting
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linear actuator is extended to achieve twisting deformation, as shown in Figure 2c. The
span-wise bending linear actuator is extended to achieve span-wise bending deformation,
as shown in Figure 2d.
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Figure 2. Morphing schematic diagram of the LM unit: (a) initial state, (b) sweep, (c) twist, and
(d) span-wise bend.

Figure 3 shows the MWS mechanism, which includes multiple LM units and multiple
wing ribs distributed along the wing span. The wing ribs are securely connected to the
wing rib support frame on the LM unit. In the MWS mechanism, the first LM unit forms
the swept deformation root mechanism by connecting to the wing rib at the fuselage base
through a sweep angle hinge, a rotating rod, a sweep linear actuator, and an auxiliary
rod. Likewise, two LM units are connected by the same parts to form a continuous swept
deformation mechanism along the span direction.
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Figure 3. Composition of the MWS mechanism. The numbers in the figure represent the linear
actuators number, while the letters represent the lockable passive member number.

The MWS mechanism only needs to design the corresponding wing rib shape and
add flexible skin to obtain a complete morphing wing, without the need for additional
mechanisms/structures, which greatly reduces the structural quality of the morphing wing.
Additionally, through the optimized design of joints and ribs, further lightweight of the
morphing wing is attainable. By capitalizing on the reconfigurable characteristics of the LM
unit, the MWS mechanism not only provides a morphing function but also imparts stiffness
and stability, thereby replacing the traditional wing box. Under corresponding driving
configurations, the MWS mechanism demonstrates three distinct morphing functions.
Through modular design and distributed drive, the morphing wing can achieve continuous
and smooth multi-dimensional deformation locally or globally. Distributed driving can
effectively reduce the local excessive driving force demand.

2.2. Design and Analysis of Skin Mechanical Characteristics

The metastructure flexible skin is composed of hybrid metastructure cells and flexible
superficial skin, as shown in Figure 4. The flexible superficial skin and metastructure
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cells are connected by a bonding layer. The hybrid metastructure cells ensure low in-
plane stiffness and high out-of-plane stiffness. The flexible superficial skin maintains the
smoothness and air tightness of the morphing wing. The hybrid metastructure cell consists
of a concave hexagon and a quadrangular star cell unit, as shown in Figure 5, which has
periodic topological laws. m and n are the number of the cell units along the x- and y-axis
directions. The concave hexagon and the quadrangular star cell unit have horizontal and
vertical symmetry properties.
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The relative density of the hybrid metastructure skin is as follows:

ρr =
ρ∗

ρs
=

β(α2 + 2 + α1/2 + 2α3 + 2α4)

2Ld cos θ1
(1)

where Ld is a dimensionless quantity, Ld = α2 + α1/2 − sinθ1 + α3cosθ2 + α4sinθ3, L is the
concave-inclined wall length of the concave hexagon, B is the horizontal wall length of
the concave hexagon, c is the connected sheet length, θ1 is the inner angle of the concave
hexagon cell unit, l and b are different sloping wall lengths of the quadrangular star, θ2 and
θ3 are different cell unit inner angles of the quadrangular star, t is the thickness of cell wall,
h is the depth of the hybrid metastructure, α1 = B/L, α2 = c/L, α3 = b/L, α4 = l/L, β = t/L,
γ = h/L are dimensionless quantities, ρ* is the hybrid metastructure equivalent density,
ρs is the base material density of the hybrid metastructure, A* is the actual bearing area
in the xy-plane of the hybrid metastructure, As is the equivalent section area of the cell
unit, and Lx is the cell unit length along the x-axis direction of the hybrid metastructure,
Lx = 2c + B − 2L sinθ1 + 2bcosθ2 + 2lsinθ3.

The equivalent stiffness of hybrid metastructure cell is shown in Figure 6. The homo-
geneous load σ1 and σ2 are applied along the x- and y-axis directions. The homogenous
load can be equivalent to the tension Fx and Fy applied to the series and parallel springs.
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equivalent series spring, (c) y direction loading, and (d) y direction equivalent parallel spring.

The relative Young’s modulus and Poisson’s ratio of the concave hexagon cell unit are
as follows: 

E1x
Es

= β3(α2+α1/2−sin θ1)
cos θ1λ1x

E1y
Es

= β3 cos θ1
(α2+α1/2−sin θ1)λ1y

ν1xy = − u1x(α2+α1/2−sin θ1)
cos θ1

ν1yx = − u1y cos θ1
α2+α1/2−sin θ1

(2)

where E1x/Es is the relative Young’s modulus of the concave hexagon cell unit along thet
x-axis direction, E1y/Es is the relative Young’s modulus of the concave hexagon cell unit
along the y-axis direction, v1xy and v1yx are Poisson’s ratio, λ1x = cos2θ1 + β2sin2θ1 + 2α2β2,
λ1y = sin2θ1 + β2cos2θ1, u1x = (1 − β2) sin(2θ1)/(2λ1x), u1y = (1 − β2) sin(2θ1)/(2λ1y).

The elasticity and Poisson’s ratio of the quadrangular star cell unit relative modulus
are as follows: 

E2x
Es

= β3

λ2x
E2y
Es

= β3

λ2y

ν2xy = − ε2x−y
ε2x

= ub+ul
2Lλ2x

ν2yx = − ε2y−x
ε2y

= ub+ul
2Lλ2y

(3)

where E2x/Es is the relative Young’s modulus of the quadrangular star cell unit along the
x-axis direction, E2y/Es is the relative Young’s modulus of the quadrangular star cell unit
along the y-axis direction, and v2xy and v2yx are the Poisson’s ratio, λ2x = α2

3(α3 + 3α4)sin2θ2

+α2
4(α4 + 3α3)cos2θ3 + β2(α3cos2θ2 + α4sin2θ3), λ2y = α2

3(α3 + 3α4)cos2θ2 + α2
4(α4 + 3α3)sin2θ3

+ β2(α3sin2θ2 + α4cos2θ3).
Based on Equations (2) and (3), the relative Young’s modulus and Poisson’s ratio of

the hybrid metastructure is as follows:
Ex
Es

= β3Ld
cos θ1(λ1x+λ2x)

Ey
Es

=
β3 cos θ1(λ1y+λ2y)

Ldλ1yλ2y

νyx = − εy−x
εy

= v1+v2
Ld

(4)

where v1 = −u1ycosθ1, v2 = v2yx (α3cosθ2 + α4sinθ3).
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3. Fluid–Structure Coupling Analysis of Morphing Wing
3.1. Equivalent Model of Metastructure Skin

Flexible skin mechanical characteristics are mainly affected by the hybrid metastruc-
ture cell unit size. The hybrid metastructure has two mutually perpendicular elastic planes
of symmetry, which can be regarded as an orthogonal anisotropic material with nine
independent stiffness coefficients. Moreover, the stiffness matrix C is as follows:

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (5)

where Cij are stiffness coefficients.
Given that the out-of-plane thickness of the hybrid metastructure is much smaller than

the in-plane length and width size, it can be treated as the sheet plane stress. Its in-plane
two-dimensional stiffness matrix Q is written as follows:

Q =

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 (6)

where Qij are stiffness coefficients, which can be expressed as the engineering elastic constant.{
Q11 = E1

1−ν12ν21
, Q22 = E2

1−ν12ν21

Q12 = ν21E2
1−ν12ν21

, Q66 = G12
(7)

where E1 = Ex, E2 = Ey, v12 = vxy, v21 = vyx, G12 = Gxy can be obtained using the Euler–
Bernoulli beam model.

The in-plane bend stiffness matrix D of the metastructure equivalent orthogonal
anisotropic sheet is as follows:

D =

D11 D12 0
D12 D22 0

0 0 D66

 =
h3

12

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 (8)

where D11, D12, and D22 are bend stiffness coefficients, and D66 is the twist stiffness coefficient.
The deflection of the metastructure equivalent orthogonal anisotropic sheet, the size

of which is a × b × h with four sides simply supported under the action of homogeneous
load q0, is as follows:

w =
16q0

π6

∞
∑

m=1,3,5

∞
∑

n=1,3,5

1
mn sin mπx

a sin nπy
b

D11
(m

a
)4

+ 2(D12 + 2D66)
(m

a
)2( n

b
)2

+ D22
(m

b
)4 (9)

where m and n are any positive integers, x and y are arbitrary position coordinates of
the sheet.

It can be observed that the maximum deflection wmax occurs at x = a/2, y = b/2 in the
center of the sheet. The x direction of the hybrid metastructure is along the wing chord
direction, while the y direction is along the wingspan direction, as shown in Figure 7. h is
the depth of the hybrid metastructure, and t2 is the thickness of the flexible skin and bond-
ing layer. This arrangement method allows for smaller stiffness in the wingspan direction,
reducing the driving force required for deformation. Furthermore, the skin’s zero Pois-
son’s ratio characteristics prevent chord direction wrinkle and the large in-plane Young’s
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modulus Ex to improve the flexible skin’s out-of-plane bearing capacity, as evidenced by
Equation (9).
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Figure 7. The morphing wing with metastructure skin.

If the hybrid metastructure cell of the skin is directly used in modeling, the number
of grids will be large, the calculation is slow, and the time is very long. To improve
computational efficiency, the hybrid metastructure skin’s equivalent elastic modulus and
Poisson’s ratio are applied to an orthogonal anisotropic sheet, so that the skin structure
could be equivalent. First, the shell model is created in Ansys Workbench 2022 R1 software.
Then, the mechanical elastic constant in Equation (7) is obtained through simulation.
Subsequently, an equivalent orthogonal anisotropic material shell cell sheet model is
constructed through the Ansys Composite Prep/Post (ACP) module of Ansys Workbench
to simulate the mechanical characteristics of the hybrid metastructure. The basic parameters
of the hybrid metastructure skin are as follows: L = 10 mm, α1 = 2.2, α2 = 1.1, β = 0.1, γ = 1.0,
θ1= 50◦, θ2 = 25◦. Based on the analysis of boundary conditions in Section 2.2, v12 = vxy =0
is obtained. The mechanical elastic constants of the equivalent orthogonal anisotropic
material are: Ex = 7447 MPa, Ey = 252 MPa, vyx = 0.0212, Ez = 47,810 MPa, and Gxy = 11 MPa,
h + 2t = 12 mm. Both the hybrid metastructure sheet and equivalent orthogonal anisotropic
material sheet are supported on four sides. The maximum deflection value of the overall
out-of-plane under the 0.02 MPa homogeneous load is simulated, and the simulated results
are listed in Table 1.

Table 1. Maximum deflection under homogeneously distributed load.

Simulated Results
wmax/mm

Theoretical Result
wmax/mm Relative Error RE/%

The hybrid metastructure skin 0.84395
0.7946

−5.8575
The equivalent orthogonal anisotropic sheet 0.82234 −3.3732

It is observed that the equivalent orthogonal anisotropic shell effectively simulates the
mechanical characteristics of the hybrid metastructure skin. The equivalent shell unit can
improve the computational efficiency of the subsequent simulation.

3.2. Bidirectional Fluid–Structure Coupling Analysis of the Morphing Wing

The coupling FEM model of the single MWS mechanism and flexible skin module was
established using the Ansys Workbench 2022 R1 software. The bidirectional fluid–structure
coupling interaction (FSI) analysis was performed in the coupling model. Four deformation
states of the single-module skeleton mechanism and skin are shown in Figure 8. The
structural and fluid simulation calculations of the morphing wing were completed using
Transient Structural and Fluent 2022 R1 software, respectively. The dynamic bidirectional
fluid–structure coupling analysis simulated platform was constructed on the Ansys work-
bench. Some characteristics of the MWS mechanism and flexible skin under the action of
aerodynamic load were studied, that is, pressure, stress, and displacement distribution,
and the influence of the flexible skin on the morphing wing aerodynamic characteristics



Aerospace 2023, 10, 678 9 of 19

after passive deformation. A flowchart for the numerical simulation of two-way FSI is
shown in Figure 9.
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Figure 8. Four deformation states of single-module skeleton mechanism and skin: (a) initial state,
(b) twist, (c) span-wise bend, and (d) sweep.
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Figure 9. Flowchart for the numerical simulation of two-way FSI.

3.2.1. Morphing Wing FEM Model

The morphing wing consists of the MWS mechanism and the hybrid metastructure
flexible skin. The skeleton mechanism is a complex multi-link truss, which supports the
hybrid metastructure flexible skin and transfers the aerodynamic load. Each structural
component should be simplified to reduce the complexity and efficiency of the simulation.
The beams were used to simulate the link, driver, and lockable passive link. The shell
element is used to simulate the rib and flexible skin. The bonded rods and rib are connected
through node sharing. The flexible skin and rib are connected through bonded contact
(bonded—MPC). The engineering elastic parameters of the shell element are endowed
with the equivalent orthogonal anisotropic material. The rods and rib are connected and
meshed. The processed flexible skin and skeleton mechanism are then imported into the
same analysis component. Figure 10 shows the FEM model of the MWS mechanism and
flexible skin coupling. TE represents the trailing edge of the wing.
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Figure 10. FEM model of the morphing wing in initial state.

The material rib is an aluminum alloy, with a density of 2.77 g/cm3, Young’s modulus
of 71,000 MPa, Poisson’s ratio of 0.33, shearing Young’s modulus of 26,690 MPa, yield
strength of 280 MPa, and strength of extension of 310 MPa. The material of the link is a
carbon fiber composite, and the material properties are listed in Table 2.

Table 2. Material properties of carbon fiber (395 GPa).

Density (g/cm3)
Young’s Modulus (MPa) Poisson’s Ratio

Ex Ey Ez vxy vyz vxz

Carbon fiber 1.8 395,000 6000 6000 0.2 0.4 0.2

In bidirectional fluid–structure coupling analysis, fluid and structure fields need to be
calculated through several iterations. Therefore, the transient structural analysis system
was used to solve the FEM structural model. Fluid–structure coupling analysis interfaces
were created on the flexible skin. The rib and rods at the root of the morphing wing were
fixed. The external load was applied to the flexible skin through the system coupling
surface by the fluid–structure coupling analysis FSI interface. The beam section result,
which is a setup method in the software, was opened in the solution step, and the solution
time was set to 0.04 s to obtain the bearing and deformation of the flexible skin of the
rod under aerodynamic load. Three FEM mesh models in deformation state are shown
in Figure 11. The same method was used to set the boundary conditions and create the
coupling interface corresponding to the fluid model.
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Figure 11. Three FEM mesh models in deformation state: (a) wingspan bend, (b) twist, and (c) swept.

3.2.2. Morphing Wing CFD Fluid Model

The morphing wing structural model was created according to four different states,
and then the morphing wing fluid model was created through the structural model. With
reference to the coupling interface of the structural model, the morphing wing fluid wall
surface was divided into five independent walls at the corresponding positions, namely the
upper and lower skin, trailing edge and two ribs. The five independent walls are used for
data transfer at the interface of fluid–structure coupling analysis. The wall perpendicular to
the x- and y- axes is named Wall-I, whereas the wall perpendicular to the z- axis is named
Wall-II, as shown in Figure 12. The chord length of the MWS mechanism is 850 mm and
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the length of a module wing along the wingspan is 358 mm. Based on the selected solver,
the pressure far field boundary should be 20 times greater than the airfoil size. Therefore,
the fluid size is 21,000 mm × 17,000 mm × 358 mm. An unstructured mesh technique
with better geometrical adaptability and easy deformation was used for fluid meshing to
achieve a large deformation of the fluid region near the airfoil. The fluid grid model of
unstructured meshing was adopted, and the number of elements is 1.35 million, as shown
in Figure 13.
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The velocity boundary condition is set as the pressure far field: the Mach number
is Ma = 0.6, the angle of attack is AOA = 6◦, the reference pressure is Pr = 0 Pa, the
gauge pressure is Pg = 70,100 Pa, the reference temperature is T = 268.65 K, and the flight
environment at an altitude of 3 km is simulated, as shown in Figure 13. Finally, the dynamic
two-way FSI simulation platform was built on the Ansys workbench.

The fluid model was imported into the Fluent fluid analysis software, and the fluid
calculation conditions were set as follows: the gas model was selected as an ideal gas, the
viscosity was set as the Sutherland viscosity, and the turbulence model was the k-w SST
turbulence model. A density-based transient coupling solver was used, and the speed
boundary condition was set as the pressure far field, with Ma = 0.6, Reynolds number
of 6 × 106, AOA = 6◦, operating pressure of 0 Pa, gauge pressure of 70,100 Pa, and the
reference temperature of T = 268.65 K, which is used to simulate a flight environment at
an altitude of 3 km. The bidirectional fluid–structure coupling analysis requires the use
of dynamic grid technology. The smooth mesh and reconstruction mesh technology of
dynamic mesh in fluent software is used to realize the data transmission of the deformation
and coupling interface of fluid mesh near the wing surface. The structural and fluid field
of the initial state of the morphing wing is modeled. The morphing wing structure is
influenced by the aerodynamic load mainly through the deformation and stress of the
skeleton mechanism and the distribution of the flexible skin bucking. The change in drag
coefficient and fluid mainly reflects the influence of structural deformation on morphing
wing aerodynamic characteristics.

3.2.3. Discussion of Fluid–Structure Coupling Analysis

The deformation and stress distribution of the skeleton mechanism inside the mor-
phing wing under aerodynamic load are depicted in Figures 14–17. It is observed that the
deformation in the four states is very small under the aerodynamic load, which indicates
that the skeleton mechanism provides sufficient rigidity to withstand the aerodynamic load.
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Additionally, the maximum stress is below the yield strength of common metals (aluminum
alloy 280 MPa and structural steel 250 MPa), demonstrating that the basic carbon fiber rod
meets the strength requirements. Comparatively, the deformation in the initial state and
the span-wise bend state is greater than that in the twisting and sweepback states, with
a higher maximum stress in the former two deformation states. Therefore, the twisting
and sweepback effectively reduce the aerodynamic force on the mechanism. Notably, the
maximum stress of the skeleton mechanism is concentrated at the wing root and the output
end of the swept-back actuator, providing an important reference for practical application
and detailed designs.

Aerospace 2023, 10, x FOR PEER REVIEW  12  of  19 
 

 

viscosity was set as the Sutherland viscosity, and the turbulence model was the k‐w SST 

turbulence model. A density‐based  transient  coupling  solver was used, and  the  speed 

boundary condition was set as the pressure far field, with Ma = 0.6, Reynolds number of 

6 × 106, AOA = 6°, operating pressure of 0 Pa, gauge pressure of 70,100 Pa, and the refer‐

ence temperature of T = 268.65 K, which  is used to simulate a flight environment at an 

altitude of 3 km. The bidirectional fluid–structure coupling analysis requires the use of 

dynamic grid technology. The smooth mesh and reconstruction mesh technology of dy‐

namic mesh in fluent software is used to realize the data transmission of the deformation 

and coupling interface of fluid mesh near the wing surface. The structural and fluid field 

of the initial state of the morphing wing is modeled. The morphing wing structure is in‐

fluenced by the aerodynamic load mainly through the deformation and stress of the skel‐

eton mechanism and the distribution of the flexible skin bucking. The change in drag co‐

efficient and  fluid mainly reflects  the  influence of structural deformation on morphing 

wing aerodynamic characteristics. 

3.2.3. Discussion of Fluid–Structure Coupling Analysis 

The deformation and stress distribution of the skeleton mechanism inside the morph‐

ing wing under aerodynamic load are depicted in Figures 14–17. It is observed that the 

deformation in the four states is very small under the aerodynamic load, which indicates 

that  the skeleton mechanism provides sufficient rigidity  to withstand  the aerodynamic 

load. Additionally,  the maximum stress  is below  the yield strength of common metals 

(aluminum alloy 280 MPa and structural steel 250 MPa), demonstrating that the basic car‐

bon fiber rod meets the strength requirements. Comparatively, the deformation in the in‐

itial state and the span‐wise bend state is greater than that in the twisting and sweepback 

states, with a higher maximum stress in the former two deformation states. Therefore, the 

twisting and sweepback effectively reduce the aerodynamic force on the mechanism. No‐

tably, the maximum stress of the skeleton mechanism is concentrated at the wing root and 

the output end of the swept‐back actuator, providing an important reference for practical 

application and detailed designs. 

   
(a)  (b) 

Figure 14. Deformation and stress distribution of skeleton mechanism in initial state: (a) initial 

deformation and (b) initial stress. 

  

(a)  (b) 

Figure 15. Deformation and stress distribution of skeleton mechanism in bending state: (a) bend‐

ing deformation and (b) bending stress. 

Figure 14. Deformation and stress distribution of skeleton mechanism in initial state: (a) initial
deformation and (b) initial stress.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 20 
 

 

viscosity was set as the Sutherland viscosity, and the turbulence model was the k-w SST 

turbulence model. A density-based transient coupling solver was used, and the speed 

boundary condition was set as the pressure far field, with Ma = 0.6, Reynolds number of 

6 × 106, AOA = 6°, operating pressure of 0 Pa, gauge pressure of 70,100 Pa, and the refer-

ence temperature of T = 268.65 K, which is used to simulate a flight environment at an 

altitude of 3 km. The bidirectional fluid–structure coupling analysis requires the use of 

dynamic grid technology. The smooth mesh and reconstruction mesh technology of dy-

namic mesh in fluent software is used to realize the data transmission of the deformation 

and coupling interface of fluid mesh near the wing surface. The structural and fluid field 

of the initial state of the morphing wing is modeled. The morphing wing structure is in-

fluenced by the aerodynamic load mainly through the deformation and stress of the skel-

eton mechanism and the distribution of the flexible skin bucking. The change in drag co-

efficient and fluid mainly reflects the influence of structural deformation on morphing 

wing aerodynamic characteristics. 

3.2.3. Discussion of Fluid–Structure Coupling Analysis 

The deformation and stress distribution of the skeleton mechanism inside the morph-

ing wing under aerodynamic load are depicted in Figures 14–17. It is observed that the 

deformation in the four states is very small under the aerodynamic load, which indicates 

that the skeleton mechanism provides sufficient rigidity to withstand the aerodynamic 

load. Additionally, the maximum stress is below the yield strength of common metals 

(aluminum alloy 280 MPa and structural steel 250 MPa), demonstrating that the basic car-

bon fiber rod meets the strength requirements. Comparatively, the deformation in the in-

itial state and the span-wise bend state is greater than that in the twisting and sweepback 

states, with a higher maximum stress in the former two deformation states. Therefore, the 

twisting and sweepback effectively reduce the aerodynamic force on the mechanism. No-

tably, the maximum stress of the skeleton mechanism is concentrated at the wing root and 

the output end of the swept-back actuator, providing an important reference for practical 

application and detailed designs. 

  
(a) (b) 

Figure 14. Deformation and stress distribution of skeleton mechanism in initial state: (a) initial 

deformation and (b) initial stress. 

  

(a) (b) 

Figure 15. Deformation and stress distribution of skeleton mechanism in bending state: (a) bend-

ing deformation and (b) bending stress. 
Figure 15. Deformation and stress distribution of skeleton mechanism in bending state: (a) bending
deformation and (b) bending stress.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 20 
 

 

  
(a) (b) 

Figure 16. Deformation and stress distribution of skeleton mechanism in twisting state: (a) twist-

ing deformation and (b) twisting stress. 

  

(a) (b) 

Figure 17. Deformation and stress distribution of skeleton mechanism in sweeping state: (a) 

sweeping deformation and (b) sweeping stress. 

The out-of-plane deformation and stress distribution of flexible skin in four defor-

mation states under aerodynamic load are shown in Figures 18–21. The yield strength of 

the metastructure flexible skin is the yield strength σs of the base material aluminum alloy, 

and it must be ensured that the simulation value σVon ≤ σ. 

According to Figures 18–21, the largest deformation of the flexible skin occurs in the 

initial state, followed by the swept, span-wise bent, and twisted states. In the initial and 

span-wise bending states, the deformation is mainly concentrated on the upper part of the 

trailing edge. Due to the negative pressure difference between the upper and lower wing 

surfaces, the flexible skin is sucked out of the bulge on the upper surface of the trailing 

edge. In the twisted state, the flexible skin is absorbed into a bulge near the leading edge, 

and the upper and lower airfoil surfaces near the trailing edge are depressed and com-

pressed. This may be because the twisting deformation does not generate enough negative 

pressure areas on the upper and lower surfaces. For the flexible skin with sweepback de-

formation, the maximum deformation occurs on the upper surface near the leading edge, 

as the sweepback deformation increases the windward side of the leading edge and the 

aerodynamic load. The maximum stress experienced by the flexible skin in each defor-

mation state is below the yield strength of the aluminum alloy, indicating that the skin 

will not be damaged. Based on the out-of-plane passive deformation criterion, which 

states that the out-of-plane deformation of the skin under aerodynamic load should be 

less than 0.5% of the chord length (δ = 850 × 0.5% = 4.25 mm), the load-bearing capacity of 

the flexible skin should be checked. Only the span-wise bending and twisting defor-

mations meet the requirements for out-of-plane load capacity, as shown in Figures 19 and 

20. According to the distribution of the deformation, the out-of-plane deformation of the 

flexible skin can be reduced by improving the connection position between the flexible 

skin and the internal mechanism. 

Figure 16. Deformation and stress distribution of skeleton mechanism in twisting state: (a) twisting
deformation and (b) twisting stress.

The out-of-plane deformation and stress distribution of flexible skin in four deforma-
tion states under aerodynamic load are shown in Figures 18–21. The yield strength of the
metastructure flexible skin is the yield strength σs of the base material aluminum alloy, and
it must be ensured that the simulation value σVon ≤ σ.



Aerospace 2023, 10, 678 13 of 19

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 20 
 

 

  
(a) (b) 

Figure 16. Deformation and stress distribution of skeleton mechanism in twisting state: (a) twist-

ing deformation and (b) twisting stress. 

  

(a) (b) 

Figure 17. Deformation and stress distribution of skeleton mechanism in sweeping state: (a) 

sweeping deformation and (b) sweeping stress. 

The out-of-plane deformation and stress distribution of flexible skin in four defor-

mation states under aerodynamic load are shown in Figures 18–21. The yield strength of 

the metastructure flexible skin is the yield strength σs of the base material aluminum alloy, 

and it must be ensured that the simulation value σVon ≤ σ. 

According to Figures 18–21, the largest deformation of the flexible skin occurs in the 

initial state, followed by the swept, span-wise bent, and twisted states. In the initial and 

span-wise bending states, the deformation is mainly concentrated on the upper part of the 

trailing edge. Due to the negative pressure difference between the upper and lower wing 

surfaces, the flexible skin is sucked out of the bulge on the upper surface of the trailing 

edge. In the twisted state, the flexible skin is absorbed into a bulge near the leading edge, 

and the upper and lower airfoil surfaces near the trailing edge are depressed and com-

pressed. This may be because the twisting deformation does not generate enough negative 

pressure areas on the upper and lower surfaces. For the flexible skin with sweepback de-

formation, the maximum deformation occurs on the upper surface near the leading edge, 

as the sweepback deformation increases the windward side of the leading edge and the 

aerodynamic load. The maximum stress experienced by the flexible skin in each defor-

mation state is below the yield strength of the aluminum alloy, indicating that the skin 

will not be damaged. Based on the out-of-plane passive deformation criterion, which 

states that the out-of-plane deformation of the skin under aerodynamic load should be 

less than 0.5% of the chord length (δ = 850 × 0.5% = 4.25 mm), the load-bearing capacity of 

the flexible skin should be checked. Only the span-wise bending and twisting defor-

mations meet the requirements for out-of-plane load capacity, as shown in Figures 19 and 

20. According to the distribution of the deformation, the out-of-plane deformation of the 

flexible skin can be reduced by improving the connection position between the flexible 

skin and the internal mechanism. 

Figure 17. Deformation and stress distribution of skeleton mechanism in sweeping state: (a) sweeping
deformation and (b) sweeping stress.

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 18. Deformation and stress distribution of flexible skin in initial state: (a) deformation and 

(b) stress. 

  

(a) (b) 

Figure 19. Deformation and stress distribution of flexible skin in bending state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 20. Deformation and stress distribution of flexible skin in twisting state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 21. Deformation and stress distribution of flexible skin in sweeping state: (a) deformation 

and (b) stress. 

The lift and drag coefficients of the morphing wing before and after the passive de-

formation of the flexible skin are shown in Table 3, ΔCL and ΔCD indicate the extent of 

change in lift and drag coefficients, respectively. 

Table 3. Influence of flexible skin on lift–drag characteristics of morphing wing. 

Figure 18. Deformation and stress distribution of flexible skin in initial state: (a) deformation and
(b) stress.

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 18. Deformation and stress distribution of flexible skin in initial state: (a) deformation and 

(b) stress. 

  

(a) (b) 

Figure 19. Deformation and stress distribution of flexible skin in bending state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 20. Deformation and stress distribution of flexible skin in twisting state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 21. Deformation and stress distribution of flexible skin in sweeping state: (a) deformation 

and (b) stress. 

The lift and drag coefficients of the morphing wing before and after the passive de-

formation of the flexible skin are shown in Table 3, ΔCL and ΔCD indicate the extent of 

change in lift and drag coefficients, respectively. 

Table 3. Influence of flexible skin on lift–drag characteristics of morphing wing. 

Figure 19. Deformation and stress distribution of flexible skin in bending state: (a) deformation and
(b) stress.

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 18. Deformation and stress distribution of flexible skin in initial state: (a) deformation and 

(b) stress. 

  

(a) (b) 

Figure 19. Deformation and stress distribution of flexible skin in bending state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 20. Deformation and stress distribution of flexible skin in twisting state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 21. Deformation and stress distribution of flexible skin in sweeping state: (a) deformation 

and (b) stress. 

The lift and drag coefficients of the morphing wing before and after the passive de-

formation of the flexible skin are shown in Table 3, ΔCL and ΔCD indicate the extent of 

change in lift and drag coefficients, respectively. 

Table 3. Influence of flexible skin on lift–drag characteristics of morphing wing. 

Figure 20. Deformation and stress distribution of flexible skin in twisting state: (a) deformation and
(b) stress.



Aerospace 2023, 10, 678 14 of 19

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 18. Deformation and stress distribution of flexible skin in initial state: (a) deformation and 

(b) stress. 

  

(a) (b) 

Figure 19. Deformation and stress distribution of flexible skin in bending state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 20. Deformation and stress distribution of flexible skin in twisting state: (a) deformation 

and (b) stress. 

  

(a) (b) 

Figure 21. Deformation and stress distribution of flexible skin in sweeping state: (a) deformation 

and (b) stress. 

The lift and drag coefficients of the morphing wing before and after the passive de-

formation of the flexible skin are shown in Table 3, ΔCL and ΔCD indicate the extent of 

change in lift and drag coefficients, respectively. 

Table 3. Influence of flexible skin on lift–drag characteristics of morphing wing. 
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According to Figures 18–21, the largest deformation of the flexible skin occurs in the
initial state, followed by the swept, span-wise bent, and twisted states. In the initial and
span-wise bending states, the deformation is mainly concentrated on the upper part of the
trailing edge. Due to the negative pressure difference between the upper and lower wing
surfaces, the flexible skin is sucked out of the bulge on the upper surface of the trailing edge.
In the twisted state, the flexible skin is absorbed into a bulge near the leading edge, and the
upper and lower airfoil surfaces near the trailing edge are depressed and compressed. This
may be because the twisting deformation does not generate enough negative pressure areas
on the upper and lower surfaces. For the flexible skin with sweepback deformation, the
maximum deformation occurs on the upper surface near the leading edge, as the sweepback
deformation increases the windward side of the leading edge and the aerodynamic load.
The maximum stress experienced by the flexible skin in each deformation state is below
the yield strength of the aluminum alloy, indicating that the skin will not be damaged.
Based on the out-of-plane passive deformation criterion, which states that the out-of-plane
deformation of the skin under aerodynamic load should be less than 0.5% of the chord
length (δ = 850 × 0.5% = 4.25 mm), the load-bearing capacity of the flexible skin should be
checked. Only the span-wise bending and twisting deformations meet the requirements for
out-of-plane load capacity, as shown in Figures 19 and 20. According to the distribution
of the deformation, the out-of-plane deformation of the flexible skin can be reduced by
improving the connection position between the flexible skin and the internal mechanism.

The lift and drag coefficients of the morphing wing before and after the passive
deformation of the flexible skin are shown in Table 3, ∆CL and ∆CD indicate the extent of
change in lift and drag coefficients, respectively.

Table 3. Influence of flexible skin on lift–drag characteristics of morphing wing.

State
CL

∆CL/%
CD

∆CD/%
Rigid Skin Flexible Skin Rigid Skin Flexible Skin

Initial 0.5585 0.59236 6.06 0.030210 0.026716 −11.57
Bend 0.1732 0.17835 2.97 0.028648 0.026825 −6.36
Twist 0.0555 0.05407 −2.58 0.019276 0.014484 −24.86

Sweep 0.11767 0.11776 0.076 0.018881 0.021818 15.6

Table 3 shows that the passive deformation of the flexible skin under the aerodynamic
load has a certain impact on the aerodynamic characteristics of the morphing wing. Specifi-
cally, the skin deformation of the skin in the initial and span-wise bend states leads to an
increase in the lift coefficient, and a decrease in the drag coefficient, ultimately resulting in
an improved lift–drag ratio. This phenomenon is akin to the principle of variable airfoil
thickness. The wing surface bulge is used to change the transition position of wing surface
airflow from the laminar to turbulent flow to improve the quality of wing surface airflow
and increase lift and reduce drag. The skin deformation in the twisting state reduces the lift
and drag coefficients significantly owing to the small protrusion at the leading edge and
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the large depression at the trailing edge. The swept-back flexible skin has a small bulge
at the trailing edge. However, the leading edge has a large bulge, and irregularly shaped
wrinkles on the wing surface can induce a flow separation around the airfoil, resulting in a
notable increase in the drag coefficient and the generation of more vortices.

4. Aerodynamic Characteristics of the Morphing Wing

The influence of three different deformed states and different flight environments on
the aerodynamic characteristics of the morphing wing is studied. The definition of three
different angles under three morphed states are shown in Figure 22.
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4.1. Influence of the Deformed State on Aerodynamic Characteristics

The numerical simulated state is as follows: the altitude is Ha = 3 km, the gauge
pressure is Pg = 70,100 Pa, the temperature is t0 = 268.65 K, the flight speed is vf = 0.6 Ma,
and the angle of attack is AOA = 6◦. The influence of different deformed states on the airfoil
pressure coefficient was studied. Airfoil pressure coefficients, at four kinds of different
deformation states, are shown in Figure 23. It can be seen from Figure 23 that the pressure
coefficient values and distribution of the initial state are similar to those of the wingspan
bend state. Twist deformation makes the airfoil pressure coefficient move to the wing root
and trailing edge. Moreover, the low-pressure area expands, but the negative pressure
value and the lift coefficient decrease. The airfoil pressure coefficient distribution and
initial state are the same, but the negative pressure value becomes smaller, which leads to a
decrease in the lift coefficient.

In order to ensure the accuracy of the computational fluid dynamics analysis results,
this article will take the initial shape of the morphing wing as a case to verify grid inde-
pendence. There are three sets of grids with different scales: coarse grid (1.47 million),
medium grid (3.43 million), and fine grid (6.42 million). The aerodynamic coefficients of
morphing wing are evaluated under the above flight condition, as shown in Table 4. Here,
∆CL and ∆CD are the relative errors of aerodynamic coefficient calculated for the coarse
and medium grids compared to the fine grid, respectively. It can be seen that the relative
error of the lift and drag coefficients of each grid density is within the acceptable range,
and the maximum error is the drag coefficient of coarse grid and fine grid, with a 1.89%
difference. It indicates that we can obtain a convergent result, even deploying the coarse
grid in terms of aerodynamic features.

The 3D aspect analysis software Xflr 5 v6.55 and Fluent 2022 R1 simulation software
were used to conduct an aerodynamic analysis of the above four kinds of deformed state
of the hybrid metastructure morphing wing. The aerodynamic characteristics of different
deformation states are shown in Figure 24.
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Figure 23. Airfoil pressure coefficient at different deformation states (AOA = 6◦): (a) initial state,
(b) wingspan bend 10◦, (c) twist angle –8◦, and (d) swept angle 45◦.

Table 4. Grid independence study of aerodynamic coefficient for morphing wing.

Grid Size CL ∆CL/% CD ∆CD/% L/D

Coarse (1.47 million) 0.39768 0.18 0.021003 1.89 18.93448
Medium (3.43 million) 0.39307 −0.99 0.020292 −1.56 19.37043

Fine (6.42 million) 0.39698 — 0.020614 — 19.25771
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Figure 24. Aerodynamic characteristics of different deformation states: (a) lift coefficient, (b) drag
coefficient, and (c) lift–drag ratio.

As shown in Figure 24, the lift coefficient, drag coefficient, and lift–drag ratio on the
initial state and wingspan bend state increase gradually as the angle of attack increases.
The regularity and magnitude of the curve are uniform, which means that wingspan bend
deformation does not influence morphing wing aerodynamic characteristics, only the flight
stability. When the morphing wing positive twist deformation occurs, the wing acquires a
large angle of attack and obtains a greater lift coefficient, but it increases the drag coefficient.
Thus, a positive twist is only used at a low speed and low elevation. On the contrary, a
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negative twist can reduce the drag coefficient and slow down the stall at a high angle of
attack. The swept deformation reduces the drag coefficient and lift–drag ratio at a large
angle of attack.

4.2. Effect of Flight Environment on Aerodynamic Characteristics

In the flight state, the speed is Ma = 0.6, and the angle of attack is AOA = 6◦, and
the influence of the altitudes of 0, 3, 8, and 10 km flight height on the morphing wing
aerodynamic characteristics is shown in Figures 25a, 26a and 27a.
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It can be seen from Figures 25a, 26a and 27a that the lift coefficients of each deformation
state decrease to varying degrees with the increase in height, while the drag coefficients
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increase to varying degrees with the increase in height. Thus, the lift–drag ratios of initial,
wingspan bending, twisting, and swept-back states decrease in varying degrees with
increasing height. The swept state is most affected by the flight altitude.

Successively, subsonic velocity (0.15, 0.3, and 0.6) and supersonic velocity (1, 1.2, 2,
3, 4, and 5) are selected to compare the influence of flight speed on aerodynamic charac-
teristics at the flight state of Ha = 3 km, and the angle of attack of AOA = 6◦, as shown in
Figures 25b, 26b and 27b. From Figures 25b, 26b and 27b, the aerodynamic characteristics
under four different states of the hybrid metastructure morphing wing have the same vari-
ation rule with flight speed. Moreover, different deformed laws are presented in different
speed stages. In the subsonic stage, the lift coefficient, drag coefficient, and lift–drag ratio
gradually increase with the increase in speed. In the transonic and supersonic stages, the
lift coefficient, drag coefficient, and lift–drag ratio gradually decrease with the increase
in speed.

5. Conclusions

One MWS mechanism was proposed with modular BTP units, which had the ca-
pacities of continuous variable span-wise bend, span-wise twist, and sweep. A lockable
morphing unit with the BTP unit was designed. One hybrid metastructure skin is proposed,
which consists of the concave hexagon and the quadrangular star cell, and two flexible
surfaces were bonded on both sides. Based on the theory of beam buckling, the theoretical
models of the relative elastic modulus and Poisson’s ratio of the hybrid metastructure cell
were established.

Fluid–structure coupling analysis on the MWS mechanism and flexible skin coupling
model were carried out. The results demonstrated that the out-of-plane carrying capacity
of flexible skin is mostly influenced by its initial and swept states. The wingspan bend and
twist states of the flexible skin meet the deformation requirement, when the out-of-plane
deformation should be less than 0.5%. Moreover, the out-of-plane bulge deformation
in the flexible skin is advantageous in improving aerodynamic characteristics. Different
deformed states, and the flight environment aerodynamic characteristics of the morphing
wing, were analyzed. The results indicated that wingspan bend deformation has little
influence on aerodynamic characteristics, while twist and swept deformations significantly
alter aerodynamic characteristics. The flight height has little influence on aerodynamic
characteristics, and lift–drag characteristics of each state increase with increasing speed in
the subsonic stage. However, in the transonic and supersonic stages, lift–drag characteristics
decrease with increasing speed.
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